JPS59210893A - System for glyceride hydrolysis - Google Patents

System for glyceride hydrolysis

Info

Publication number
JPS59210893A
JPS59210893A JP58084799A JP8479983A JPS59210893A JP S59210893 A JPS59210893 A JP S59210893A JP 58084799 A JP58084799 A JP 58084799A JP 8479983 A JP8479983 A JP 8479983A JP S59210893 A JPS59210893 A JP S59210893A
Authority
JP
Japan
Prior art keywords
lipase
glycerin
aqueous solution
water
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58084799A
Other languages
Japanese (ja)
Other versions
JPH0365946B2 (en
Inventor
Masato Nishimura
正人 西村
Kiyoshi Koyama
清 小山
Shirou Ishida
石田 祀朗
Norisuke Morioka
森岡 憲祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKASHI
NOF Corp
Osaka City
Original Assignee
OOSAKASHI
NOF Corp
Osaka City
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKASHI, NOF Corp, Osaka City, Nippon Oil and Fats Co Ltd filed Critical OOSAKASHI
Priority to JP58084799A priority Critical patent/JPS59210893A/en
Publication of JPS59210893A publication Critical patent/JPS59210893A/en
Publication of JPH0365946B2 publication Critical patent/JPH0365946B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:Glycerol is recovered from a lipase solution resultant from hydrolysis in a column for a certain time and simultaneously a concentrate of lipase is obtained and the concentrate is mixed with the separated water to recycle to the column, thus permitting the maintenance of the reaction rate and improvement in economy. CONSTITUTION:(a) Glyceride 4 is introduced into the column 2 filled with a lipase aqueous solution 1 in the form of fine oil particles, which are allowed to float up through the column in dispersion to undergo hydrolysis. (b) The oil layer containing water which has flowed up on the top of the column is allowed to pass through a lipid-philic porous polymer membrane 10 to recover the lipid fraction mainly consisting of fatty acids. (c) The aqueous solution separated in the process b is combined with the liquid from the column 2, then subjected to ultrafiltration and separated into the lipase concentrate and glycerol aqueous solution. (d) The glycerol aqueous solution separated in process c is subjected to reverse osmosis into glycerol concentration and water. (e) Water is evaporated off from the glycerol concentrate, and further the remaining glycerol is distilled to give recovered glycerol. (f) The water separated from the concentrate in process c and in process d is combined and recycled to process (a).

Description

【発明の詳細な説明】 この発明はリパーゼを用いた油脂の加水分解システムに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system for hydrolyzing fats and oils using lipase.

従来のリパーゼによる油脂の加水分解方法としては、低
融点油脂をリパーゼ水溶液と液状で混合撹拌しながら加
水分解させる方法や高融点油脂をリパーゼ水溶液と乳化
混合し半固形状のスラIJ−状態として加水分解させる
方法などが知られている。しかるに、これらの方法は油
脂とリパーゼ水溶液との接触に際して強力な撹拌エネル
ギーを必要とし、またこのような強力な撹拌下では巻き
込み空気による油脂の酸化劣化をきたす心配がある。
Conventional methods for hydrolyzing fats and oils using lipase include methods in which low-melting point fats and oils are mixed with a lipase aqueous solution in liquid form and hydrolyzed while stirring, and high-melting point fats and oils are emulsified and mixed with a lipase aqueous solution and hydrolyzed in a semi-solid slug IJ-state. Methods of decomposition are known. However, these methods require strong stirring energy when bringing the fat and oil into contact with the aqueous lipase solution, and there is a risk that the fat and oil will be oxidized and deteriorated by entrained air under such strong stirring.

一方、リパーゼの再使用を容易にしかつ加水分解反応を
連続的に行う観点から、適宜の担体に固定化したリパー
ゼをカラム中に充填しこれに油脂の含水有機溶剤溶液や
乳化液を連続的に導入して加水分解反応を行わせる方法
が考えられている。
On the other hand, from the viewpoint of facilitating the reuse of lipase and performing the hydrolysis reaction continuously, lipase immobilized on an appropriate carrier is packed into a column, and a water-containing organic solvent solution or emulsion of oil and fat is continuously added to the column. A method has been considered in which the hydrolytic reaction is carried out by introducing

ところが、この方法では、リパーゼの固定化のために比
較的高価な固定化用担体が必要である、固定化操作が複
雑である、固定化による活性低下が著しいなどのリパー
ゼの固定化に伴なう諸種の問題があるほか、油脂と水と
を混合するために用いる有機溶剤や乳化剤の使用か反応
系を複雑にするばかりでなく、上記使用が酵素反応に対
して阻害効果をおよぼしたり、生成物の分離工程を複雑
にする問題がある。
However, this method requires a relatively expensive immobilization carrier to immobilize lipase, the immobilization operation is complicated, and the activity decreases significantly due to immobilization. In addition to various problems, the use of organic solvents and emulsifiers used to mix oil and water not only complicates the reaction system, but also inhibits enzymatic reactions and inhibits production. There are problems that complicate the separation process.

この出願人は、上記事情に鑑み鋭意検討した結果、水不
溶性の油脂をリパーゼ水溶液を含むカラム中に微細な油
滴として連続的に導入して分散状態で浮上せしめ、この
浮上中に油脂とリパーゼとを充分接触させて加水分解反
応を行わせ、生成物のひとつであるグリセリンはカラム
中のリパーゼ水溶液に溶解させるとともに脂肪酸はカラ
ム上方に浮上分離させるという油脂の加水分解方法を、
すでに提案した。
As a result of intensive studies in view of the above circumstances, the applicant has devised a method in which water-insoluble oils and fats are continuously introduced as fine oil droplets into a column containing an aqueous lipase solution to float in a dispersed state, and during this flotation, oils and fats and lipase A method for hydrolyzing fats and oils in which a hydrolysis reaction is carried out by bringing the two into sufficient contact with each other, and one of the products, glycerin, is dissolved in an aqueous lipase solution in a column, while fatty acids are floated to the top of the column and separated.
Already suggested.

