JPS59212565A - Method of controlling infinitely variable gear for vehicle - Google Patents

Method of controlling infinitely variable gear for vehicle

Info

Publication number
JPS59212565A
JPS59212565A JP8578183A JP8578183A JPS59212565A JP S59212565 A JPS59212565 A JP S59212565A JP 8578183 A JP8578183 A JP 8578183A JP 8578183 A JP8578183 A JP 8578183A JP S59212565 A JPS59212565 A JP S59212565A
Authority
JP
Japan
Prior art keywords
speed
vehicle
time
acceleration
nin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8578183A
Other languages
Japanese (ja)
Inventor
Takeshi Gono
郷野 武
Takao Niwa
丹羽 孝夫
Akinori Osanai
昭憲 長内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8578183A priority Critical patent/JPS59212565A/en
Publication of JPS59212565A publication Critical patent/JPS59212565A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To make acceleration appropriate regardless of vehicle speed by gradually increasing the speed changing speed of an infinitely variable gear with the lapse of time during an initial certain period of time while setting the increase characteristics in accordance with the vehicle speed. CONSTITUTION:During the initial certain period of time of accelerating a vehicle from a low engine rotation speed, the speed changing speed of a CVT4 is gradually increased with the lapse of time while the increase characteristics are set in accordance with the vehicle speed. Thereby the inconvenience of delaying in the recovery of vehicle speed due to the reduction in the speed ratio (e) accompanying acceleration and large moment of inertia in a drive system, can be eliminated. Accordingly, smooth acceleration can be obtained.

Description

【発明の詳細な説明】 本発明は、車両の励力伝達装置として用いられる(II
E段変速握(以下「cVT Jと言う。)の制御方法に
係り、特にCVTの変速速度の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used as an excitation transmission device for a vehicle (II
The present invention relates to a method of controlling an E-gear gear shift grip (hereinafter referred to as "cVT J"), and particularly relates to a method of controlling a CVT shift speed.

CV iは、速度比e(=出方側回転速gNout/入
力側回転速度Nin )を連続的に制御することができ
、燃3斗消費効系の優れた励カ伝達装置として車両に用
いられる。従来のCVTでは低機関回転速度からの車両
加速初期における変速速度6(速度比eを時間tて微分
した値de/dtの絶対値1de/dtl)は車速V 
(cy−Nout )に関係なく設定されている。
The CV i can continuously control the speed ratio e (=output side rotational speed gNout/input side rotational speed Nin), and is used in vehicles as an excellent excitation force transmission device for a fuel consumption system. . In a conventional CVT, the shift speed 6 (absolute value 1de/dtl of the value de/dt obtained by differentiating the speed ratio e with respect to time t) at the initial stage of vehicle acceleration from a low engine speed is equal to the vehicle speed V.
It is set regardless of (cy-Nout).

本発明の目的は、車速に関係なく適切な加速性を得るこ
とができるCVTの制御方法を提供することである。
An object of the present invention is to provide a CVT control method that can obtain appropriate acceleration regardless of vehicle speed.

この目的を達成するために本発明によれば、低機関回転
速度からの車両加速の?r1期の所定時間内ではCVT
の及速速度&を時間経過に連れて徐々に増大させるとと
もにその増大特性をdi速に応じて設定する。
To achieve this objective, the present invention provides a method for accelerating the vehicle from low engine speeds. CVT within a predetermined period of r1 period
The acceleration speed & is gradually increased over time, and the increasing characteristic is set according to the di speed.

