JPS59212234A - Extrusion molding of thermoplastic resin - Google Patents

Extrusion molding of thermoplastic resin

Info

Publication number
JPS59212234A
JPS59212234A JP58086666A JP8666683A JPS59212234A JP S59212234 A JPS59212234 A JP S59212234A JP 58086666 A JP58086666 A JP 58086666A JP 8666683 A JP8666683 A JP 8666683A JP S59212234 A JPS59212234 A JP S59212234A
Authority
JP
Japan
Prior art keywords
temperature
resin
die
extrusion
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086666A
Other languages
Japanese (ja)
Inventor
Minoru Suzuki
穣 鈴木
Kiichi Onishi
大西 紀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58086666A priority Critical patent/JPS59212234A/en
Publication of JPS59212234A publication Critical patent/JPS59212234A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/872Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone characterised by differential heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/131Curved articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To control non-uniform thickness, bending, etc., of sheet, pipe, etc., by controlling the temperature regulation of resin flow in a die locally within the cross section at a right angle to the flowing direction of the resin in extruding and solidifying resins of particularly high molecular weights. CONSTITUTION:A die consists of die slits 1, 2, and 3, inner dies 4, 5, and 6, and outer dies 7, 8, and 9, each of which is divided into three sections from the outlet of the die. Also, from the outlet of the die, the die is divided into a temperature region I where the extrusion resistance of molten resin is increased as temperature is lowered, and a temperature region II where the extrusion resistance of molten resin is reduced as temperature is lowered, and practically linear resin temperature regulators 12 and 13 are independently set in parallel on the face at a right angle to the flowing direction of resin in the die. By separately cooling or heating the temperature regulators 12 and 13, the moldability of extrusion moldings is controlled with respect to non-uniform thickness, bending, etc.

Description

【発明の詳細な説明】 本発明は、押出抵抗値が最小値を示す溶融温度領域を有
する熔融熱可塑性樹脂をグイ中で冷却して軟化点より低
い温度でダイ出口から押出し、シート、パイプ等の成形
品を製造する方法において、該成形品の偏肉の度合が小
さく、かつ、曲がりのないシート、パイプ等の成形品を
得るための熱可塑性樹脂の押出成形方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves cooling a molten thermoplastic resin having a melting temperature range in which the extrusion resistance value is a minimum value in a goo and extruding it from a die outlet at a temperature lower than the softening point to produce sheets, pipes, etc. The present invention relates to a thermoplastic resin extrusion molding method for producing molded products such as sheets, pipes, etc., which have a small degree of uneven thickness and are free from bending.

一般に溶融熱可塑性樹脂を押出してシート、パイプ等を
製造する方法には、軟化点よりもかなり高い温度の溶融
状態でグイより押出してから、サイジング及び冷却を行
う方法(以下熔融押出法と称す)と、溶融した樹脂をグ
イ内で冷却しダイ出口で軟化点以下の温度で押出す方法
(以下固化押出法と称ずンがある。
Generally, a method for manufacturing sheets, pipes, etc. by extruding molten thermoplastic resin involves extruding it through a goo in a molten state at a temperature considerably higher than its softening point, followed by sizing and cooling (hereinafter referred to as melt extrusion method). Another method is to cool the molten resin in a goo and extrude it at a temperature below the softening point at the exit of the die (hereinafter referred to as the solidification extrusion method).

後者の固化押出法は熔融押出法と比較して押出速度が小
さく背圧が大きくなるが、パイプの内径及び外径の同時
サイジングが可能であること、特に流動性が劣る超高分
子量樹脂の表面性が良好であること等/8融押出法には
無い長所がある。
The latter solidification extrusion method has a lower extrusion speed and higher back pressure than the melt extrusion method, but it is possible to simultaneously size the inner and outer diameters of the pipe, especially on the surface of ultra-high molecular weight resins with poor fluidity. It has advantages that the melt extrusion method does not have, such as good properties.