この提案法によれば、加水分解反応の連続化が可能でま
た脂肪酸とグリセリンとの分離が容易となるなどの効果
が得られるほか、油脂とリパーゼ水溶液との接触に際し
て従来の如き強力な撹拌エネルギーを必要としない、強
力な撹拌を必要としないため巻き込み空気による油脂の
酸化劣化を低減できる、前記固定化リパーゼ充填カラム
方式にみられる如きリパーゼの固定化や有機溶剤ないし
乳化剤の使用に伴なう諸種の問題を生じないなどの利点
が得られる。
According to this proposed method, the hydrolysis reaction can be made continuous, fatty acids and glycerin can be easily separated, and in addition, when the oil and fat are brought into contact with the lipase aqueous solution, strong stirring energy is not required compared to conventional methods. Since it does not require strong stirring, it can reduce oxidative deterioration of fats and oils caused by entrained air, which is associated with the immobilization of lipase and the use of organic solvents or emulsifiers as seen in the above-mentioned immobilized lipase packed column method. Advantages such as not causing various problems can be obtained.

ところが、上記提案法では、上記の如き利点がある反面
リパーゼをかなり多量用いなければ加水分解の実用的な
反応速度が得られず、しかも加水分解の進行に伴なって
リパーゼ水溶液中に溶解してくるグリセリンによって反
応速度が低下してくる問題がある。このため、上記提案
法を工業的有利に実施するためには、高価なリパーゼを
多量使用することによる経済的不利をいかに低減し、ま
た反応速度をいかに一定に保つかが、重要な課題となる
However, although the proposed method has the above-mentioned advantages, a practical reaction rate for hydrolysis cannot be obtained unless a large amount of lipase is used, and as the hydrolysis progresses, lipase dissolves in the aqueous lipase solution. There is a problem that the reaction rate decreases due to the presence of glycerin. Therefore, in order to implement the above proposed method industrially, important issues are how to reduce the economic disadvantage caused by using a large amount of expensive lipase and how to keep the reaction rate constant. .

この発明者らは、上記問題を克服するためにさらに検討
した結果、カラム中で所定時間加水分解反応を行わせた
リパーゼ水溶液からグリセリンを回収するとともにリパ
ーゼの濃縮液を得、これをグリセリンの回収工程で分離
した水と混合して再ひカラム中での加水分解反応に循環
供給することにより、反応速度の維持と経済性の改善と
を図りうろことを知り、この発明を完成するに至った。
As a result of further studies to overcome the above problems, the inventors recovered glycerin from an aqueous lipase solution subjected to a hydrolysis reaction in a column for a predetermined period of time, obtained a concentrated liquid of lipase, and used this to recover glycerin. By mixing it with the water separated in the process and circulating it to the hydrolysis reaction in the resuspended column, he realized that he could maintain the reaction rate and improve economic efficiency, which led him to complete this invention. .

すなわち、この発明は、この出願人がすでに提案した前
記加水分解法を工業的有利に実施するための加水分解シ
ステムに関するものであり、その要旨とするところは、 a)油脂をリパーゼ水溶液で満たされたカラム中に微細
な油滴として導入し分散状態で浮上させながら加水分解
する工程と、 b)上記3工程後カラム上方に浮上した含水油層を親油
性の多孔性高分子膜を通過させて脂肪酸を主体とする油
分を回収するとともにリパーゼおよびグリセリンを含む
水溶液を分離する工程と、 C)上記し工程で分離した水溶液を前記ス工程後カラム
から排出されるグリセリンを含むリパーゼ水溶液と混合
したのち限外ろ過してリパーゼの濃縮液とグリセリン水
溶液とに分離する工程と、 d)上記C工程で分離したグリセリン水溶液を逆浸透処
理してグリセリンの濃縮液と水とに分離する工程と、 e)上記d工程で分離したグリセリンの濃縮液から水の
蒸発またはこれと蒸留によってグリセリンを回収する工
程と、 f)前記C工程で分離したリパーゼの濃縮液と上記d工
程で分離した水とを混合してリパーゼ水溶液となしこれ
を前記C工程に循環供給する工程 とを具備してなる加水分解システムにある。
That is, the present invention relates to a hydrolysis system for industrially advantageously carrying out the above-mentioned hydrolysis method already proposed by the applicant, and its gist is as follows: a) fats and oils are filled with an aqueous lipase solution; (b) After the above three steps, the hydrous oil layer that floated above the column is passed through a lipophilic porous polymer membrane to dissolve fatty acids. C) A step of recovering oil mainly consisting of , and separating an aqueous solution containing lipase and glycerin; C) mixing the aqueous solution separated in the above step with an aqueous lipase solution containing glycerin discharged from the column after the above step; d) separating the glycerin aqueous solution separated in step C into the glycerin concentrate and water by performing external filtration; e) the above step. a step of recovering glycerin from the glycerin concentrate separated in step d by evaporating water or distilling it; f) mixing the lipase concentrate separated in step C and the water separated in step d; The hydrolysis system comprises a step of supplying a lipase aqueous solution and circulating it to the step C.

以下、この発明の加水分解システムを図面を参考にして
工程順に説明する。
Hereinafter, the hydrolysis system of the present invention will be explained step by step with reference to the drawings.

この発明では、まずλ工程において、リパーゼ水溶液1
で満たされたカラム2内にその下部から酢酸セルロース
膜の如き多孔性部利3を介して油脂4を導入する。図中
、5は貯槽6内の油脂4をカラム2へ導入するためのパ
イプである。カラム2内に導入された一油脂4はリパー
ゼ水溶液中で微細な油滴となって分散状態で浮上し、こ
の浮上中にリパーゼとよく接触して加水分解される。接
触時間を長くするために通常は上方に浮上した含水油層
7をパイプ8を介してカラム2内に数回循環させる。
In this invention, first in the λ step, lipase aqueous solution 1
An oil or fat 4 is introduced into the column 2 filled with oil from the lower part of the column 2 through a porous part 3 such as a cellulose acetate membrane. In the figure, 5 is a pipe for introducing the fats and oils 4 in the storage tank 6 into the column 2. The oil and fat 4 introduced into the column 2 becomes fine oil droplets in the lipase aqueous solution and floats in a dispersed state, and during this floating comes into close contact with the lipase and is hydrolyzed. In order to increase the contact time, the hydrous oil layer 7 which has floated upwards is usually circulated through the column 2 several times through the pipe 8.

