JPS59212601A - Falling liquid-film type evaporator - Google Patents

Falling liquid-film type evaporator

Info

Publication number
JPS59212601A
JPS59212601A JP58087281A JP8728183A JPS59212601A JP S59212601 A JPS59212601 A JP S59212601A JP 58087281 A JP58087281 A JP 58087281A JP 8728183 A JP8728183 A JP 8728183A JP S59212601 A JPS59212601 A JP S59212601A
Authority
JP
Japan
Prior art keywords
heat transfer
porous layer
tube
evaporator
falling film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58087281A
Other languages
Japanese (ja)
Inventor
芳雄 餅田
高畑 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58087281A priority Critical patent/JPS59212601A/en
Publication of JPS59212601A publication Critical patent/JPS59212601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Epoxy Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば海水の温度差等の低熱落差エネルギを
オ0用して発電す全低熱落差発電プラント等に使用され
る流下液模式蒸発器に係の、特にその伝熱管の改良に関
する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a falling liquid model evaporator used in a total low heat drop power generation plant that uses low heat drop energy such as seawater temperature difference to generate electricity. The present invention relates to, in particular, improvements to heat exchanger tubes.

〔発明の技術的背景およびその問題点〕第7図は海水の
温度差を利用して発電する海洋温度差発電プラントの概
略系統図であって、例えばフロン、アンモニア等の低沸
点媒体からなる作動流体は、蒸発器/において海洋表層
部の比較的高温の海水によって加熱、蒸発せしめられ、
蒸気加減弁、2を経て蒸気タービン3に導入され、そこ
で膨張仕事を行ない蒸気タービン3を駆動し、その蒸気
タービン3によって発電機弘を回転して発電を行なう。
[Technical background of the invention and its problems] Figure 7 is a schematic system diagram of an ocean temperature difference power generation plant that uses temperature differences in seawater to generate electricity. The fluid is heated and evaporated by relatively high temperature seawater in the ocean surface layer in the evaporator/,
The steam is introduced into the steam turbine 3 through the steam control valve 2, where it performs expansion work and drives the steam turbine 3, which rotates the generator and generates electricity.

一方、蒸気タービン3から排出された蒸気は、凝縮器j
で海洋深層部の比較的温度が低い海水によシ凝縮され、
その凝縮水は一旦タンク乙に貯溜された後、循環ホンプ
7によって再び蒸発器/に返流される。こ\で、上記蒸
発器/からの蒸発量は常に一定に保持され、発電機≠の
負荷変動に対しては、タービンノ々イパス弁♂を開閉す
ることによシ蒸気タービン3の1駆動力を調節すること
によって対応せしめられる。
On the other hand, the steam discharged from the steam turbine 3 is sent to the condenser j
It is condensed by relatively low-temperature seawater in the deep ocean,
The condensed water is once stored in the tank B and then returned to the evaporator by the circulation pump 7. Here, the amount of evaporation from the evaporator is always kept constant, and when the generator's load fluctuates, the driving force of the steam turbine 3 can be reduced by opening and closing the turbine pass valve ♂. This can be done by adjusting.

ところで、この種のプラントにおける蒸発器としては、
プレート式、プール沸騰式、或は流下液膜式等の蒸発器
の使用が提案されている。しかし一般に、これら海洋温
度差発電プラントにおいては、プラント効率が低く、広
い設置スペースを必要とし、しかもタービン出力の増大
に伴なって機器が巨大化するので陸上での設置は困難な
状態にある。また、これらの海洋温度差発電プラントで
は、海水側のわずかな、圧力損失の増減がタービンの送
電端出力を左右するため、取水海水を陸上まで圧送する
ことは得策とはいえない。そのため大型プラントでは海
上設置形が検討されている。しかして、この場合上述の
各機器はパージ上に設置されるため、コンノξクトな機
器配置を行なう必要があシ、一般的な横形の蒸発器よシ
も縦形に構成される流下液膜式蒸発器の使用が効果的で
ある。
By the way, as an evaporator in this kind of plant,
The use of plate type, pool boiling type, or falling film type evaporators has been proposed. However, in general, these ocean temperature difference power generation plants have low plant efficiency, require a large installation space, and as the turbine output increases, the equipment becomes bulky, making it difficult to install on land. In addition, in these ocean temperature difference power generation plants, the slight increase or decrease in pressure loss on the seawater side affects the output of the turbine at the transmission end, so it is not a good idea to pump the intake seawater to land. For this reason, offshore installations are being considered for large plants. In this case, each of the above-mentioned equipment is installed on the purge, so it is necessary to arrange the equipment in a con- nected manner. Use of an evaporator is effective.