一般に固化押出法によってシート、パイプ等を製造する
際の局部的な肉厚の調節は、グイ中の樹脂温度が軟化点
よりもかなり高い領域においてチヨークバー等のダイス
リット調節によって樹脂流量を調節して行われている。
In general, when manufacturing sheets, pipes, etc. using the solidification extrusion method, local wall thickness adjustment is achieved by adjusting the resin flow rate by adjusting the die slit of a die slit in a region where the resin temperature in the gou is much higher than the softening point. It is being done.

しかし、このような調節法で得られたシートやパイプの
厚さは必ずしも均一ではなく時として曲りを伴うことも
あり、それによって製品内に歪が発生して縦方向と横方
向の引張特性等のアンバランスを生ずる。又樹脂の流量
調節が軟化点よりかなり高い温度領域において行われて
いるため、樹脂温度が軟化点まで下がる間に樹脂流量の
バランスが崩れ易く、そのために偏肉及び曲りが生し易
い。この問題は前述のような樹脂流量調節法では、如何
に操作法を改善しても解決できる性質のものではない。
However, the thickness of the sheet or pipe obtained by this adjustment method is not necessarily uniform and may sometimes be curved, which may cause distortion within the product and affect its tensile properties in the longitudinal and transverse directions. This causes an imbalance. Further, since the resin flow rate is adjusted in a temperature range considerably higher than the softening point, the resin flow rate is likely to be unbalanced while the resin temperature drops to the softening point, which tends to cause uneven thickness and bending. This problem cannot be solved by the above-mentioned resin flow rate control method, no matter how the operating method is improved.

特に分子量が100万以上の超高分子量ポリエチレンの
押出の場合剪断速度が1 sec以上の領域では滑流又
はフラッシュ流となり、ダイスリット間隔の調節では樹
脂の流量を変えることは不可能である。
In particular, when extruding ultra-high molecular weight polyethylene with a molecular weight of 1 million or more, smooth flow or flash flow occurs in the region where the shear rate is 1 sec or more, and it is impossible to change the flow rate of the resin by adjusting the die slit interval.

以上に鑑み本発明者らは、特に分子量の高い樹脂の固化
押出において、従来法では不可能であった例えばパイプ
製品の偏肉、曲りの発生を解消すべく鋭意研究を重ね、
グイ中の樹脂流の温度調節を流れ方向に直角な断面内で
局部的にコントロールする手段を開発すると共に、樹脂
の温度変化に対する挙動についての新規事実を見いだし
、それに基づいて新規な偏肉、曲りの制御方法を確立し
、本発明をなすに至った。
In view of the above, the present inventors have conducted extensive research in order to eliminate uneven thickness and bending of pipe products, which were impossible with conventional methods, especially in the solidification extrusion of high molecular weight resins.
In addition to developing a means to locally control the temperature of the resin flow in a goo within a cross section perpendicular to the flow direction, we also discovered new facts about the behavior of resin in response to temperature changes, and based on this, we developed new methods for uneven thickness and bending. We have established a control method for this, and have accomplished the present invention.

即ら、本発明は、押出抵抗値が最小値を示す溶融温度領
域を有する溶融熱可塑性樹脂をその軟化点より低い温度
でグイ出口から押出し成形する方法において、グイを出
口から温度の低下につれて溶融樹脂の押出抵抗の増加す
る温度領域、及び温度の低下につれて熔融樹脂の押出抵
抗の減少する温度領域に別ら、該増加域、減少域に、夫
々別個に実質的に線状の杉4脂温度調節手段を、樹脂の
流れ方向に向けて、゛流れ方向に直角な菌中に夫々独立
作動的に並列してグイ中に設け、該線状の樹脂温度調節
手段を個別に冷却又は加熱することにより押出成形品の
偏肉、曲がり等の成形性を制(alIすることを特徴と
する熱可塑性樹脂の押出成形方法に関するものである。
That is, the present invention provides a method for extruding a molten thermoplastic resin having a melting temperature range in which the extrusion resistance value is a minimum value from a gooey exit at a temperature lower than its softening point. Separately into a temperature range where the extrusion resistance of the resin increases and a temperature range where the extrusion resistance of the molten resin decreases as the temperature decreases, there is a substantially linear cedar temperature range in each of the increasing and decreasing areas. Adjustment means are provided in the rods facing the flow direction of the resin, and are independently operated in parallel in the cells perpendicular to the flow direction, and the linear resin temperature adjustment means are individually cooled or heated. The present invention relates to an extrusion molding method for a thermoplastic resin, which is characterized by controlling moldability such as uneven thickness and bending of an extruded product (alI).

