JPS59211811A - Surface roughness measuring apparatus - Google Patents

Surface roughness measuring apparatus

Info

Publication number
JPS59211811A
JPS59211811A JP8572483A JP8572483A JPS59211811A JP S59211811 A JPS59211811 A JP S59211811A JP 8572483 A JP8572483 A JP 8572483A JP 8572483 A JP8572483 A JP 8572483A JP S59211811 A JPS59211811 A JP S59211811A
Authority
JP
Japan
Prior art keywords
measured
plane
light
interference
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8572483A
Other languages
Japanese (ja)
Inventor
Toshio Akatsu
赤津 利雄
Sadao Mori
貞雄 森
Shunichi Akiba
俊一 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8572483A priority Critical patent/JPS59211811A/en
Publication of JPS59211811A publication Critical patent/JPS59211811A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable a highly accurate measurement of the surface roughness of an object to be measured handily by a method wherein an interference fringe due to an interference of both reflected lights from the reference surface and the surface of an object to be measured and the movement thereof is detected with a photo sensor. CONSTITUTION:A laser beam 10 from a laser oscillator 1 passes through a reference plane 4 via a beam splitter 2 and a lens 3 forming a focus on the surface of an object 6 to be measured and reflected lights enters a sensor 8 as plane wave. On the other hand, light reflected on the surface of the reference plane 4 also enters the sensor 8 but forms a spherical wave as the plane 4 is outside of the focusing position of a condensor lens 3. According to the distance between the plane 4 and the object 6 being measured, a bright and dark ring is generated in the interference fringe of two reflected lights. As a moving base 5 is moved, with fine irregularities on the surface of the object 6 being measured, a fine change occurs in the distance from the plane 4, causing the interference ring to move. This enables a highly accurate measurement of the surface roughness of the object being measured while correcting the interval of the interference fringe thereby improving the accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気テープ、磁気ディスクなどの軟質物の表面
のめらさを光学的に非接触で測定する装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for optically and non-contactly measuring the surface roughness of a soft material such as a magnetic tape or a magnetic disk.

〔発明の背景〕[Background of the invention]

従来の表面ららさ測定器は被測定物に触針を接触させ、
その触針の振動を電気信号に変換するか、または触針に
連結した鏡の変位を光学的に増幅しこの増幅変位量から
表面あらさを測定するものである。
Conventional surface roughness measuring instruments bring a stylus into contact with the object to be measured.
The vibration of the stylus is converted into an electrical signal, or the displacement of a mirror connected to the stylus is optically amplified, and the surface roughness is measured from the amount of amplified displacement.

しかし、このような測定器では、触針の接触圧力による
被測定物表面の変形および損傷などを防止するため、触
針の接触圧力は極力低く設定する必要が套る。したがっ
て、検出速度が遅いばかシでなく、精度、安定性および
簡便性などにおいて問題がある。
However, in such a measuring device, the contact pressure of the stylus must be set as low as possible in order to prevent deformation and damage to the surface of the object to be measured due to the contact pressure of the stylus. Therefore, there are problems not only in the slow detection speed but also in accuracy, stability, and simplicity.