第2図は、上記流下液膜式蒸発器の概略構成図であって
、流下液膜式蒸発器10のケーシング//内には仕切壁
/、2 、 /3 、 /’i4によって上方から順に
加熱流体流入室/S、被加熱流体流入室/6、蒸発室/
7および加熱流体出口室/とがそれぞれ区劃形成されて
おり、上記加熱流体流入室15および被加熱流体流入%
/6にはそれぞれ加熱流体導入管tshおよび被加熱流
体導入管/Aaが連接されている。また、蒸発室/7に
は、その中間高さ位置に蒸気流出管/7aが連接され、
下部に被加熱流体導出管/7bが連接されておシ、加熱
流体出口室/ざには加熱流体導出管/ざaが連接されて
いる。
FIG. 2 is a schematic configuration diagram of the falling film evaporator 10. Inside the casing // of the falling film evaporator 10, there are partition walls /, 2, /3, /'i4 in order from the top. Heating fluid inflow chamber/S, heated fluid inflow chamber/6, evaporation chamber/
7 and a heating fluid outlet chamber/are respectively formed into sections, and the heating fluid inflow chamber 15 and the heated fluid inflow %
A heated fluid introduction pipe tsh and a heated fluid introduction pipe /Aa are connected to /6, respectively. Further, a vapor outlet pipe/7a is connected to the evaporation chamber/7 at an intermediate height position,
A heated fluid outlet pipe/7b is connected to the lower part, and a heated fluid outlet pipe/zone is connected to the heated fluid outlet chamber/zone.

一方、上記ケーシング//内には、頂端が前記加熱流体
流入室15に開口し、下端が加熱流体出口室7gに開口
する多数本の伝熱管/9が配列されている。
On the other hand, a large number of heat transfer tubes/9 are arranged inside the casing///, the top end of which opens into the heating fluid inlet chamber 15, and the lower end of which opens into the heating fluid outlet chamber 7g.

上記伝熱管/?の外表面には、第3図に示すようをで、
熱貫流率を向上するため軸線方向に延びる多数の凹凸溝
/9aが形成されている。
The above heat exchanger tube/? As shown in Figure 3, the outer surface of the
A large number of uneven grooves/9a extending in the axial direction are formed to improve the heat transmission coefficient.

しかして、加熱流体である表層海水は加熱流体入口室/
Sに供給され、伝熱管/の内を流動し、加熱流体出口室
/ざを経て器外に排出される。一方、被加熱流体は被加
熱流体導入管/6aを介して被加熱流体入口室/6内に
流入し仕切壁/3上に貯溜され、この仕切壁/3と伝熱
管/9との間隙から各伝熱管17の外表面に沿って流下
し、その間伝熱管/q内を流れる加熱流体と熱交換して
加熱され、その一部が蒸発せしめられる。そしてその蒸
発した被加熱流体は蒸気流出管/7aを経て蒸発タービ
ンへと供給され、また蒸発できなかった被加熱流体は被
加熱流体導出管/7bから流出し、図示しないポンプを
介して再び被加熱流体入口室/乙に還流される。
Therefore, the surface seawater, which is the heating fluid, enters the heating fluid inlet chamber.
The fluid is supplied to S, flows through the heat exchanger tube, and is discharged outside the vessel through the heated fluid outlet chamber. On the other hand, the heated fluid flows into the heated fluid inlet chamber/6 through the heated fluid introduction pipe/6a and is stored on the partition wall/3, and from the gap between the partition wall/3 and the heat transfer tube/9. It flows down along the outer surface of each heat exchanger tube 17 and is heated by exchanging heat with the heating fluid flowing inside the heat exchanger tube /q, and a part of it is evaporated. The evaporated fluid to be heated is supplied to the evaporation turbine through the steam outlet pipe/7a, and the fluid to be heated that has not been evaporated flows out from the fluid to be heated pipe/7b and is heated again via a pump (not shown). The heated fluid is refluxed to the inlet chamber/B.