本発明によれば、グイ中のスリット間を流れる樹脂の温
度調節手段をグイ出口横断面に並列して独立作動するよ
うに設け、かつ、温度低下につれて押出抵抗の増加する
温度領域、押出抵抗の減少する温度領域に別個に設けて
いるので、成形品の局部的な厚みのバラツキの補正に細
かくり・1応できると共に、偏肉、曲がりの制御手段と
しての/8融樹脂流の局部的な冷却、加熱を適正に実施
でき、例えばパイプ製品の的確な偏肉及び曲りの制御が
可能である。若し樹脂の温度調節手段を該増加域、減少
域の別に設けなければ、偏肉、曲りの通LJJな制御動
作はできず、又横断面に並列しで独立作動的に設けなけ
れば、同様に偏肉、曲りの1b制御はできない。
According to the present invention, the temperature regulating means for the resin flowing between the slits in the goo is provided in parallel with the cross section of the gou exit so as to operate independently, and the extrusion resistance increases in the temperature range where the extrusion resistance increases as the temperature decreases. Since it is provided separately in the decreasing temperature region, it is possible to finely correct the local thickness variation of the molded product, and it is also possible to correct the local thickness variation of the /8 melt resin as a means of controlling uneven thickness and bending. Cooling and heating can be performed appropriately, and, for example, it is possible to precisely control uneven thickness and bending of pipe products. If resin temperature control means are not provided separately for the increasing and decreasing regions, it will not be possible to control thickness deviations and bends, and unless they are provided independently in parallel with the cross section, the same problem will occur. It is not possible to control uneven thickness and bending of 1b.

本発明の方法により、今迄不可能とされζいた超高分子
量ポリエチレンの表面平滑で、偏肉、曲がりのないパイ
プが経済的な押出速度で成形可能とな9た・ なお、制御法としては、押出抵抗増加域のみの、押出抵
抗減少域のみの、又は両域−緒の調節実施(加熱又は冷
却)の何れも用いることができる。
By the method of the present invention, it has become possible to mold ultra-high molecular weight polyethylene pipes with a smooth surface, no uneven thickness, and no bending at an economical extrusion speed, which was previously considered impossible. , only the extrusion resistance increasing region, only the extrusion resistance decreasing region, or both regions (heating or cooling) can be used.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

第4図は4mmφノズル付きのプランジャー型押出装置
を用いて超高分子量ポリエチレンを溶融状態で一定速度
で押出した時の樹脂温度と押出抵抗値との関係を示し7
たものである。図におし\て、押出抵抗値が最小値を示
す臨界温度が見られ、軟化点側のマイナス勾配域I (
押出抵抗増加域)と高温側のプラス勾配域■ (押出抵
抗減少域)が見られる。又領域Hの勾配が領域Iの勾配
より緩やかなことが分かる。
Figure 4 shows the relationship between resin temperature and extrusion resistance when ultra-high molecular weight polyethylene is extruded in a molten state at a constant speed using a plunger type extrusion device equipped with a 4 mmφ nozzle.
It is something that In the figure, there is a critical temperature at which the extrusion resistance value is at its minimum value, and a negative gradient region I (
(extrusion resistance increasing region) and a positive slope region (extrusion resistance decreasing region) on the high temperature side can be seen. It can also be seen that the slope of region H is gentler than that of region I.