所定の加水分解率に達しリパーゼ水溶液中のグリセリン
濃度が所定濃度に達したのち、カラム上方に浮上した含
水油層7はパイプ9より系外に取り出され、b工程にお
いて親油性の多孔性高分子膜を有するマイクロろ過器1
0を通過して脂肪酸を主成分とし少量のグリセリンの脂
肪酸部分エステルを含む油分とリパーゼおよびグリセリ
ンを含む水溶液とに分離される。すなわち、含水油層7
は上記膜を通過することによってその乳化状態が破壊さ
れて透明な油分と透明な水溶液とに分離される。図中、
11は上記分離した油分をバイア′12を介して回収す
るためのタンクである。
After a predetermined hydrolysis rate is reached and the glycerin concentration in the lipase aqueous solution reaches a predetermined concentration, the hydrous oil layer 7 floating above the column is taken out of the system through a pipe 9, and in step b, a lipophilic porous polymer membrane is formed. Microfilter 1 with
0 and is separated into an oil component mainly composed of fatty acids and a small amount of fatty acid partial ester of glycerin, and an aqueous solution containing lipase and glycerin. That is, the water-containing oil layer 7
When it passes through the membrane, its emulsified state is broken and it is separated into a transparent oil and a transparent aqueous solution. In the figure,
Reference numeral 11 denotes a tank for recovering the separated oil through a via '12.

上記分離に用いられる親油性の多孔性高分子膜としては
一般に孔径が1〜20μm程度の細孔を有するポリプロ
ピレン製膜やポリ四フッ化エチレン製膜などが好ましく
用いられる。この膜が親水性であると油分による孔つま
りなどをおこして分離作業に支障をきたす。
As the lipophilic porous polymer membrane used for the above-mentioned separation, polypropylene membranes, polytetrafluoroethylene membranes, etc., which generally have pores with a pore diameter of about 1 to 20 μm, are preferably used. If this membrane is hydrophilic, oil can clog the pores and impede separation work.

つぎに、C工程において、上記す工程で分離した水溶液
と前記1工程後カラム2から排出されるグリセリンを含
むリパーゼ水溶液とを7N6イプ13゜14を介して混
合したのち、限外ろ過器15にて処理してリパーゼの濃
縮液とグリセリン水溶液とに分離する。
Next, in step C, the aqueous solution separated in the above step and the aqueous lipase solution containing glycerin discharged from the column 2 after the first step are mixed through a 7N6 pipe 13° 14, and then transferred to an ultrafilter 15. The solution is separated into a concentrated lipase solution and an aqueous glycerin solution.

なお、上記混合後の水溶液、つまり限外ろ過を行う前の
水溶液中に含まれるリパーゼとしては通常100〜5,
000単位/−の範囲、グリセリンとしては通常0−5
〜2.0重量%の範囲とされて0るのが望ましい。換言
すればC工程で用いるリパーゼ水溶液のリパーゼ濃度と
加水分解反応で生成するグリセリンの濃度とを上記範囲
内に設定しておくのが望ましい。しかし、上記濃度範囲
を多少逸脱したとしても、この発明の効果が大きく減す
るものではない。
In addition, the lipase contained in the aqueous solution after the above mixing, that is, the aqueous solution before ultrafiltration, is usually 100 to 5,
000 units/- range, usually 0-5 for glycerin
The range is preferably 0 to 2.0% by weight. In other words, it is desirable to set the lipase concentration of the lipase aqueous solution used in step C and the concentration of glycerin produced in the hydrolysis reaction within the above range. However, even if the concentration slightly deviates from the above range, the effects of the present invention will not be significantly reduced.

限外ろ過による透過流束としては工業的見地から操作圧
3〜4 K? / crRで51/、d・時間以上とな
るように設定して、このときのリパーゼの濃縮比か5〜
10の範囲内となるようにするのがよい。
From an industrial perspective, the permeation flux due to ultrafiltration is at an operating pressure of 3 to 4 K? / crR is set to 51/, d・hour or more, and the concentration ratio of lipase at this time is 5 to 5.
It is preferable to set it within the range of 10.

限外ろ過膜としては、市販のポリスルホン製膜、酢酸セ
ルロース製膜、芳香族スルホン製膜、ボリア/ IJロ
ニトリル製膜などがいずれも使用可能であり、特にリパ
ーゼの分子量の1〜2倍の分子量分画性能を有するもの
が好適である。
As the ultrafiltration membrane, commercially available polysulfone membranes, cellulose acetate membranes, aromatic sulfone membranes, Boria/IJ lonitrile membranes, etc. can be used, especially those with a molecular weight of 1 to 2 times that of lipase. Those having fractionation performance are suitable.

このようにして得られるリパーゼの濃縮液中には、C工
程で反応原料として用いたリパーゼ水溶液中のリパーゼ
の約90%が含まれている。また、上記限外ろ過では水
溶液中に微量に混入してくるたん白質や油分などの不純
物も濃縮されるため、上記濃縮液中にはこれら不純物が
濃縮前の水溶液に比しより高い濃度で含まれている。
The lipase concentrate thus obtained contains about 90% of the lipase in the lipase aqueous solution used as a reaction raw material in step C. In addition, since the ultrafiltration described above also concentrates impurities such as proteins and oils that are mixed into the aqueous solution in trace amounts, the concentrated solution contains these impurities at a higher concentration than the aqueous solution before concentration. It is.