ところが、このような流下液膜式蒸発器を発電端出力2
r00 KWのプラントに適用した場合には、伝熱管本
数     yooθ本 伝熱管全長      /7m 蒸発器全高      20t1を 蒸発器シェル径         Am組立重量   
 乙00 Ton となシ、かなり大形な構造物となる。したがって、この
ような大形構造物をパージ上に設置することは、ノ々−
ジの強度および安定性の面から好捷しくない。
However, with such a falling film evaporator, the power generation end output is 2.
When applied to a r00 KW plant, the number of heat transfer tubes: yooθ Total length of heat transfer tubes: /7m Total height of evaporator: 20t1: Evaporator shell diameter: Am assembled weight:
It will be a fairly large structure. Therefore, it is difficult to install such a large structure on the purge.
unfavorable in terms of strength and stability.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、パージ上にも十分設置す
ることができ、伝熱効率が高くコン・ぐクトな流下液膜
式の蒸発器を得ることを目的とする。
In view of these points, it is an object of the present invention to provide a falling film type evaporator that can be sufficiently installed on the purge, has high heat transfer efficiency, and is highly conducive.

〔発明の概要〕[Summary of the invention]

本発明は、伝熱管内を流下する加熱流体によって、上記
伝熱管の管外表面に沿って流下する被加熱流体を加熱す
る流下液膜式蒸発器において、蒸発室内における上記伝
熱管の外表面上半部に適宜高さ範囲にわたって多孔質層
7設けるとともに、下半部にその多孔質層に引き続き管
軸方向に延びる凹凸溝を形成したことを特徴とする。
The present invention provides a falling film type evaporator that heats a heated fluid flowing down along the outer surface of the heat transfer tube by a heating fluid flowing down inside the heat transfer tube, in which a heating fluid flowing down the heat transfer tube is heated on the outer surface of the heat transfer tube in the evaporation chamber. It is characterized in that a porous layer 7 is provided over a suitable height range in the half part, and an uneven groove extending in the tube axis direction following the porous layer is formed in the lower half part.

〔発明の実施例〕[Embodiments of the invention]

以下、第≠図乃至第2図7参照して本発明の一実施例に
ついて説明する。なお、第≠図において第2図と同一部
分には同一符号を付しその詳細な説明は省略する。
An embodiment of the present invention will be described below with reference to FIGS. In addition, in FIG. 2, the same parts as in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.

第弘図は本発明の流下液模式蒸発器の縦断面図であって
、ケーシング//内に配列された多数本の伝熱管/9の
外表面には、蒸発室/7におけるその上半部の適宜高さ
範囲にわたって溶射加工にょ多形成された多孔質層2/
が形成され、さらにその下半部には上記多孔質層2/に
引き続いて管軸方向に延びる多数の凹凸溝Uが形成され
ている。その他の点は第2図に示す従来のものを全く同
一である。
Fig. 7 is a vertical cross-sectional view of the falling liquid model evaporator of the present invention, in which the outer surface of a large number of heat transfer tubes /9 arranged in the casing // has an upper half thereof in the evaporation chamber /7. Porous layer 2/
is formed, and a large number of uneven grooves U extending in the tube axis direction following the porous layer 2/ are formed in the lower half thereof. Other points are exactly the same as the conventional one shown in FIG.

−ところで、上記多孔質層2/は粒度、200メツシー
以下の銅または銅合金の粉末を、5−o−3−00μm
の厚さに火炎溶射することにより形成され、凹凸溝シは
溝深さが0−3〜/、 0711jAで/ 〜/、 J
−711JR(Dヒy fで設けられている。丑た、多
孔質層2/部がら凹凸溝n形成部への遷移部Jにおいて
は、第J図に示すように、多孔質層、2/部の母管の外
径D1と凹凸溝U形成部の最大外径D2とが同じ大きさ
に形成してあり、多孔質層ユ/はその厚さが所定値より
漸次減少され、完全にその厚さが零となった位置から凹
凸溝nの溝深さが次第に増加され、所定の溝深さ0.3
〜/」となるようにしである。
- By the way, the porous layer 2/ is made of copper or copper alloy powder with a particle size of 200 mcs or less, 5-o-3-00 μm.
The uneven grooves are formed by flame spraying to a thickness of 0-3~/, 0711jA/~/, J
-711JR (provided at The outer diameter D1 of the main pipe of the part and the maximum outer diameter D2 of the uneven groove U forming part are formed to have the same size, and the thickness of the porous layer U/ is gradually reduced from a predetermined value to completely reduce its thickness. The groove depth of the uneven groove n is gradually increased from the position where the thickness becomes zero, until the predetermined groove depth is 0.3.
~/''.