このような臨界点が見られる樹脂には、超高分子量ポリ
エチレンの他に1y、濁重合によって(ワられる塩化ビ
ニル樹脂等がある。
In addition to ultra-high molecular weight polyethylene, resins in which such a critical point is observed include 1y, vinyl chloride resin that is broken by turbidity polymerization, and the like.

第4図に示す挙動の結果、押出抵抗減少域においては、
温度を低下せしめることにより、押出抵抗が減少し、そ
の結果熔融樹脂の流量が増し、成形品の厚みは増す。こ
の領域の温度制御は、曲がりの制御にも有効であるが、
主として偏肉の制御に良く効く。一般の熱可塑性樹脂は
押出抵抗最小の溶融温度域を持たず温度の1貨につれて
減少一方でやがて飽和してしまうので、高温域における
温度の変化による流量制御量は少なくなるが、超高分子
量ポリエチレンのように最小域を有する場合は、抵抗減
少域で少しの温度を下げるごとにより、抵抗を減し、か
なりの流量を増すことが出来る。温度低下によって流量
を増セることは、高温で分解しやすいこの種樹脂にとっ
ては、実に好ましいことである。押出抵抗増加域におい
ては、曲がりの制御により有効であり、この時点ては溶
融樹脂は固化に近くなる程度が大きいので掛かる背圧は
大きく、又出来るだ&−1背圧が掛からないようにダイ
部分が作られているので、偏肉の是正には余り有効でな
い。
As a result of the behavior shown in Figure 4, in the extrusion resistance decreasing region,
By lowering the temperature, the extrusion resistance decreases, resulting in an increase in the flow rate of the molten resin and an increase in the thickness of the molded article. Temperature control in this area is also effective in controlling bending, but
It is mainly effective in controlling uneven thickness. General thermoplastic resins do not have a melting temperature range with minimum extrusion resistance, and as the temperature decreases, they eventually reach saturation, so the flow rate control amount due to temperature changes in high temperature ranges is small, but ultra-high molecular weight polyethylene In the case of a minimum region such as , the resistance can be reduced and the flow rate can be significantly increased by lowering the temperature a little in the resistance decreasing region. Increasing the flow rate by lowering the temperature is indeed preferable for this type of resin, which easily decomposes at high temperatures. In the extrusion resistance increasing region, it is more effective to control the bending, and at this point the molten resin is close to solidification, so the back pressure applied is large, and the die is Since it is made in parts, it is not very effective in correcting uneven thickness.

第1図は、本発明の実施に用いる装置の一例の縦断面図
を示したものである。第2図は第1図のa−a線の断面
図、第3図はb−b線の断面図を示したものである。■
、2.3はダイスリット、4.5.6は内ダイ、7.8
.9は外ダイを表し、いずれもグイ出口から順に三つに
区分した夫々を示す。10.11は冷却ジャケット、1
2.13は温度調節用長孔、14.15は媒体流入口、
1G、17は媒体流出口、18.19はハンドヒーター
を示す。温度調節用長孔はダイ壁と同一距離を保つよう
に壁面と平行に走っている。そして、円周スリットの周
りに等間隔に並列されている。
FIG. 1 shows a longitudinal cross-sectional view of an example of an apparatus used for carrying out the present invention. FIG. 2 is a cross-sectional view taken along line a-a in FIG. 1, and FIG. 3 is a cross-sectional view taken along line b-b in FIG. ■
, 2.3 is the die slit, 4.5.6 is the inner die, 7.8
.. 9 represents an outer die, each of which is divided into three parts in order from the gou exit. 10.11 is a cooling jacket, 1
2.13 is a long hole for temperature adjustment, 14.15 is a medium inlet,
1G, 17 indicates a medium outlet, and 18.19 indicates a hand heater. The temperature adjustment slot runs parallel to the die wall so as to maintain the same distance from the die wall. Then, they are arranged in parallel at equal intervals around the circumferential slit.