そこで表面ろらさを、ンーザ光を使用して基準面とのギ
ャップの変化となし、光学的に測定する手段が提案され
ている。このような手段は被測定物を移動させる際、機
械的なガタによシ誤差を発生する欠点がある。
Therefore, a method has been proposed in which the surface roughness is measured optically by measuring the change in the gap between the surface and the reference surface using laser light. Such means has the disadvantage that errors occur due to mechanical play when moving the object to be measured.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消し、被測定物の表面あらさを高
精度に、かつ簡便に測定することを目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to measure the surface roughness of an object to be measured easily and with high precision.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、レーザ発振器、ビ
ームスプリッタ、集光レンズ、集光を反射する基準面、
この基準面と平行に設けた被測定物固定面、前記基準面
と被測定物固定面を一体として移動させる手段およびビ
ームスプリッタの側方に対設した光センサなどによシ構
成し、前記基準面と被測定物表面からの両反射光の干渉
によシ生ずる干渉縞を前記移動手段を介して移動させ、
この干渉縞の移動を光センサにより検出して被測定物の
表面ららさを測定するものにしたものである。
In order to achieve the above object, the present invention includes a laser oscillator, a beam splitter, a condensing lens, a reference surface that reflects condensed light,
The object to be measured is fixed to a surface parallel to the reference surface, a means for moving the reference surface and the object to be measured as one unit, and an optical sensor arranged opposite to the side of the beam splitter. moving interference fringes caused by interference of both reflected light from the surface and the surface of the object to be measured via the moving means;
The movement of the interference fringes is detected by an optical sensor to measure the surface roughness of the object to be measured.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は単色光を発する光源例えばレーザ
発振器、2はレーザ発振器1から発振されるレーザビー
ムを透過または反射させるビームスプリッタ、3はビー
ムスグリツタ2を透過した光を集光する集光レンズ、4
は基準平面、5は基□準平面4を支持し、基準平面4と
平行な平面5aを備える支持台、6は前記平面5a上に
固定された被測定物、例えば不透明な磁気テープ、7は
前記支持台5を矢印9方向に移動させる手段、例えば移
動台、8はビームスグリツタ2の側方に対向するように
設けられた光センサで、この光センサ8は入射光を電気
信号に変換する光検出器を線状に配置したアレイセンサ
である。
In FIG. 1, 1 is a light source that emits monochromatic light, such as a laser oscillator, 2 is a beam splitter that transmits or reflects the laser beam emitted from the laser oscillator 1, and 3 is a condenser that collects the light that has passed through the beam sinter 2. optical lens, 4
5 is a reference plane, 5 is a support base that supports the reference plane 4 and has a plane 5a parallel to the reference plane 4, 6 is an object to be measured fixed on the plane 5a, for example, an opaque magnetic tape, and 7 is an opaque magnetic tape. Means for moving the support base 5 in the direction of the arrow 9, for example a moving base, 8 is an optical sensor provided facing the side of the beam sinter 2, and this optical sensor 8 converts incident light into an electrical signal. This is an array sensor with photodetectors arranged in a line.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

レーザ発振器1から発振されたレーザビーム10は、ビ
ームスプリッタ2を透過して集光レンズ3に至り、この
集光レンズ3で集光された光の一部は基準平面4を透過
し、磁気テープ6の表面に焦点を結び、こ\で反射され
る。この反射光をB1と称す。前記集光レンズ3で集光
された光の残部は基準平面4で反射される。この反射光
をB2と称す。前記反射光B1は集光レンズ3に至シ、
ここで平行光(平面波)となってビームスプリッタ2に
至シ、こ\で反射されてアレイセ/す8に人。
A laser beam 10 emitted from a laser oscillator 1 passes through a beam splitter 2 and reaches a condensing lens 3. A part of the light condensed by this condensing lens 3 passes through a reference plane 4 and is attached to a magnetic tape. It focuses on the surface of 6 and is reflected from this. This reflected light is called B1. The remainder of the light condensed by the condenser lens 3 is reflected by the reference plane 4. This reflected light is called B2. The reflected light B1 reaches the condensing lens 3,
Here, it becomes parallel light (plane wave) and reaches the beam splitter 2, where it is reflected and hits the array unit 8.

射する。shoot

一方、基準平面4で反射された光B2は、基準平面4が
集光レンズ3の焦点と一致していないから球面波となる
。この球面波は、基準平面4と磁気テープ6との距離が
短かいときには、ビームの拡が9はそれ程大きくないの
で、前記反射光B1と同一光路を経て2−一部スプリッ
タ2に至シ、ここで反射されてアレイセンサ8に至る。
On the other hand, the light B2 reflected by the reference plane 4 becomes a spherical wave because the reference plane 4 does not coincide with the focal point of the condenser lens 3. When the distance between the reference plane 4 and the magnetic tape 6 is short, the beam spread 9 is not so large, so this spherical wave passes through the same optical path as the reflected light B1 and partially reaches the splitter 2. It is reflected here and reaches the array sensor 8.

この場合、前記反射光B1とB2は光路長差Δtに応じ
た干渉信号を発生する。その光路長差Δtri、基準平
面4と磁気テープ6の表面との距離8に起因するもの(
ΔAt  )と、反射光Bl。
In this case, the reflected lights B1 and B2 generate an interference signal according to the optical path length difference Δt. The optical path length difference Δtri is caused by the distance 8 between the reference plane 4 and the surface of the magnetic tape 6 (
ΔAt) and reflected light Bl.