しかして、被加熱流体流入室/6に流入した被加熱流体
は、仕切壁/3と伝熱管/9との間隙から流出し伝熱管
/9を膜状に覆いながら流下し、多孔質層27部におい
て管内を流れる表層海水によって加熱されて核沸騰し、
その一部が蒸発する。未蒸発液は凹凸溝22部において
管内を流れる表層海水によってさらに加熱されて残シの
一部がさらに蒸発し、未蒸発液は蒸発室17の下部に接
続されている被加熱流体導出管/71)から導出される
。一方、前記伝熱管19の表面で蒸発した蒸気は蒸気流
出管/7aを経て蒸気タービンに送られる。
The heated fluid that has flowed into the heated fluid inflow chamber /6 flows out from the gap between the partition wall /3 and the heat exchanger tube /9, flows down while covering the heat exchanger tube /9 in a film-like manner, and flows down into the porous layer 27. The water is heated by the surface seawater flowing inside the pipe and undergoes nucleate boiling.
Some of it evaporates. The unevaporated liquid is further heated by the surface seawater flowing inside the pipe in the uneven groove 22 portion, and a part of the remaining liquid is further evaporated. ) is derived from On the other hand, the steam evaporated on the surface of the heat transfer tube 19 is sent to the steam turbine via the steam outlet tube/7a.

この場合伝熱管19が前述のように構成されているため
、管外表面を流下する液膜が遷移部において管表面よ)
剥離することなく、全量が有効に熱伝達に寄与し、その
熱効率が向上せしめられる・ところで、第6図は外表面
に凹凸溝を設けた伝熱管の流下液膜熱伝達係数の性能試
験の結果を示す線図であり、凹凸溝のピッチが7〜/、
!眉で伝熱性能が最も高くなる。
In this case, since the heat exchanger tube 19 is configured as described above, the liquid film flowing down the outer surface of the tube is lower than the tube surface at the transition part.
The entire amount effectively contributes to heat transfer without peeling, improving its thermal efficiency.By the way, Figure 6 shows the results of a performance test of the falling liquid film heat transfer coefficient of a heat transfer tube with uneven grooves on the outer surface. is a diagram showing the pitch of the uneven grooves from 7 to /,
! Heat transfer performance is highest in the eyebrows.

また、第7図は、加熱流体と被加熱流体との温度差に対
する管外側流下液膜熱伝達係数の変化を、作動流体(被
加熱流体)としてフロン//3を用いて行なった試験結
果を示す線区であって、(a)は管外表面に凹凸溝のみ
を有する伝熱管の試験結果、(b)は管外表面に溶射加
工にょ多形成した多孔質層のみを有する伝熱管の試験結
果2示す。ずなゎぢ。
Furthermore, Figure 7 shows the results of a test conducted using Freon//3 as the working fluid (heated fluid) to determine the change in the heat transfer coefficient of the falling liquid film on the outside of the tube with respect to the temperature difference between the heating fluid and the heated fluid. In the line sections shown, (a) is the test result of a heat exchanger tube with only uneven grooves on the outer surface of the tube, and (b) is the test result of a heat exchanger tube with only a porous layer formed by thermal spraying on the outer surface of the tube. Results 2 are shown. Zunawaji.

表層海水と作動流体との温度差が大きい領域では、多孔
質層を有する伝熱管が高い熱伝達性能を発揮し、上記温
度差が小さくなると凹凸溝を有する伝熱管が高い熱伝達
性能を発揮する。
In areas where there is a large temperature difference between the surface seawater and the working fluid, heat transfer tubes with porous layers exhibit high heat transfer performance, and when the temperature difference becomes small, heat transfer tubes with uneven grooves exhibit high heat transfer performance. .