R1ff1節孔12.13の直j¥は局部的調節を容易
に3−るため小さい方が効果的であり10mm以下が良
いが、伝熱面積にも限度があり、5〜10mmの範囲が
良い。又長さは50〜500mmの範囲が好ましく、押
出速度が10〜50cm /分の範囲内の時に微妙な温
度制御ができる。調節孔12.13とダイスリットの璧
面とのV+j離は2〜10mmの範囲内である方が熱効
率的に有効であるが、該調節孔の直径の半分以下である
方が望ましい。調節孔の間隔は中心間の距離で10〜6
0mmの範囲内にある方が樹脂温度を局部的に細かく制
御するのに良いが、孔径の2〜6倍の範囲で均等に設け
るのが良い。
The diameter of the R1ff1 nodal hole 12.13 is more effective if it is smaller to make local adjustment easier, and 10 mm or less is better, but there is also a limit to the heat transfer area, so a range of 5 to 10 mm is better. . Further, the length is preferably in the range of 50 to 500 mm, and delicate temperature control can be performed when the extrusion speed is in the range of 10 to 50 cm 2 /min. It is effective for thermal efficiency if the distance V+j between the adjustment hole 12, 13 and the wall surface of the die slit is in the range of 2 to 10 mm, but it is preferably less than half the diameter of the adjustment hole. The distance between the adjustment holes is 10 to 6 between centers.
Although it is better to have the diameter within the range of 0 mm for locally finely controlling the resin temperature, it is better to provide the diameter evenly within the range of 2 to 6 times the pore diameter.

ダイ8に対応するスリット2には、第4図の領域Iが、
ダイ9に対応するスリット3には、領域■が該当するよ
うに、樹脂温度が調整されねばならない。
In the slit 2 corresponding to the die 8, the area I in FIG.
The resin temperature must be adjusted so that region (3) corresponds to the slit 3 corresponding to the die 9.

押出成形されるシート又はパイプの厚さのバラツキに応
して薄過ぎる個所には、ダイ9の調節孔13では温度を
下げるように操作する。又パイプの曲がりには領域Iの
温度を調節する。領域I、■ともに偏肉、曲がりの両方
に多少なりとも形容がある。
Depending on the variation in the thickness of the sheet or pipe to be extruded, if the sheet or pipe is too thin, the adjustment hole 13 of the die 9 is operated to lower the temperature. Also, the temperature in region I is adjusted when the pipe bends. Both areas I and ■ have some degree of uneven thickness and curvature.

なお、温度調節孔には、熱媒、冷媒を流してもよいし、
ヒーターを埋めごんてもよく、又他のものでもよく、適
宜である。
Note that a heating medium or a refrigerant may be passed through the temperature adjustment hole, or
The heater may be buried or other heaters may be used as appropriate.

次に実施例を示す。Next, examples will be shown.

実施例 1 超高分子量ポリエチレン(ビカノ1〜軟化点134℃、
メルトインデックス0.1以下、粘度平均分子量約30
0万)を50mmψ(L/D=20)の単軸押出機によ
って押出してパイプを試作した。
Example 1 Ultra-high molecular weight polyethylene (Bikano 1 to softening point 134°C,
Melt index 0.1 or less, viscosity average molecular weight approximately 30
00,000) was extruded using a 50 mmψ (L/D=20) single-screw extruder to make a trial pipe.

ダイは、第1図に示ずグイ部分4・7.5・8.6・9
の組合せからなり、各ダイの温度は上流側よりグイ部分
9を200°C、グイ部分8を140℃、グイ部分7を
100℃に調整1した。
The dies are not shown in Figure 1.
The temperature of each die was adjusted from the upstream side to 200°C for the gooey part 9, 140°C for the gooey part 8, and 100°C for the gooey part 7.

樹脂の固化用ダイ部分7は出口部の内グイ外径は100
mmでスリット間隔は3.5+nmのものを使用した。
The die part 7 for solidifying the resin has an inner diameter of 100 mm at the outlet.
mm and the slit interval was 3.5+nm.