一方、限外ろ過器を透過した水溶液はリノク−ゼをほと
んど含まずかつ前記不純物が可及的に除去されたグリセ
リン水溶液とされたものである。もちろん、グリセリン
の濃度としては限外ろ退部の濃度と同じである。前記限
外ろ過ではグリセリンの分離能はないためである。した
がって前記濃縮液中にも透過液と同濃度のグリセリンが
含まれてくることとなるが、その絶対量は透過液中のグ
リセリン量に較べてごく僅かである。
On the other hand, the aqueous solution that has passed through the ultrafilter is a glycerin aqueous solution containing almost no linocuse and from which as many of the impurities as possible have been removed. Of course, the concentration of glycerin is the same as the concentration in the ultrafiltration section. This is because the ultrafiltration described above does not have the ability to separate glycerin. Therefore, the concentrated solution also contains glycerin at the same concentration as the permeate, but its absolute amount is very small compared to the amount of glycerin in the permeate.

つぎのC工程では、上記グリセリン水溶液を、。In the next step C, the above glycerin aqueous solution.

イブ16によって逆浸透処理器17に導き、グリセリン
の炭縮液と水とに分離する。この際の透過流束としては
工業的見地から操作圧40〜60に7/ Caで51/
lri・時間以上となるように設定して、濃縮液中のグ
リセリン濃度が10〜15重量%(処理前は0.5〜2
.0重量%)となるようにするのがよい。用いる逆浸透
膜としては、市販の酢酸セルロース製膜、ポリスルホン
製膜、ポリアクリロニトリル製膜、ポリアミド製膜など
がいずれも使用可能であり、特に食塩排除率90%以上
のものが好適である。
The liquid is led to a reverse osmosis treatment device 17 by a tube 16 and separated into a glycerin charcoal liquid and water. From an industrial standpoint, the permeation flux at this time is 7/Ca at an operating pressure of 40 to 60/51/
The concentration of glycerin in the concentrate is set to 10 to 15% by weight (0.5 to 2% before treatment).
.. 0% by weight). As the reverse osmosis membrane to be used, commercially available cellulose acetate membranes, polysulfone membranes, polyacrylonitrile membranes, polyamide membranes, etc. can be used, and those with a salt rejection rate of 90% or more are particularly suitable.

上記逆浸透処理によって得られるグリセリンの濃縮液は
、前記C工程での限外ろ適時に油分やたん白質などの不
純物がほとんど除去されていることから、これをそのま
まC工程に供して水の蒸発またはこれとグリセリンの蒸
留によって高品質のグリセリンとして製品化する。図中
、18.19はパイプ、20は水の蒸発またはこれとグ
リセリンの蒸留を行うための装置、21は高品質グリセ
リンの回収タンクである。このようにして回収されるグ
リセリンの回収率は約85%以上である。
The glycerin concentrate obtained by the above reverse osmosis treatment has most of the impurities such as oil and protein removed by ultrafiltration in the C step, so it can be directly subjected to the C step to evaporate the water. Or, by distilling this and glycerin, it can be commercialized as high-quality glycerin. In the figure, 18 and 19 are pipes, 20 is a device for evaporating water or distilling water and glycerin, and 21 is a recovery tank for high-quality glycerin. The recovery rate of glycerin recovered in this way is about 85% or more.

また、」二記逆浸透処理器を透過した水は約0.2重量
係程度のグリセリンを含んでいるが、この水を[工程に
おいて混合槽22に導き、ここで前記C工程の限外ろ過
で得られたリパーゼの濃縮液と混合する。図中、23は
逆浸透処理器を通過した水を混合槽22へ導くパイプで
あり、24はC工程で得られたリパーゼの濃縮液を混合
槽22に導くパイプである。
In addition, the water that has passed through the reverse osmosis treatment device 2 contains about 0.2 weight percent of glycerin. Mix with the lipase concentrate obtained in . In the figure, 23 is a pipe that leads the water that has passed through the reverse osmosis treatment device to the mixing tank 22, and 24 is a pipe that leads the lipase concentrate obtained in step C to the mixing tank 22.

上記混合後の液中にはC工程にて最初に用いたリパーゼ
の約90%が含まれているため、不足する約10%のリ
パーゼを新たに補給すると共に水を新たに追加補給して
C工程で最初で用いたのと同濃度のリパーゼ水溶液とす
る。この際、水の補給は、外部供給によらないであるい
は外部供給とともにC工程(グリセリン回収工程って分
離される水をパイプ25を介して回収利用するようにし
てもよい。
Since the liquid after the above mixing contains approximately 90% of the lipase initially used in step C, the insufficient approximately 10% of lipase is newly replenished and water is newly replenished. Use a lipase aqueous solution with the same concentration as that used at the beginning of the process. At this time, the water may be supplied without being supplied externally, or in addition to the external supply, the water separated in step C (glycerin recovery step) may be collected and utilized through the pipe 25.

このようにして混合槽22で調製されたリパーゼ水溶液
は、所定のリパーゼ活性を示すとともにグリセリン含有
量が1工程のカラム2から排出された直後のものに較べ
て非常に低濃度とされたものであるため、これをパイプ
26によって再ひ1工程の加水分解反応用として循環供
給する。
The lipase aqueous solution prepared in the mixing tank 22 in this manner exhibits a predetermined lipase activity and has a glycerin content that is much lower than that immediately after being discharged from the column 2 in the first step. Therefore, this is circulated and supplied through the pipe 26 for use in the hydrolysis reaction in the reheating step.

以後、上述のa −E工程を繰り返すことにより、加水
分解反応を半連続的に行えるとともに、上記工程中に高
品質の脂肪酸を主成分とする油分およびグリセリンを回
収することができる。なお、上記繰り返しに際し、C工
程で用いる限外ろ過膜については、液中の不純物の伺着
に基づく目づまりによって透水速度が低下しているから
、ろ過膜アニオン系または非イオン系の界面活性剤など
でよく洗浄するのが望ましい。d工程での逆浸透膜につ
いては、限外ろ過工程で不純物がほとんど除去されてい
るため、上述の如き目づまりの問題は特に生じない。
Thereafter, by repeating the above steps a-E, the hydrolysis reaction can be carried out semi-continuously, and high-quality oil and glycerin mainly composed of fatty acids can be recovered during the above steps. In addition, when repeating the above, the ultrafiltration membrane used in step C has a reduced water permeation rate due to clogging caused by impurities in the liquid, so an anionic or nonionic surfactant is added to the filtration membrane. It is recommended that you wash it thoroughly. Regarding the reverse osmosis membrane in step d, since most of the impurities are removed in the ultrafiltration step, the problem of clogging as described above does not occur.