CVTの壓速速度二を加速直後から定常時と同様の大き
な値に設定することは、加速にイ゛tう速度比Cの低下
および駆動系の大きな慣性モーメントのために車速の立
上りが遅れるという不具合が起こるが、CVTの変速速
度みを車速\rに応じて徐々に増大させることによりこ
のような不具合を排除して滑らかな加速性を得ることか
できる。車速Vに応じて変速速度りを恋えるには、種々
のケースが考えられる。車速Vが低い賜金には、まだ変
速する余地がかなりあるから早く変速した方が良いケー
スも考えられる。しかし低車速の方が機関出力の余裕が
あるから高車速に比較して4\さい変速でも十分に出力
が得られるケースもあり得る。したがって車速Vに応じ
てどう烈速速度みを変えるかは個々の車両の適合に委ね
られる。本発明では車速■が高い程早く変速させるケー
スを1例として示す。
Setting the CVT's CVT to a large value immediately after acceleration, similar to that during steady state, will delay the rise in vehicle speed due to a drop in the speed ratio C and the large moment of inertia of the drive system. Although problems occur, such problems can be eliminated and smooth acceleration can be obtained by gradually increasing the shift speed of the CVT in accordance with the vehicle speed \r. Various cases can be considered to adjust the speed change according to the vehicle speed V. If the vehicle speed V is low, there is still plenty of room to shift, so there may be cases where it is better to shift quickly. However, since there is more room for engine output at low vehicle speeds, there may be cases where sufficient output can be obtained even with a 4\ smaller shift than at high vehicle speeds. Therefore, how to change the maximum speed according to the vehicle speed V is left to the suitability of each individual vehicle. In the present invention, as an example, a case is shown in which the higher the vehicle speed (2), the faster the gear shift is performed.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

第1図において、機関1のクランク軸2はクラッチ3を
介し嘴の入力軸5へ接続されている。1対の入力側ディ
スク6a 、 6bは互いに対向的に設けられ、一方の
入力側ディスク6aは入力軸5に軸線方向へ相対移動可
能に設けられ、他方の入力側ディスク6bは入力軸5に
固定されている。また、1対の出力側ディスク7a+7
bも互いに対向的に設けられ、一方の出力側ディスク7
aは出力軸8に固定され、他方の出力側ディスク7bは
出力軸8に軸線方向へ移動可能に設けられている。ベル
ト9は、等脚台形の@断面を有し、入力側ディスク6a
 、 6bと出力側ディスク7a 、 7bの間に掛け
られている。
In FIG. 1, a crankshaft 2 of an engine 1 is connected to an input shaft 5 of the beak via a clutch 3. A pair of input side disks 6a and 6b are provided facing each other, one input side disk 6a is provided so as to be movable relative to the input shaft 5 in the axial direction, and the other input side disk 6b is fixed to the input shaft 5. has been done. In addition, a pair of output side disks 7a+7
b are also provided facing each other, one output side disk 7
a is fixed to the output shaft 8, and the other output side disk 7b is provided on the output shaft 8 so as to be movable in the axial direction. The belt 9 has an isosceles trapezoidal cross section, and the input side disk 6a
, 6b and the output side disks 7a, 7b.

入力側ディスク6a 、 61+の対向面、および出力
側ディスク7a l 7bの対向triiは半径方向外
力へ進むに連れて両者間の距離か増大するようにテーパ
断面に形成される。対向面間の距ガ11の増θ・表に関
係して、入力側および出力側ディスクOa。
The opposing surfaces of the input side disks 6a, 61+ and the opposing surfaces of the output side disks 7a, 7b are formed into tapered cross sections so that the distance between them increases as the external force advances in the radial direction. The input side and output side disks Oa are related to the increase θ/table of the distance 11 between the opposing surfaces.

6b 、 7a、 7bにおけるベルl−9の掛かり毛
径が増減し、速度比および伝達トルクが弯化する。
The hook diameter of the bell l-9 in 6b, 7a, and 7b increases or decreases, and the speed ratio and transmission torque become curved.