グイ部分8及びグイ部分9にはスリット面より511I
I11の距離のところに直径10mm、長さ100m+
nの温度調節手段12.13を、樹脂流れと平行になる
ように30LIII11間隔に配設し、その出入口に冷
却オイル用の配管をした。
511I from the slit surface to the goo part 8 and goo part 9.
Diameter 10mm, length 100m+ at distance I11
Temperature control means 12 and 13 of n were arranged at intervals of 30LIII11 so as to be parallel to the resin flow, and cooling oil piping was provided at the inlet and outlet of the temperature control means 12 and 13.

スクリュー回転数5 rpmにて押出を開始し、約1時
間後のパイプの曲がりは半径(以下Rと称する)で約1
mで最大肉厚4.1mm 、最小肉厚2.9mmであっ
た。
Extrusion was started at a screw rotation speed of 5 rpm, and the bend of the pipe after about 1 hour was approximately 1 in radius (hereinafter referred to as R).
The maximum wall thickness was 4.1 mm and the minimum wall thickness was 2.9 mm.

グイ部分8でパイプの最小肉厚側に相当する位置にある
調節手段12に温度50°Cのオイルを10ρ/分の速
度で流し20分後にパイプの肉厚は、最大3.8mm 
、最小3.2mmとなり、曲がりは殆どなくなった。
Oil at a temperature of 50°C is poured into the adjusting means 12 at a position corresponding to the minimum wall thickness side of the pipe in the guide portion 8 at a rate of 10 ρ/min. After 20 minutes, the wall thickness of the pipe reaches a maximum of 3.8 mm.
, the minimum was 3.2 mm, and there was almost no bending.

次にグイ部分8の調節手段12へのオイル流通をストッ
プし、最大肉厚側に相当するグイ部分9の調節手段13
に50°Cのオイルを5A/分の速度で流し、10分後
にはパイプの最大肉厚部と最小肉厚部の位置が180°
C逆転し最大3.7mm 、最小3.3mmとなり、曲
がりは肉厚最小側に向きその■?は約5mmであった・ 上記状態のところに更に最小肉厚側に相当するダイ部分
8の調節手段12に50’Cのオイルを51/分の速度
で流したところ、20分後には肉厚最大3.6mm 、
最小3.4mmで殆ど曲がりのないバ・fプかIMられ
た。
Next, the oil flow to the adjustment means 12 of the goo part 8 is stopped, and the adjustment means 13 of the goo part 9 corresponding to the maximum thickness side is stopped.
Oil at 50°C is poured into the pipe at a rate of 5A/min, and after 10 minutes, the positions of the maximum and minimum wall thickness of the pipe are 180°.
C is reversed, the maximum is 3.7mm, and the minimum is 3.3mm, and the bend is toward the minimum thickness side. The thickness was approximately 5 mm. When 50'C oil was further poured into the adjustment means 12 of the die portion 8 corresponding to the minimum thickness side at a rate of 51/min in the above state, the wall thickness decreased after 20 minutes. Maximum 3.6mm,
A minimum of 3.4mm was made with almost no bending.