したがって、伝熱管を前述のように構成すれば、管外側
流下液膜熱伝達係数は第g図に示すように方り、従来の
凹凸溝のみを設けた伝熱管に比べて篩い伝熱効率を達成
することができる。また、上述のように伝熱効率が高く
なることによって、本発明の流下液膜式蒸発器を発電端
出力2300 KWのプラントに適用した場合には、 伝熱管本数     2000本 伝熱管全長      /3 m 蒸発器全高      /乙m 蒸発器シェル匝         A tyt組立重量
   t、t!;OTon となり、蒸発器全高、組立重量を大幅に低減せしめるこ
とができる。
Therefore, if the heat transfer tube is configured as described above, the heat transfer coefficient of the falling liquid film on the outside of the tube will be as shown in Figure g, achieving a higher heat transfer efficiency than the conventional heat transfer tube provided with only uneven grooves. can do. Furthermore, due to the high heat transfer efficiency as described above, when the falling film evaporator of the present invention is applied to a plant with a power generation output of 2300 kW, the number of heat transfer tubes: 2000 total length of heat transfer tubes /3 m Evaporation Overall height of vessel / m Evaporator shell weight A tyt Assembled weight t, t! ;OTon, and the total height of the evaporator and assembly weight can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、蒸発室におけ
る伝熱管の上半部外表面に適宜高さ範囲にわたって多孔
質層を設けるとともに、その多孔質層に引、き続き管軸
方向に延びる凹凸溝を形成したので、従来の装置に比べ
管外側流下液膜熱伝達係数を7.!〜2倍程度向上させ
ることができ、それによって蒸発全高、組立重量の低減
を図ることができ、海上設置に際してパージの強度に対
する影響を少なくできて安定性を向上させることができ
る。
As explained above, in the present invention, a porous layer is provided over an appropriate height range on the outer surface of the upper half of the heat exchanger tube in the evaporation chamber, and the porous layer is followed by unevenness extending in the tube axis direction. Since the grooves are formed, the heat transfer coefficient of the falling liquid film on the outside of the tube is 7. ! It is possible to improve the performance by about 2 times, thereby reducing the total height of evaporation and the assembly weight, reducing the influence on the strength of purge when installed at sea, and improving stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は海洋温度差発電プラントの概略系統図、第2図
は従来の流下液膜式蒸発器の縦断面図、第3図は上記蒸
発器の伝熱管の横断面図、第グ図は本発明の流下液膜式
蒸発器の縦断面図、第5図は同上蒸発器の伝熱管の遷移
部の縦断面図、第4図は凹凸溝のピッチに対する管外側
流下液膜熱伝達係数の変化線図、・第7図は加熱流体と
被加熱流体との温度差に対する管外ff111作〒液噴
熱私達係数の変化線図、第r図は本発明における伝熱管
の伝熱性能を示す図である。 15・・・加熱流体流入室、/6・・・被加熱流体流入
室、/7・・・蒸発室、/9・・・伝熱管、2/・・・
多孔質層、工・・・凹凸溝。 出願人代理人   猪  股     清躬1菌 躬3奮」 第4目 (15
Figure 1 is a schematic system diagram of an ocean temperature difference power generation plant, Figure 2 is a vertical cross-sectional view of a conventional falling film evaporator, Figure 3 is a cross-sectional view of the heat transfer tube of the evaporator, and Figure A vertical cross-sectional view of the falling film type evaporator of the present invention, FIG. 5 is a vertical cross-sectional view of the transition part of the heat transfer tube of the same evaporator, and FIG. Change diagram, Figure 7 is a change diagram of the liquid jet heat coefficient created by outside the tube ff111 for the temperature difference between the heating fluid and the heated fluid, and Figure R shows the heat transfer performance of the heat transfer tube in the present invention. FIG. 15... Heating fluid inflow chamber, /6... Heated fluid inflow chamber, /7... Evaporation chamber, /9... Heat exchanger tube, 2/...
Porous layer, texture... uneven grooves. Applicant's representative Inomata Kiyomi 1 Bacteria 3 Iku" No. 4 (15)

Claims (1)