以上のように、この発明では、C工程にて所定の加水分
解反応を行わせたのちのリパーゼ水溶液からb工程ない
しC工程を経てリパーゼおよびグリセリンを回収すると
共に、r工程にて上記回収リパーゼの所定濃度の水溶液
を調製してこれをC工程での加水分解反応用として循環
供給するようにしたものであり、」二記回収リパーゼが
良好な活性を示すことおよび循環供給する水溶液中には
クリセリンが多く含まれていないことによって、C工程
での加水分解の反応速度を長期に亘って実用的な速度に
維持させることができる。また、リパーゼの回収率は約
90%であるため、リパーゼの多量使用に基つく経済的
不利を低減することができる。
As described above, in this invention, lipase and glycerin are recovered from the lipase aqueous solution through the steps b to C after performing a predetermined hydrolysis reaction in the step C, and the recovered lipase is recovered in the step r. An aqueous solution with a predetermined concentration is prepared and this is circulated and supplied for the hydrolysis reaction in step C.The recovered lipase shown in Section 2 shows good activity and the aqueous solution that is circulated contains chrycerin. By not containing a large amount of , the reaction rate of hydrolysis in Step C can be maintained at a practical rate over a long period of time. Moreover, since the recovery rate of lipase is about 90%, it is possible to reduce the economic disadvantage caused by using a large amount of lipase.

しかも、b工程によってC工程でカラム上方に浮上した
含水油層からリパーゼ、グリセリンおよび水をほとんど
含まない脂肪酸を主成分とする高品質の油分を回収する
ことかでき、さらにC工程を経たd、C工程によって油
分やたん白質などの不純物をほとんど含まない高品質の
グリセリンを回収することができる。特にC工程におい
て水の蒸発またはこれとグリセリンの蒸留だけで、つま
り従来の高温高圧法による加水分解で得られる不純物含
有量の多いグリセリン水に適用されているような特別な
精製工程を要しないで、高品質のグリセリンを得ること
ができるという利点がある1以下に、この発明の実施例
を記載してより具体的に説明する。
Moreover, in step b, it is possible to recover high-quality oil whose main components are lipase, glycerin, and fatty acids that contain almost no water from the hydrous oil layer that floated above the column in step C. Through this process, it is possible to recover high-quality glycerin that contains almost no impurities such as oil or protein. In particular, step C requires only evaporation of water or distillation of water and glycerin, which does not require a special purification process that is applied to glycerin water with a high content of impurities obtained by hydrolysis using conventional high temperature and high pressure methods. , which has the advantage of being able to obtain high-quality glycerin.Examples of the present invention will be described in more detail below.

実施例 酵素活性1,000単位/mlのキャンデイダ・ンリン
ドラセより得たリパーゼ(分子量3α000)水溶液2
.0OOy++j?を満たした高さ200 cm 、内
径3、6 crhのカラム中に、けん化価192.4’
、酸価0.2のオリーブ油2001を、上記カラム下部
に配設された孔径0.1〜0.2 wnの孔を有する酢
酸セルロース膜を介して平均粒径0.5 mmの油滴と
して導入して分散状態で浮上させ、浮上した油層はこれ
をFi上記セルロース膜を介してカラム中に導入浮上さ
せた。この導入浮上の繰り返し数を51回とすることに
より、96裂の加水分解率が得られた。
Example Aqueous solution of lipase (molecular weight 3α000) obtained from Candida lindolase with enzyme activity 1,000 units/ml 2
.. 0OOy++j? In a column with a height of 200 cm and an internal diameter of 3.6 crh, the saponification value was 192.4'.
, olive oil 2001 with an acid value of 0.2 was introduced as oil droplets with an average particle size of 0.5 mm through a cellulose acetate membrane having pores with a pore size of 0.1 to 0.2 wn arranged at the bottom of the column. The oil was floated in a dispersed state, and the floated oil layer was introduced into the column through the Fi cellulose membrane and floated there. By repeating this introduction flotation 51 times, a hydrolysis rate of 96 fissures was obtained.

このときのリパーゼ水溶液と油滴との接触時間は合計3
4分てあった。
At this time, the total contact time between the lipase aqueous solution and the oil droplets was 3
It was 4 minutes.

このような加水分解後、上方に浮上する油層には水が乳
化して存在するため、この油層を孔径5μmの細孔を有
するポリ匹フッ化エチレン製膜を有するマイクロろ過器
を通過させて脂肪酸を主成分とする油分と水層とに分離
した。これにより、高品質油分を回収するとともに、7
3m1のリノクーゼおよびグリセリンを含む水i容液を
得た。
After such hydrolysis, the oil layer that floats upward contains emulsified water, so this oil layer is passed through a microfilter made of polyethylene fluoride membrane with pores of 5 μm in diameter to remove fatty acids. It was separated into an oil layer and an aqueous layer, the main components of which are: This not only recovers high-quality oil but also
3 ml of an aqueous solution containing linocuse and glycerin was obtained.

この水溶液73m1と前記カラムより排出したリパーゼ
水溶液1,860 、nlとを混合し、混合液のリパー
ゼ活性を測定したところ、985単位/dてあった。ま
た、混合液中に含まれるリパーゼ以外の成分を測定した
ところ、グリセリン1.2重量係、たん白質(アルブミ
ンとして) 1,470 ppm、油分(n−ヘキサン
可溶分) 510 ppmであった。
When 73 ml of this aqueous solution and 1,860 ml of the lipase aqueous solution discharged from the column were mixed, the lipase activity of the mixed solution was measured and found to be 985 units/d. In addition, when components other than lipase contained in the mixed solution were measured, the weight ratio of glycerin was 1.2, protein (as albumin) was 1,470 ppm, and oil content (n-hexane soluble content) was 510 ppm.