上記で得られたパイプの縦方向及び横方向の引張特性に
ついて試験を行った結果、両刀向共引張強さ250Kg
 /ctA以上で且つ伸び30%以上の値でパランスス
のよいものであった。
As a result of testing the longitudinal and transverse tensile properties of the pipe obtained above, the tensile strength in both directions was 250 kg.
/ctA or more and the elongation was 30% or more, indicating good balance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に用いるタイの一例の縮断面図
、第2図は、第1図のa−a線における断面図、第3図
は、第1図のb−b線におiJる断面図である。第4図
は、本発明に用いる樹脂の熔融樹脂温度と押出抵抗の関
係を示す図である。 図において、 ■、2.3・ ・ ・ダイスリット 4.5.6・・・内ダイ部分 7.8.9・・・外ダイ部分 10.11・・・・・冷却シャケ、ト 12.13・・・・・温度調節孔 14.15・・・・・媒体流入口 16.17・・・・・媒体流出口 18.19・・・・・ハンドヒーター ■・・・・・・・押出抵抗増加域 ■・・・・・・・押出抵抗減少域 特許出願人   旭化成工業株式会社 代理人 弁理土星野透 第1図 第2図    第3図 第4図 手続補正書(自発) 昭和58年7月25日 )4.++許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第86666号 2、発明の名称 熱可塑性樹脂の押出成形方法 3、補正をする者 事件との関係 特許出願人 大阪府大阪市北区堂島浜1丁目2番6号(003)旭化
成工業株式会社 代表取締役社長 宮 崎  輝 4、代理人 東京都新宿区四谷3丁目7番地かつ新ビル5BG、補正
の対象 明細書の「発明の詳細な説明」の欄 明細書の記載を次のとおり補正する。 (11第3頁14行のrlsecJを rlsec  jと訂正する。 (2)第11頁3行の「180°C」を「180°」と
訂正する。 (3)第11頁5行のr5mmJを 「5m」と訂正する。 (4)第11頁13〜14行の 「強さ250  ・・・ものであった。」を「強さは2
50Kg /ctA以上で且つ伸びは300%以上の値
でバランスのよいものであった。」と訂正する。 特許出願人  旭化成工業株式会社 代理人    弁理士 星 野 透
FIG. 1 is a reduced cross-sectional view of an example of a tie used in the method of the present invention, FIG. 2 is a cross-sectional view taken along the a-a line in FIG. 1, and FIG. 3 is a cross-sectional view taken along the b-b line in FIG. It is a cross-sectional view. FIG. 4 is a diagram showing the relationship between molten resin temperature and extrusion resistance of the resin used in the present invention. In the figure, ■, 2.3...Die slit 4.5.6...Inner die part 7.8.9...Outer die part 10.11...Cooling rack, 12.13 ...Temperature adjustment hole 14.15 ...Medium inlet 16.17 ...Medium outlet 18.19 ...Hand heater■ ...Extrusion resistance Increased area■・・・Extrusion resistance decreased area Patent applicant Asahi Kasei Industries Co., Ltd. Agent Patent attorney Toru Saturno Figure 1 Figure 2 Figure 3 Figure 4 Procedural amendment (voluntary) July 1982 25th) 4. ++ Mr. Kazuo Wakasugi, Commissioner of the License Agency 1, Indication of the case, Patent Application No. 86666 of 1986, 2, Name of the invention, Extrusion molding method for thermoplastic resin 3, Relationship with the person making the amendment, Patent applicant: Kita, Osaka City, Osaka Prefecture Teru Miyazaki, Representative Director and President of Asahi Kasei Industries Co., Ltd., 1-2-6 Dojimahama-ku (003), 3-7 Yotsuya, Shinjuku-ku, Tokyo, and Shin Building 5BG. The description in the description in the "Explanation" column is amended as follows. (Correct rlsecJ on page 3, line 14 of 11 to rlsec j. (2) Correct “180°C” on page 11, line 3 to “180°”. (3) Correct r5mmJ on page 11, line 5. (4) On page 11, lines 13-14, change “Strength was 250...” to “Strength was 250 meters.”
The elongation was 50 kg/ctA or more and the elongation was 300% or more, which was well-balanced. ” he corrected. Patent applicant Asahi Kasei Industries Co., Ltd. agent Patent attorney Toru Hoshino

Claims (1)