オイルポンプ14は油だめ15から吸込んだオイルを調
圧弁16へ送る。リニアソレノイド弐の調圧弁16はド
レン17へのオイルの抽出i1(を制衡して油路18の
ライン圧を制御する。油路18は出力側ディスク7bの
油圧シリンダへ接続されている。リニアソレノイド式流
面1制御弁19は、入力側ディスクOa + 6b聞の
押圧力をjl、9太Ne)を増大させる場合には入力側
ディスク6aの油圧シリンダへの油路20と/111路
18との間の流通断面積を増大させるとともに油路20
と1−レン17どの接続を断ち、また入力側ディスク6
a 、 6b間の押圧力を減少させて速度比を減少させ
る場合には油路18と20との接続を断つとともに油路
20とドレン17との間の流通断面積を制御する。回転
角センサ23 、24はそれぞれ入力側ディスク6bお
よび出力側ディスク7aの回転速度Nin 、 Nou
tを検圧する。出力側ディスク7bのシリンダ油圧、す
なわちライン圧はベル1〜9が滑らずにトルク伝達を確
保てきる最小の油圧に制御され、これによりポンプ14
の駆動損失が抑制される。入力側ディスク6aへのオイ
ルの流量によりCVT 4の速度比が制御される。なお
出力側ディスク7bのシリンダ油圧≧入力側ディスク6
aのシリンダ油圧であるが、シリンダピストンの受圧面
積は入力側〉出力側であり、1以」二の速度比が実現可
能である。水温センサ25は機関1の冷却水温度を検出
する。
The oil pump 14 sends oil sucked from the oil sump 15 to the pressure regulating valve 16. The pressure regulating valve 16 of the linear solenoid 2 controls the oil extraction i1 (to the drain 17) and controls the line pressure of the oil passage 18.The oil passage 18 is connected to the hydraulic cylinder of the output side disc 7b.Linear solenoid The formula flow surface 1 control valve 19 connects the oil passage 20 to the hydraulic cylinder of the input side disc 6a and the /111 passage 18 when increasing the pressing force between the input side disc Oa + 6b (jl, 9th Ne). In addition to increasing the flow cross-sectional area between the oil passages 20
and 1-len 17 which connection is cut, and the input side disk 6
When reducing the speed ratio by reducing the pressing force between a and 6b, the connection between the oil passages 18 and 20 is cut off, and the flow cross-sectional area between the oil passage 20 and the drain 17 is controlled. The rotation angle sensors 23 and 24 measure the rotation speeds Nin and Nou of the input side disk 6b and the output side disk 7a, respectively.
Check the pressure of t. The cylinder oil pressure of the output side disc 7b, that is, the line pressure, is controlled to the minimum oil pressure that ensures torque transmission without the bells 1 to 9 slipping.
driving loss is suppressed. The speed ratio of the CVT 4 is controlled by the flow rate of oil to the input side disk 6a. Note that the cylinder oil pressure of the output side disc 7b≧the input side disc 6
Regarding the cylinder oil pressure of a, the pressure-receiving area of the cylinder piston is input side > output side, and a speed ratio of 1 or more can be realized. The water temperature sensor 25 detects the temperature of the cooling water of the engine 1.

スロットル開度センサ26は、加速ペダル27に連動す
る吸気系スロットル弁の開度を検出する。
The throttle opening sensor 26 detects the opening of an intake system throttle valve that is linked to the accelerator pedal 27 .

シフl−位置センサ28は座席29の近傍のシフトレバ
−のレンジを検出する。
A shift l-position sensor 28 detects the range of the shift lever near the seat 29.

第2図は電子制御装置のブロック1図である。FIG. 2 is a block diagram of the electronic control device.