この混合液を分画分子量50,000のポリスルホン製
の限外ろ過膜を装備した2、51容量の限外ろ過セルに
入れた。なお、上記ろ過膜の有効面積は162cJ1透
水速度は4KIiI/cnの操作圧、20°Cで148
 l/d・時間である。上記セルを20°Cに保持し、
操作圧として窒素圧で4 Kg−/ caをかけてろ過
し、リパーゼの濃縮液200m1とグリセリン水溶液L
733−とに分離した。ろ過に要した時間は7.0時間
、平均透過流束は15.3J/d・時間、濃縮比は96
7であった。
This mixed solution was placed in a 2.51 capacity ultrafiltration cell equipped with an ultrafiltration membrane made of polysulfone with a molecular weight cut off of 50,000. The effective area of the above filtration membrane is 162 cJ1, and the water permeation rate is 148 at an operating pressure of 4 KIiI/cn and 20°C.
l/d・time. The above cell was maintained at 20°C,
Filter by applying nitrogen pressure of 4 Kg/ca as operating pressure, and add 200ml of concentrated lipase solution and L of glycerin aqueous solution.
It was separated into 733-. The time required for filtration was 7.0 hours, the average permeation flux was 15.3 J/d・hour, and the concentration ratio was 96.
It was 7.

上記リパーゼの濃縮液を分析すると、リパーゼ活性9,
010単位/m!、、グリセリン1,2重量係、たん白
質11,200 PPm、油分1,000 PPmであ
った。
Analysis of the above lipase concentrate revealed that the lipase activity was 9,
010 units/m! , glycerin content was 1.2% by weight, protein content was 11,200 PPm, and oil content was 1,000 PPm.

また、グリセリン水溶液を分析すると、リパーゼ活性0
単位/rn!、グリセリン1.2重量係、たん白質50
 ppm、油分90 ppmであった。
In addition, when analyzing a glycerin aqueous solution, lipase activity was found to be 0.
Unit/rn! , Glycerin 1.2% by weight, Protein 50%
ppm, and the oil content was 90 ppm.

上記分析結果より以下のことが明らかである。The following is clear from the above analysis results.

すなわち、リパーゼのa縮液中には最初の使用量の94
.6%のリパーゼが含まれており、限外ろ過によるリパ
ーゼの漏れは全く認められず、はぼ完全に濃縮して回収
することができる。グリセリン濃度は濃縮液とグリセリ
ン水溶液とで差のないことから、限外ろ過にはグリセリ
ンは無関係である。
That is, the lipase acondensate contains 94% of the initial amount used.
.. Contains 6% lipase, no leakage of lipase is observed during ultrafiltration, and it can be completely concentrated and recovered. Since there is no difference in glycerin concentration between the concentrated solution and the glycerin aqueous solution, glycerin is irrelevant to ultrafiltration.

たん白質と油分の透過率はそれぞれ34%、 17.6
%であり、限外ろ過によってかなり濃縮分離される。濃
縮液とリパーゼ水溶液とのいずれにも含有されないたん
白質と油分とは限外ろ過膜に(71着したものと推定さ
れる。なお、上記たん白質はリパーゼの分解に基づくも
のであり、油分は加水分解工程での混入に基つくもので
ある。
The permeability of protein and oil is 34% and 17.6, respectively.
%, and is considerably concentrated and separated by ultrafiltration. Proteins and oils that are not contained in either the concentrate or the lipase aqueous solution are estimated to have arrived at the ultrafiltration membrane (71).The above proteins are derived from the decomposition of lipase, and the oils are This is due to contamination during the hydrolysis process.

つぎに、上記限外ろ過で得たクリセリン水溶液を、食塩
排除率98%、膜面積162cJの酢酸セルロース製の
逆浸透膜を装備した2、54?容量の逆浸透セルに入れ
、窒素圧40に51/dをかけてバッチ式で20°Cで
ろ過した。ろ過には9時間を要して濃縮比か128とな
るまで処理した。このときの平均透過流束は10.6J
/71?・時間であった。
Next, the chrycerin aqueous solution obtained by the above ultrafiltration was applied to a 2,54? The mixture was placed in a reverse osmosis cell with a capacity of 40 and 51/d and filtered batchwise at 20°C. Filtration took 9 hours and was continued until the concentration ratio reached 128. The average permeation flux at this time is 10.6J
/71?・It was time.

上記処理により、グリセリン濃度13,3重量係の濃縮
液135−と、グリセリンが0−18重量%含まれた水
1,550.7を得た。上記濃縮液は、引き続き水の蒸
発またはこれとグリセリンの蒸留によって高品質グリセ
リンとして回収した。グリセリン回収率は86,5%で
あった。
By the above treatment, 135-ml of concentrated liquid with a glycerin concentration of 13.3% by weight and 1,550.7% of water containing 0-18% by weight of glycerin were obtained. The concentrate was subsequently recovered as high quality glycerin by evaporation of water or distillation of it and glycerin. The glycerin recovery rate was 86.5%.

なお、上記濃縮液はグリセリン濃度が13,3重量楚で
、現在工業的に採用されている水蒸発濃縮蒸留用原料で
あるグリセリン水溶液とほぼ同濃度であるため、そのま
ま現在の既存の工程へ導入することができる。この場合
に、従来の高温高圧法による加水分解で得られるグリセ
リン水溶液に較べてはるかに不純物が微量であるため特
別な精製工程が不要であり、水の蒸発とグリセリンの蒸
留工程のみで高品質グリセリンとして製品化することが
できる。
The above concentrated solution has a glycerin concentration of 13.3% by weight, which is approximately the same concentration as the glycerin aqueous solution that is the raw material for water evaporation concentration distillation that is currently used industrially, so it can be directly introduced into the current existing process. can do. In this case, compared to the glycerin aqueous solution obtained by hydrolysis using the conventional high-temperature and high-pressure method, there is a much smaller amount of impurities, so there is no need for a special purification process, and high-quality glycerin can be produced by simply evaporating water and distilling the glycerin. It can be commercialized as a product.