B2がそれぞれ平面波および球面波であることに起因す
るもの(Δtz)として分けることができる。
It can be divided into two types (Δtz) due to the fact that B2 is a plane wave and a spherical wave, respectively.

前記ΔtIは下記(1)式で表わされることは容易に理
解される。
It is easily understood that the ΔtI is expressed by the following formula (1).

Δt1−26        ・・・(υついで、上記
Δt2を求めるために、まず平面波と球面波との間に生
ずる光路長差を求める。
Δt1-26...(υNext, in order to find the above-mentioned Δt2, first find the optical path length difference that occurs between the plane wave and the spherical wave.

第2図において、Z軸方、向に進行する平面波Cおよび
点Aから発した球面波りが、点Aから距離tの位置でZ
軸に垂直に立てた平面Σに入射す−る場合、Z軸と平面
Σとの交点を0とし、とのOから距離γの位置における
二つの光の光路長差Δt′を求める。この光路長差ΔL
′が点Oで零であるとすると、Δt′は下記(2)式で
表わされる。
In Fig. 2, a plane wave C traveling in the Z-axis direction and a spherical wave originating from point A move toward Z at a distance t from point A.
When the light is incident on a plane Σ perpendicular to the axis, the intersection of the Z axis and the plane Σ is set to 0, and the optical path length difference Δt' between the two lights at a distance γ from O is determined. This optical path length difference ΔL
Assuming that ' is zero at point O, Δt' is expressed by the following equation (2).

・・・(2) したがって、光源の波長をλとすると、垂直面Σ上にお
ける干渉パターンは下記(3)(41式を満足する位置
にそれぞれ明リングEと暗リングFが生ずる。
(2) Therefore, if the wavelength of the light source is λ, the interference pattern on the vertical plane Σ will be a bright ring E and a dark ring F at positions that satisfy the following equation (3) (41).

Δt/=nλ         ・・・(3)λ ΔZ / == nλ+−・・・(4)ま たソし1l==Q、i、2・・・・・・これよシ第1゛
図の磁気チーブ6おiび基準平面4の各表面よで反射し
た光Bl、B2がアレイセンサ8の位置でi生ずる干渉
パターンを求めることができる。
Δt/=nλ...(3) λ ΔZ/== nλ+-...(4) So 1l==Q, i, 2...This is the magnetic tube in Figure 1 It is possible to obtain an interference pattern caused by the lights B1 and B2 reflected from each surface of the reference plane 4 and the array sensor 8 at the position of the array sensor 8.

基準平面4と磁気テープ6との距離δ、果先光レンズの
焦点距離をfとすれば、基準平面4で反射された光B2
は基準平面4から距離δの位置、すなわち集光レンズ3
から距離f−2δの位置で一点に果まる。この光が集光
レンズ3を通ると、集光レンズ3の後方の位置Wから発
した球面波りに変わるとすれば、前記f1 δ、Wとの
間には下記(5)式が成立する。
If the distance between the reference plane 4 and the magnetic tape 6 is δ, and the focal length of the tip optical lens is f, then the light B2 reflected by the reference plane 4 is
is the position at a distance δ from the reference plane 4, that is, the condenser lens 3
It ends at a point at a distance f-2δ from . When this light passes through the condenser lens 3, it changes into a spherical wave emitted from the position W behind the condenser lens 3, and the following formula (5) holds true between f1 δ and W. .

この(5)式よシWは下記(6)式で表わされる。From this equation (5), W is expressed by the following equation (6).

いマ、集光レンズ3からビームスプリッタ2を経てアレ
イセンサ8に至る距離をLとすれば、アレイセンサ8の
位置で前記反射光Bl、B2の間に生ずる光路長差のう
ち、反射光B1.“B2がそれぞれ平面波(j?よび球
面波りであることによる光路長差Δt2は前記(2)式
にt=W+Lを代入してえられる。一般にW+L))r
であるから、前記Δtz/d下記(7ン式で表わされる
Now, if the distance from the condenser lens 3 to the array sensor 8 via the beam splitter 2 is L, then of the optical path length difference that occurs between the reflected lights B1 and B2 at the position of the array sensor 8, the reflected light B1 .. "The optical path length difference Δt2 due to the fact that B2 is a plane wave (j?) and a spherical wave can be obtained by substituting t=W+L into the above equation (2). In general, W+L)) r
Therefore, the above-mentioned Δtz/d is expressed by the following formula.