CPU 32 、RAM 33 、ROM 34 、r
/F’ 、(インタフェース)35、A/D、 (アナ
コク/デジタル変換品)36、およびD/A  (デジ
タル/アナログ黙換rj)37はバス38により互いに
接続されている。回)除角センサ23 、24およびシ
フ1−位置センサ28の出力パルスはインタフェース3
5へ送られ、水温センサ25およびスロットル開度セン
→ノ26のアナログ出力はA/D 36へ送られ、I〕
/Δ37の出力は調圧弁16および流it :lA a
t弁1(3へ送られる。
CPU 32, RAM 33, ROM 34, r
/F' (interface) 35, A/D (anacotic/digital conversion product) 36, and D/A (digital/analog conversion rj) 37 are connected to each other by a bus 38. 3) The output pulses of the angle exclusion sensors 23, 24 and the shift 1-position sensor 28 are output from the interface 3.
5, and the analog outputs of the water temperature sensor 25 and throttle opening sensor 26 are sent to the A/D 36, and the analog outputs of the water temperature sensor 25 and throttle opening sensor 26 are sent to
The output of /Δ37 is the pressure regulating valve 16 and the flow it :lA a
t valve 1 (sent to 3).

第3図はCVT4の制御ブロック線図である。FIG. 3 is a control block diagram of the CVT4.

ブロック44においてスロットル開度0からCVT 4
の入力側回11広速JすN1n(=機関−リワ、速度N
e)の目標値Nin’が言1算される。CVT 4では
スロットル開度0の関数として握関1の要求馬力が設定
され、各要求馬力をJA小燃利4゛″j費j、Uて達成
する機関回転速度Ncをその時のスロットル開度θにお
ける入力側回転速度Nlnの目標値Nin’として定め
る。ブロック46ではNinがNjn’に達するまで、
目標速度比e′をΔeずつ増減する。ただし変更屓Δe
は正の値である。目標速度比e′の初期値は実際の速度
比eとし、Δeは所定量であり、Njn < Nin’
の場合は−Δe、Nin>Nin’の場合は+へ〇がそ
れぞれ選択される。
In block 44, from throttle opening 0 to CVT 4
Input side rotation 11 wide speed JsuN1n (= engine - rewa, speed N
The target value Nin' of e) is calculated. In CVT 4, the required horsepower of clutch lever 1 is set as a function of throttle opening 0, and the engine rotation speed Nc that achieves each required horsepower with JA small fuel consumption 4''J cost j, U is determined by throttle opening θ at that time. is set as the target value Nin' of the input side rotational speed Nln at .In block 46, until Nin reaches Njn',
The target speed ratio e' is increased or decreased by Δe. However, the change Δe
is a positive value. The initial value of the target speed ratio e' is the actual speed ratio e, Δe is a predetermined amount, and Njn <Nin'
In the case of , -Δe is selected, and in the case of Nin>Nin', + is selected.

ブロック48では目標速度比e′に対する実際の速度比
eの偏差からフィードバックゲインが計算される。フィ
ードバックゲインは流量制御アンプ50を経て流風制御
弁19へ送られ、CVT4の速度比eが制御される。ブ
ロック52では入力側回転速度Ninとスロットル開度
0とから機関1の軸トルクTeを計算する。ブロック5
4ではCVT 4の伝達トルクの関数としてライン圧力
を割算する。C’VT4の伝達トルクは機関1の軸トル
クTe 、入力側回転速度Nin 、および出力側回転
速度Noutの関数である。ブロック54の出力は調圧
弁アンプ56を経て調圧弁16へ送られ、CVT 4の
ライン圧が制御される。
In block 48, a feedback gain is calculated from the deviation of the actual speed ratio e from the target speed ratio e'. The feedback gain is sent to the flow control valve 19 via the flow rate control amplifier 50, and the speed ratio e of the CVT 4 is controlled. In block 52, the shaft torque Te of the engine 1 is calculated from the input side rotational speed Nin and the throttle opening degree 0. Block 5
4 divides the line pressure as a function of the CVT 4's transmitted torque. The transmission torque of C'VT4 is a function of the shaft torque Te of the engine 1, the input side rotational speed Nin, and the output side rotational speed Nout. The output of block 54 is sent to pressure regulating valve 16 via pressure regulating valve amplifier 56, and the line pressure of CVT 4 is controlled.