一方、上記処理にて得られたグリセリン濃度が0.18
重1m1%とされた水は前記限外ろ過にて得られたリパ
ーゼ濃縮液の希釈用水としてそのまま利用した。すなわ
ち、前記リパーゼ濃縮液(リパーゼ活性9,010単位
/m!、)2oom!、の合計活性単位は1,802.
000であり、これに上記の希釈用水1,550.nl
、を加え、さらに新たな水250−を補給して2,00
0m1.とじ、この水溶液のリパーゼ活性が900単位
/mtとなることから、これにさらに20万単位のリパ
ーゼ粉末を追加補給して1.000単位/mtのリパー
ゼ水溶液2,000 ml、とじた。このリパーゼ水溶
液を前記加水分解反応の反応用として循環供給した。
On the other hand, the glycerin concentration obtained in the above treatment was 0.18
The water made up to 1 ml 1% by weight was used as it was as water for diluting the lipase concentrate obtained by the ultrafiltration. That is, the lipase concentrate (lipase activity 9,010 units/m!) is 2oom! The total activity units of , are 1,802.
000, and the above dilution water 1,550. nl
, and then replenishing 250 - of new water to make 2,000
0m1. Since the lipase activity of this aqueous solution was 900 units/mt, an additional 200,000 units of lipase powder was added to the aqueous solution, resulting in 2,000 ml of a 1,000 unit/mt lipase aqueous solution. This lipase aqueous solution was circulated and supplied for the hydrolysis reaction.

以下、上述した全工程を1サイクルとして、合計5サイ
クルまでオリーブ油の加水分解を行い、各サイクルでの
加水分解率が96%に達するまでのリパーゼ水溶液と油
滴との接触時間、限外ろ適時の透過流束、逆浸透処理時
の透過流束およびリパーゼの回収率を調べた結果は、下
記の表に示されるとおりであった。
Hereinafter, all the steps mentioned above are considered as one cycle, and olive oil is hydrolyzed for a total of 5 cycles.The contact time of the lipase aqueous solution and oil droplets until the hydrolysis rate reaches 96% in each cycle, and the ultrafiltration time are as follows. The results of examining the permeation flux, permeation flux during reverse osmosis treatment, and lipase recovery rate are as shown in the table below.

なお、限外ろ過膜については、各サイクル後に高級アル
キルサルフェート系アニオン界面活性剤で洗浄して脱イ
オン水の透水速度を向上させ、次サイクルの使用に供し
た。たとえば、前記1サイクル後の透水速度は4に9/
cdの操作圧、 20”Cで52.14’/771′・
時間まで低下したが、これを上記界面活性剤で洗浄して
117,3J/71’f・時間の透水速度に向上させて
2サイクル目の使用に供した。
The ultrafiltration membrane was washed with a higher alkyl sulfate anionic surfactant after each cycle to improve the water permeation rate of deionized water, and then used in the next cycle. For example, the water permeation rate after one cycle is 4 to 9/
CD operating pressure, 52.14'/771' at 20"C
However, this was washed with the above-mentioned surfactant to improve the water permeation rate to 117.3 J/71'f·hr, and was used for the second cycle.

上記の結果から明らかなように、各サイクル毎にリパー
ゼを高収率で回収してこれをグリセリン含量の少ないリ
パーゼ水溶液として循環再使用することにより、経時的
な加水分解の反応速度の急倣な低Fを防止できると共に
リパーゼの多量使用に基づく経済的不利を低減でき、ま
た各サイクル毎の限外ろ過および逆浸透処理をその透過
流束に変化をきたすことなく安定して実施できるもので
あることがわかる。
As is clear from the above results, by recovering lipase at a high yield in each cycle and reusing it as a lipase aqueous solution with low glycerin content, the reaction rate of hydrolysis over time can be imitated rapidly. It can prevent low F and reduce the economic disadvantage due to the use of large amounts of lipase, and it can stably perform ultrafiltration and reverse osmosis treatment in each cycle without causing any change in the permeation flux. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の油脂の加水分解システムを概略的に示
した説明図である。 1・・・リパーゼ水溶液、2・・・カラム、4・・・油
脂、7・・・含水油層、1o・・・親油性の多孔性高分
子膜を有するマイクロろ過器、15・・・限外ろ過器、
17・・・逆浸透処理器、2o・・・水の蒸発またはこ
れとグリセリンの蒸留を行うための装置、22・・・混
合槽。
The drawing is an explanatory diagram schematically showing the oil and fat hydrolysis system of the present invention. DESCRIPTION OF SYMBOLS 1...Lipase aqueous solution, 2...Column, 4...Oil, 7...Water-containing oil layer, 1o...Microfilter having a lipophilic porous polymer membrane, 15...ultra filter,
17... Reverse osmosis treatment device, 2o... Device for evaporating water or distilling it and glycerin, 22... Mixing tank.