したがって、アレイセンサ8の位置における反射光Bl
、B2の光路長差Δ2(=Δt!十Δtz)は下記(8
)式で表わされる。
Therefore, the reflected light Bl at the position of the array sensor 8
, B2 optical path length difference Δ2 (=Δt! +Δtz) is as follows (8
) is expressed by the formula.

満足する位置で明、暗り/グをそれぞn発生する。Brightness and darkness/g are generated n times at a satisfying position.

したがって、移動台7を介してレーザビームの来光位置
を移動させると、磁気テープ6の表面の凹凸に応じてδ
は微小変化するからΔtも変化する。
Therefore, when the arrival position of the laser beam is moved via the moving table 7, δ
Since Δt changes minutely, Δt also changes.

ところが、一般に前記(8)式において、第2項Δt2
の変化分(第1項Δtの変化分であるから、第2項Δt
2は無視できる。例えばδ=0.5■、f=2 sts
+、L=10001111.  r=2tasとし、磁
気テープ6表面の凹凸のためにδが0.5smから(0
,5−)−0,001)+mに変化(1μm変化)した
とすれば、前記Δ71+Δt2の変化はそれぞれ2μm
However, generally in equation (8), the second term Δt2
(Since it is the change in the first term Δt, the second term Δt
2 can be ignored. For example, δ=0.5■, f=2 sts
+, L=10001111. r=2tas, and due to the unevenness of the surface of the magnetic tape 6, δ ranges from 0.5sm to (0
,5-)-0,001)+m (1 μm change), the change in Δ71+Δt2 is 2 μm each.
.

0.002μmである。It is 0.002 μm.

したがって、アレイセンサ8で干渉縞の移動をλ 観則す庇は、一つの干渉縞の移動が−の凹凸(磁気テー
プ表面)に相当し、その干渉縞が中心から外方へ同うと
きに(は、集光位置の移動に伴って磁気テープ60表面
が突出する場合でめ9、逆に干渉縞が外方から内方へ向
うときには、磁気テープ6の表面がへこむ場合でりゐこ
とがわかる。
Therefore, the movement of the interference fringes is observed by the array sensor 8 as λ, and the movement of one interference fringe corresponds to a negative unevenness (magnetic tape surface), and when the interference fringes move outward from the center, (This is a case where the surface of the magnetic tape 60 protrudes as the light condensing position moves.) Conversely, when the interference fringes move from the outside to the inside, the surface of the magnetic tape 6 may become depressed. Recognize.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に工れは、レーザビームの来
光位置を被測定物の表面上を横方向に移動さぜる場合、
上下方向に多少ずnても基準面と被測定物との位置関係
は不変であるので、表面めらさゲ被測定物表面の凹凸に
よる基準面との距離変化として正確に測定することがで
きる。
As explained above, the advantage of the present invention is that when the position of the laser beam is moved laterally on the surface of the object to be measured,
Since the positional relationship between the reference surface and the object to be measured does not change even if it moves slightly in the vertical direction, it is possible to accurately measure the change in distance from the reference surface due to the unevenness of the surface of the object to be measured. .