第4図は第3図の制御ブロック線図に従った制御を実行
するルーチンのフローチャー1へである。制御の概要は
第3図においてすでに説明した通りである。なお目標速
度比e′の上限および下限はemaxおよびeminと
され、流(j支制御弁19の入力電圧としての流:且制
御電圧は1((e’−e)(ただしKは定数)とされ、
調圧弁1(iの入力端子としての調圧弁制御電圧はg(
’I’c、Nin 。
FIG. 4 shows flowchart 1 of a routine for executing control according to the control block diagram of FIG. The outline of the control is as already explained in FIG. Note that the upper and lower limits of the target speed ratio e' are emax and emin, and the flow (flow as the input voltage of the j-branch control valve 19: and the control voltage is 1 ((e'-e) (where K is a constant). is,
The pressure regulating valve control voltage as the input terminal of pressure regulating valve 1 (i is g(
'I'c, Nin.

Nout )とされる。ステップ(io、62,64て
はスロットル開度01入力端回転速度Nin 、出力側
回転速度Noutを読込み、ステップ6G、では、目標
入力側回転速度Nin’をSt算する。ステップ08で
はNinとNin’とを比較し、N i n == N
 i n’てあればステップ70においてe′を保持し
、Nin<Nin’であれはステップ72においてe′
を八〇だけ減少し、Nin > Nin’てあればステ
ップ7Gにおいてe′を八〇だけ増大する。ステップ7
3.74ではe′の下限をcminに制限し、ステップ
78゜80ではe′の上限をQmaXに制限する。ステ
ップ82ては流量制御電圧を計算し、ステップ84で機
関の軸l−ルクTeを言1算してからステップ86で調
圧弁f?!IMJ電圧を計算する。
Nout). Steps (io, 62, 64 read the throttle opening 01 input end rotation speed Nin and output side rotation speed Nout, and step 6G calculates the target input side rotation speed Nin'. In step 08, Nin and Nin ' and N i n == N
If i n', e' is held in step 70, and if Nin<Nin', e' is held in step 72.
is decreased by 80, and if Nin >Nin',e' is increased by 80 in step 7G. Step 7
In step 3.74, the lower limit of e' is limited to cmin, and in steps 78 and 80, the upper limit of e' is limited to QmaX. Step 82 calculates the flow rate control voltage, step 84 calculates the engine shaft torque Te, and step 86 calculates the pressure regulating valve f? ! Calculate IMJ voltage.

第5図は本発明において低機関回伝速度からの車両加速
の場合の変速速度らの時間変化を示している。、7!!
2速速度みは、すでに定義しているように速度比eの時
間微分値de/dtの絶対値であり、第3図のブロック
46および第4図のステップ72.76におけるΔeに
対応する。加速開始時刻t = tlから所定時間T1
が経過した時刻t2までの期間では変速速度みは徐々に
増大し、時刻t2において本来の値Xに設定される。所
定時間TIにおける変速速度みの増大特性は車速Vに応
じて設定され、この実施例ではV>V2)揚台はfa(
t)、v2≧v > v1ノm合はfb(t)、■≦V
1の場合はfc(t)が選択され、fa(t) >fb
(t)> fc(t)である。ただしVl < V2で
ある。
FIG. 5 shows changes over time in the shift speed when the vehicle accelerates from a low engine transmission speed in the present invention. , 7! !
The second speed speed, as already defined, is the absolute value of the time derivative de/dt of the speed ratio e, and corresponds to Δe in block 46 of FIG. 3 and step 72.76 of FIG. Acceleration start time t = predetermined time T1 from tl
During the period up to time t2, after which the shift speed increases gradually, and is set to the original value X at time t2. The increase characteristic of the shift speed only in the predetermined time TI is set according to the vehicle speed V, and in this example, V>V2).
t), v2≧v > v1 no m is fb(t), ■≦V
If 1, fc(t) is selected and fa(t) > fb
(t)>fc(t). However, Vl < V2.