【特許請求の範囲】[Claims] (1)押出抵抗値が最小値を示す熔融温度領域を有する
熔融熱可塑性樹脂をその軟化点より低い温度でグイ出口
から押出し成形する方法において、グイを出口から温度
の低下につれて溶融樹脂の押出抵抗の増加する温度領域
、及び温度の低下につれて溶融樹脂の押出抵抗の減少す
る温度領域に別ら、該増加域、減少域に、夫々別個に実
質的に線状の樹脂温度調節手段を、樹脂の流れ方向に向
けて、流れ方向に直角な曲中に夫々独立作動的に並列し
てグイ中に設け、該線状の樹脂温度調節手段を個別に冷
却又は加熱することにより押出成形品の偏肉、曲がり等
の成形性を制御することを特徴とする熱可塑性樹脂の押
出成形方法。
(1) In a method of extruding a molten thermoplastic resin having a melting temperature range in which the extrusion resistance value is a minimum value from the Goo exit at a temperature lower than its softening point, the extrusion resistance of the molten resin from the Goo exit as the temperature decreases. A temperature region in which the extrusion resistance of the molten resin decreases as the temperature decreases, and a substantially linear resin temperature regulating means is separately provided in the increasing region and decreasing region, respectively. The uneven thickness of the extruded product can be prevented by independently cooling or heating the linear resin temperature control means, which are provided in parallel in a bend perpendicular to the flow direction and actuated independently. , a method for extrusion molding thermoplastic resin characterized by controlling moldability such as bending.
JP58086666A 1983-05-19 1983-05-19 Extrusion molding of thermoplastic resin Pending JPS59212234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086666A JPS59212234A (en) 1983-05-19 1983-05-19 Extrusion molding of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086666A JPS59212234A (en) 1983-05-19 1983-05-19 Extrusion molding of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS59212234A true JPS59212234A (en) 1984-12-01

Family

ID=13893354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086666A Pending JPS59212234A (en) 1983-05-19 1983-05-19 Extrusion molding of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS59212234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827888B2 (en) 2001-01-23 2004-12-07 Genpak Llc Polymeric foam sheet using ambient gas blowing agent via controlled expansion
US9849619B2 (en) 2010-11-11 2017-12-26 Toyo Seikan Kaisha, Ltd. Apparatus for correcting the bending of a molten resin and method of correcting the bending of the molten resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827888B2 (en) 2001-01-23 2004-12-07 Genpak Llc Polymeric foam sheet using ambient gas blowing agent via controlled expansion
US9849619B2 (en) 2010-11-11 2017-12-26 Toyo Seikan Kaisha, Ltd. Apparatus for correcting the bending of a molten resin and method of correcting the bending of the molten resin
EP2639041B1 (en) * 2010-11-11 2018-06-27 Toyo Seikan Group Holdings, Ltd. Apparatus for correcting bending of molten resin and method for correcting bending of molten resin

Similar Documents

Publication Publication Date Title
EP0165068B1 (en) Method of producing a thermoplastic tube having a smooth interior surface
US4443400A (en) Method and apparatus for the formation of profiled thermoplastic film
US5028376A (en) Plastic pipe extrusion
JPS59212234A (en) Extrusion molding of thermoplastic resin
JPS5924633A (en) Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die
FI77406B (en) MUNSTYCKE FOER STRAENGSPRUTNINGSANORDNING.
JPS62255114A (en) Extrusion molding pipe and manufacture of said pipe
EP0486502B1 (en) Apparatus for manufacturing ribbed pipes
EP0149335A2 (en) Apparatus and method for extruding polymer melts
JPS59114027A (en) Extrusion molding die
JPH03130129A (en) Manufacture of biaxially oriented nylon 6-66 copolymer film
JPH04257306A (en) Control rod and sealing device for melt spray die device
US3432886A (en) Tubular film extrusion apparatus
JP2001009896A (en) Molding method for chlorinated vinyl chloride resin pipe
JPS59212233A (en) Extrusion molding of thermoplastic resin
JPS6121216Y2 (en)
JPS5838119A (en) Apparatus for producing synthetic resin plate
JP3529396B2 (en) Method for manufacturing fluororesin tube
FI82633C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN KRYMPANDE PRODUKT.
CN110319279B (en) Pipe and method for manufacturing the same
JP2004249606A (en) Thermoplastic resin pipe, clad pipe for optical fiber and manufacturing method thereof
JPH0467494B2 (en)
JPS59198125A (en) Extrusion molding machine for crosslinked polyethylene pipe
JPS6371330A (en) Manufacture of super high-molecular weight polyethylene pipe
JPH03281214A (en) Extrusion device of thermosetting resin pipe and molding method