また本発明でVよ、元センサで干渉縞のパターン全観測
しているので、その干渉縞の間隔を補整することによシ
、測足d度をより一層に向上させることが可能である利
点かめる。
Another advantage of the present invention is that since the entire pattern of interference fringes is observed using the original sensor, it is possible to further improve the degree of measurement by correcting the interval of the interference fringes. Kameru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の狭面あらさ測定装置の一実施例を示す
概略図、第2図および第3図は同実施例の作用説チ」図
でるる。 1・・・光源、2・・・ビームスプリッタ、3・・・来
光レンズ、4・・・基準面、5a・・・被測定物置足面
、6・・・被測定物、7・・・移動台、8・・・光セン
サ。 代理人 升埋士 高橋明夫 第1図 箭2図 Σ 第 3 図
FIG. 1 is a schematic diagram showing an embodiment of the narrow surface roughness measuring device of the present invention, and FIGS. 2 and 3 are diagrams showing the operation of the same embodiment. DESCRIPTION OF SYMBOLS 1... Light source, 2... Beam splitter, 3... Coming lens, 4... Reference plane, 5a... Measured object foot surface, 6... Measured object, 7... Moving table, 8... optical sensor. Agent: Masu buryer Akio Takahashi Figure 1 Figure 2 Σ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 単色光を発する光源と、その光ビームを透過または反射
させるビームスグリツタと、このビームスプリッタから
の光を集光する集光レンズと、この集光レンズからの集
光を反射する基準面と、この基準面と平行に設け一←れ
た被測定物固定面と、前記基準面および被測定物固定面
を一体として移動させる手段と、前記ビームスグリツタ
の側方に対向するように設けた光センサとからなシ、前
記基準面と被測定物表面からの両反射光の干渉によシ生
ずる干渉縞を前記移動手段を介して移動させ、この干渉
縞の移動を光センサによシ検出して被測定物の表面らら
さを測定するようにしたことを特徴とする表面あらさ測
定装置。
A light source that emits monochromatic light, a beam slit that transmits or reflects the light beam, a condensing lens that condenses the light from the beam splitter, and a reference surface that reflects the condensed light from the condensing lens. An object fixing surface provided parallel to the reference surface, a means for moving the reference surface and the object fixing surface as one unit, and a light beam provided opposite to the side of the beam sinter. The sensor moves interference fringes caused by interference of both reflected light from the reference surface and the surface of the object to be measured through the moving means, and detects the movement of the interference fringes by the optical sensor. A surface roughness measuring device characterized in that it measures the surface roughness of an object to be measured.
JP8572483A 1983-05-18 1983-05-18 Surface roughness measuring apparatus Pending JPS59211811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8572483A JPS59211811A (en) 1983-05-18 1983-05-18 Surface roughness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8572483A JPS59211811A (en) 1983-05-18 1983-05-18 Surface roughness measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59211811A true JPS59211811A (en) 1984-11-30

Family

ID=13866789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8572483A Pending JPS59211811A (en) 1983-05-18 1983-05-18 Surface roughness measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59211811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325503A (en) * 1986-07-17 1988-02-03 Ee D S:Kk Surface roughness meter
EP0818667A1 (en) * 1996-07-10 1998-01-14 Compagnie Industrielle Des Lasers Cilas Device for determining the form of a wave-front transmitted by a transparent plate with parallel faces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325503A (en) * 1986-07-17 1988-02-03 Ee D S:Kk Surface roughness meter
EP0818667A1 (en) * 1996-07-10 1998-01-14 Compagnie Industrielle Des Lasers Cilas Device for determining the form of a wave-front transmitted by a transparent plate with parallel faces
FR2751069A1 (en) * 1996-07-10 1998-01-16 Cilas DEVICE FOR DETERMINING THE SHAPE OF THE WAVE SURFACE TRANSMITTED BY A TRANSPARENT PIECE WITH SUBSTANTIALLY PARALLEL FACES

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPS6127682B2 (en)
US4730927A (en) Method and apparatus for measuring positions on the surface of a flat object
JPH08101020A (en) Thickness measuring device
JPH0455243B2 (en)
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPS5979104A (en) Optical device
JPS59211811A (en) Surface roughness measuring apparatus
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JP2698446B2 (en) Interval measuring device
JPH0233962B2 (en)
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPS60104206A (en) Optical measuring device
JP2591143B2 (en) 3D shape measuring device
SU1548669A1 (en) Optical roughness indicator
JPS63222207A (en) Apparatus for measuring depth of recessed part and thickness of film
JPH06109435A (en) Surface displacement meter
JPH07294537A (en) Speed and distance detector
JPH0550313U (en) Interferometric shape measuring instrument
JPS60211304A (en) Measuring instrument for parallelism
JPH0562923B2 (en)
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JPH07167620A (en) Laser measuring method and measuring stylus
JPH03252513A (en) Parabolic antenna surface measuring instrument
JPS5899705A (en) Noncontact roughness measuring instrument