すなわち所定時間Tにおける変速速度;は車速■が大き
い場合程、大きい値となる。時刻t1から変速速度e 
= Xとすることは、加速に伴う速度比eの低下および
駆動系の大きな慣性モーメン1−のために車速の豆上り
が遅れるという不具合が起こるが、Cvrの変速速度さ
を徐々に増大させることによりこのような不具合を?J
l除してン骨らかな加速性を得ることか−こきる。ま1
.:乃乏速速度みを車速Vに応じて設5JZすることに
より、高車速における加速の場合に大きな加速性が確保
される。
That is, the shift speed during the predetermined time T takes a larger value as the vehicle speed ■ becomes larger. Shift speed e from time t1
= Is this problem caused by this? J
Is it possible to obtain smooth acceleration by dividing by l? M1
.. : By setting the low speed according to the vehicle speed V, great acceleration performance is ensured in the case of acceleration at a high vehicle speed.

第6図は第5図の概念に従って■速速度さを計算するル
ーチンのフローチャー1−である。ステップ92.94
ではスロワ1ヘル開度Oおよび入力端回転速度N1n(
==fl関回転速回転速度Ne定値el+Nin1と比
較し、θ〉01かつNin<Nin+の場合、すなわち
低提関回転速度からの中肉加速の場合はステップ96へ
進み、その他の場合はステップNOへ進む。運帳名は車
両を加速する場合は加速ペダル27を踏込むので、0>
01となる。ステップ96では経過時間f)IJJ冗タ
イマをセットする。ステップ98では経過時間1!j’
l 5jiタイマの値Tと所定値T1とを比較し、l’
 < i’lてあれはステップ100へ進み、I′≧I
’lてあればステップ110へ進む。ステップIn(L
 102ては車速Vを所定値Vl、V2と比軸し、V>
V2の場合はステップ104へ進み、V2≧V>Vlの
場合はステップ106へ進み、V≦v1の場合はステッ
プ108へ進む。ステップ104.106.108では
変速速度みにそれぞれfa(t)、fb(t)、fc(
t)を代入する。ステップ110ではTに0を代入し、
すなわち経過時間測定タイマをリセットし、ステップ1
12では変速速度みに所定値Xを代入する。
FIG. 6 is a flowchart 1- of a routine for calculating speed according to the concept of FIG. Step 92.94
Then, thrower 1 hell opening degree O and input end rotation speed N1n (
==fl Rotation speed Ne is compared with the constant value el+Nin1, and if θ>01 and Nin<Nin+, that is, if it is a medium acceleration from a low rotation speed, proceed to step 96, otherwise proceed to step NO. Proceed to. The name of the fortune book is 0> because when accelerating the vehicle, press the accelerator pedal 27.
It becomes 01. In step 96, an elapsed time f) IJJ redundancy timer is set. In step 98, the elapsed time is 1! j'
l Compare the value T of the 5ji timer and the predetermined value T1, and l'
If <i'l then proceed to step 100 and I'≧I
'l, proceed to step 110. Step In(L
102, the vehicle speed V is proportional to the predetermined values Vl and V2, and V>
In the case of V2, the process proceeds to step 104, in the case of V2≧V>Vl, the process proceeds to step 106, and in the case of V≦v1, the process proceeds to step 108. In steps 104, 106, and 108, fa(t), fb(t), fc(
Substitute t). In step 110, 0 is assigned to T,
In other words, reset the elapsed time measurement timer and perform step 1.
At step 12, a predetermined value X is substituted only for the gear shifting speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるCVTの全体の概略図、第
2図は電子制御装置のブロック図、第3図はCVTの制
御ブロック線図、第4図は第3図の制御ブロック線図に
従ったCVT制御ルーチンのフローチャート、第5図は
本発明において低機関回転速度からの車両加速の場合の
変速速度の時間変化を示す図、第6図は第5図の概念に
従って変速速度を計算するルーチンのフローチャートで
ある。 ■・・・遊間、4・・・CVT、+9・・・流量制御弁
、23.24・・・回’I=角センサ、20・・・スロ
ットル開度センサ。 特許出願人  トヨタ自動中槓、式会引。
Fig. 1 is an overall schematic diagram of a CVT to which the present invention is applied, Fig. 2 is a block diagram of an electronic control device, Fig. 3 is a control block diagram of the CVT, and Fig. 4 is a control block diagram of Fig. 3. 5 is a flowchart of the CVT control routine according to the figure, FIG. 5 is a diagram showing the time change of the gear shift speed in the case of vehicle acceleration from a low engine speed in the present invention, and FIG. It is a flowchart of the calculation routine. ■... Play space, 4... CVT, +9... Flow rate control valve, 23.24... Times 'I = angle sensor, 20... Throttle opening sensor. Patent applicant: Toyota Motor Corporation, Ceremony Inquiry.