【特許請求の範囲】 1、伝熱管内を流下する加熱流体によって、上記伝熱管
の管外表面に沿って流下する被加熱流体を加熱する流下
液膜式蒸発器において、蒸発室における上記伝熱管の外
表面上半部に、適宜高さ範囲にわたって多孔質層を設け
るとともに、下半部にその多孔質層に引続き管軸方向に
延びる凹凸溝を形成したことを特徴とする、流下液膜式
蒸発器。 シ多孔質層は、伝熱管外表面に粒度、!00メツシー以
下の銅または銅合金の粉末を50〜jO0μmの厚さに
火炎溶射することによ多形成されていることを特徴とす
る特許請求の範囲第1項記載の流下液膜式蒸発器。 3、凹凸溝はピッチ/〜/、J−M、溝深さ0.3〜/
、OI/IJIであることを特徴とする特許請求の範囲
第1項記載の流下液膜式蒸発器。 久多孔質層部から凹凸溝部への遷移部では、多孔質層の
厚さが漸次減少し、多孔質層の厚さが零となった位置か
ら溝深さが次第に増加し所定溝深さとなるようにしであ
ることを特徴とする特許請求の範囲第1項記載の流下液
膜式蒸発器0
[Scope of Claims] 1. In a falling film evaporator that heats a fluid to be heated flowing down along the outer surface of the heat transfer tube by a heating fluid flowing down inside the heat transfer tube, the heat transfer tube in the evaporation chamber A falling liquid film type, characterized in that a porous layer is provided over an appropriate height range on the upper half of the outer surface of the tube, and an uneven groove extending in the tube axis direction following the porous layer is formed on the lower half of the tube. Evaporator. The porous layer has a grain size on the outer surface of the heat transfer tube! 2. The falling film evaporator according to claim 1, wherein the falling film evaporator is formed by flame spraying copper or copper alloy powder having a thickness of 50 to 0 μm. 3. The uneven groove has a pitch of /~/, J-M, groove depth of 0.3~/
, OI/IJI.A falling film evaporator according to claim 1, wherein the falling film evaporator is OI/IJI. At the transition part from the porous layer to the uneven groove, the thickness of the porous layer gradually decreases, and from the position where the thickness of the porous layer reaches zero, the groove depth gradually increases until it reaches a predetermined groove depth. A falling film type evaporator 0 according to claim 1, characterized in that:
JP58087281A 1983-05-18 1983-05-18 Falling liquid-film type evaporator Pending JPS59212601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087281A JPS59212601A (en) 1983-05-18 1983-05-18 Falling liquid-film type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087281A JPS59212601A (en) 1983-05-18 1983-05-18 Falling liquid-film type evaporator

Publications (1)

Publication Number Publication Date
JPS59212601A true JPS59212601A (en) 1984-12-01

Family

ID=13910398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087281A Pending JPS59212601A (en) 1983-05-18 1983-05-18 Falling liquid-film type evaporator

Country Status (1)

Country Link
JP (1) JPS59212601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526009A (en) * 2011-06-27 2014-10-02 デ・セ・エヌ・エス Thermal energy system and method of operating thermal energy system
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
JP2014526009A (en) * 2011-06-27 2014-10-02 デ・セ・エヌ・エス Thermal energy system and method of operating thermal energy system

Similar Documents

Publication Publication Date Title
US5333677A (en) Evacuated two-phase head-transfer systems
Zener Solar sea power
US9429145B2 (en) Thermal gradient hydroelectric power system and method
JPS6354882B2 (en)
CN106870938B (en) Tube-fin type intermediate medium gasifier
JP5904351B2 (en) Absorption cooler, heat exchanger
CN109437354A (en) A kind of circulated sprinkling heat-exchange system
US4474228A (en) Closed cycle vaporization cooling system for underwater vehicle inner-to-outer hull heat transfer
KR20120117919A (en) Temperature differential engine device
CN109292858A (en) A kind of fresh water collecting system and its seawater desalination system
CN109231320A (en) A kind of current stabilization evaporator and its seawater desalination system
CN110203988A (en) A kind of vacuum system and seawater desalination system
CN109422316A (en) A kind of tube-sheet type heat-exchanger rig and its seawater desalination system
Panchal et al. Simultaneous production of desalinated water and power using a hybrid-cycle OTEC plant
JPS59212601A (en) Falling liquid-film type evaporator
Uehara et al. Shell-and-plate-type heat exchangers for OTEC plants
CN207317300U (en) A kind of sand working fluid heat exchanger
JPH0518618Y2 (en)
CN102510172A (en) Secondary cooling system for hydraulic generator
CN114440679B (en) Annular evaporator loop heat pipe radiator for cold end of Stirling heat engine
CN103017366B (en) Partitioned solar high-temperature heat pipe central receiver
Choi et al. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants
JPH0438883B2 (en)
Mochida et al. Performance of the heat exchangers of a 100-kW (Gross) OTEC plant
WO2012164603A1 (en) Steam turbine power generation system