Claims (1)

【特許請求の範囲】[Claims] イル機関回転速度からの車両加速の初期の所定時間内で
は無段変速機の変速速度を時間経烏に連れて徐々に増大
させるとともにその増大特性を車速に応じて設定するこ
とを特徴とする、車両用無段変速機の制御方法。
The gear change speed of the continuously variable transmission is gradually increased over time during an initial predetermined period of vehicle acceleration from the engine rotation speed, and the increasing characteristic is set in accordance with the vehicle speed. Control method for continuously variable transmission for vehicles.
JP8578183A 1983-05-18 1983-05-18 Method of controlling infinitely variable gear for vehicle Pending JPS59212565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8578183A JPS59212565A (en) 1983-05-18 1983-05-18 Method of controlling infinitely variable gear for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8578183A JPS59212565A (en) 1983-05-18 1983-05-18 Method of controlling infinitely variable gear for vehicle

Publications (1)

Publication Number Publication Date
JPS59212565A true JPS59212565A (en) 1984-12-01

Family

ID=13868424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8578183A Pending JPS59212565A (en) 1983-05-18 1983-05-18 Method of controlling infinitely variable gear for vehicle

Country Status (1)

Country Link
JP (1) JPS59212565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368426A (en) * 1986-09-08 1988-03-28 Nissan Motor Co Ltd Gear shifting controller for continuously variable transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368426A (en) * 1986-09-08 1988-03-28 Nissan Motor Co Ltd Gear shifting controller for continuously variable transmission

Similar Documents

Publication Publication Date Title
JP3358419B2 (en) Transmission control device for continuously variable automatic transmission
JPH066978B2 (en) Control device for continuously variable transmission for vehicle
JPS59217051A (en) Control for stepless speed change gear for car
JPH066977B2 (en) Control device for continuously variable transmission for vehicle
US4622865A (en) Apparatus for controlling continuously variable transmission when accelerating from low speeds
JPH0327791B2 (en)
US4753133A (en) Control system for continuously variable transmission in motor vehicle
JPH0428947B2 (en)
JPH0335536B2 (en)
JPS59144850A (en) Method of controlling stepless transmission for vehicle
US4817469A (en) Automatic transmission for automobile and method of controlling same
JPH0543896B2 (en)
JPH049936B2 (en)
JPH0440217B2 (en)
JPH0428946B2 (en)
JPH07198030A (en) Control method of driving gear for automobile
JPS59212565A (en) Method of controlling infinitely variable gear for vehicle
JPS59217050A (en) Control of stepless speed change gear for vehicle
JPS59217047A (en) Control for stepless speed change gear for car
JP3695230B2 (en) Shift control device and shift control method for continuously variable transmission for vehicle
JP3896755B2 (en) Clutch control device for continuously variable transmission
JPH0417292B2 (en)
JPS58193961A (en) Automatic transmission for automobile
JPS59208256A (en) Controlling method of stepless transmission for vehicle
JPS59212566A (en) Method of controlling infinitely variable gear for vehicle