Claims (1)

【特許請求の範囲】 (11a)油脂をリパーゼ水溶液で満たされたカラム中
に微細な油滴として導入し分散状態で浮上させながら加
水分解する工程と、 b)上記a工程後カラム上方に浮上した含水油層を親油
性の多孔性高分子膜を通過させて脂肪酸を主体とする油
分を回収するとともにリパーゼおよびグリセリンを含む
水溶液を分離する工程と、 C)上記す工程で分離した水溶液を前記λ工程後カラム
から排出されるグリセリンを含むリパーゼ水溶液と混合
したのち限外ろ過してリパーゼのσ縮液とグリセリン水
溶液とに分離する工程と、 中上記C工程で分離したグリセリン水溶液を逆浸透処理
してグリセリンの濃縮液と水とに分離する工程と、 C)上記のd工程で分離したグリセリンの濃縮液から水
の蒸発またはこれと蒸留によってグリセリンを回収する
工程と、 f)前記C工程で分離したリパーゼの濃縮液と上記d工
程で分離した水とを混合してリパーゼ水溶液となしこれ
を前記a工程に循環供給する工程 とを具備してなる油脂の加水分解システム。
[Claims] (11a) a step of introducing oil and fat as fine oil droplets into a column filled with an aqueous lipase solution and hydrolyzing them while floating in a dispersed state; b) a step of floating above the column after step a above; A step of passing the water-containing oil layer through a lipophilic porous polymer membrane to recover an oil component mainly composed of fatty acids and separating an aqueous solution containing lipase and glycerin; C) The aqueous solution separated in the above step is subjected to the λ step. A step of mixing the lipase aqueous solution containing glycerin discharged from the rear column and then ultrafiltrating it to separate it into a lipase σ-condensed liquid and a glycerin aqueous solution, and a reverse osmosis treatment of the glycerin aqueous solution separated in step C above. a step of separating the glycerin concentrate and water; C) a step of recovering glycerin from the glycerin concentrate separated in step d above by evaporation of water or distillation together with the same; f) a step of recovering glycerin separated in step C above. An oil and fat hydrolysis system comprising the step of mixing a lipase concentrate and the water separated in the above step d to form a lipase aqueous solution, which is then circulated and supplied to the above step a.
JP58084799A 1983-05-13 1983-05-13 System for glyceride hydrolysis Granted JPS59210893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084799A JPS59210893A (en) 1983-05-13 1983-05-13 System for glyceride hydrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084799A JPS59210893A (en) 1983-05-13 1983-05-13 System for glyceride hydrolysis

Publications (2)

Publication Number Publication Date
JPS59210893A true JPS59210893A (en) 1984-11-29
JPH0365946B2 JPH0365946B2 (en) 1991-10-15

Family

ID=13840749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084799A Granted JPS59210893A (en) 1983-05-13 1983-05-13 System for glyceride hydrolysis

Country Status (1)

Country Link
JP (1) JPS59210893A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583431A1 (en) * 1985-06-14 1986-12-19 Kao Corp HYDROLYSIS OF FAT OR OIL
US4939090A (en) * 1986-05-06 1990-07-03 United States Of America As Represented By The Secretary Of Agriculture Method of reacting immiscible liquids with a catalyst-impregnated membrane
JPH0436392A (en) * 1990-06-01 1992-02-06 Ngk Insulators Ltd Hydrolysis of oil or fat
JPH0439399A (en) * 1990-06-01 1992-02-10 Ngk Insulators Ltd Apparatus for hydrolysis
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
US5153126A (en) * 1987-05-29 1992-10-06 Lion Corporation Method for continuous preparation of highly pure monoglyceride
US5616215A (en) * 1991-04-19 1997-04-01 Novo Nordisk A/S Method of making paper from pulp treated with lipase and an aluminum salt
WO2012106158A2 (en) * 2011-02-01 2012-08-09 Ohana Investment Works Llc Methods and apparatus for controlling moisture in plant oils and liquid biofuels

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583431A1 (en) * 1985-06-14 1986-12-19 Kao Corp HYDROLYSIS OF FAT OR OIL
US5032515A (en) * 1985-06-14 1991-07-16 Kao Corporation Hydrolysis process of fat or oil
US4939090A (en) * 1986-05-06 1990-07-03 United States Of America As Represented By The Secretary Of Agriculture Method of reacting immiscible liquids with a catalyst-impregnated membrane
US5153126A (en) * 1987-05-29 1992-10-06 Lion Corporation Method for continuous preparation of highly pure monoglyceride
US5089403A (en) * 1989-06-05 1992-02-18 Iowa State University Research Foundation, Inc. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses
JPH0436392A (en) * 1990-06-01 1992-02-06 Ngk Insulators Ltd Hydrolysis of oil or fat
JPH0439399A (en) * 1990-06-01 1992-02-10 Ngk Insulators Ltd Apparatus for hydrolysis
US5616215A (en) * 1991-04-19 1997-04-01 Novo Nordisk A/S Method of making paper from pulp treated with lipase and an aluminum salt
WO2012106158A2 (en) * 2011-02-01 2012-08-09 Ohana Investment Works Llc Methods and apparatus for controlling moisture in plant oils and liquid biofuels
WO2012106158A3 (en) * 2011-02-01 2012-10-18 Ohana Investment Works Llc Methods and apparatus for controlling moisture in plant oils and liquid biofuels
US9028697B2 (en) 2011-02-01 2015-05-12 Masatoshi Matsumura Methods and apparatus for controlling moisture in plant oils and liquid biofuels

Also Published As

Publication number Publication date
JPH0365946B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
SU691096A3 (en) Method of refining raw phosphatide containing fatty oils
US4990695A (en) Process for purifying crude glycerol
Raman et al. Deacidification of soybean oil by membrane technology
EP0480567A1 (en) Selective aqueous extraction of organics coupled with trapping by membrane separation
GB2092170A (en) Process for the purification of crude glyceride oil compossitions
JPS59210893A (en) System for glyceride hydrolysis
US3847804A (en) Process of treating wool-scouring liquor and centrifuge effluent
EP0454430B1 (en) Method of purifying polyunsaturated aliphatic compounds and apparatus therefor
US5032515A (en) Hydrolysis process of fat or oil
US6413430B1 (en) Method and device for demulsifying an oil-containing aqueous emulsion
EP0017283B1 (en) Process and plant for breaking of water-oil emulsions
JPS62278988A (en) Process for enzymatic or microbial reaction
JPH02155989A (en) Technique for degumming of oil or fat
JPH06277403A (en) Separation of organic solvent-mixed liquid and its separation device
CN105992753B (en) For the method from aqueous mixture separation dicarboxylic acids
JPS60118190A (en) Method for enzymic reaction
JPH06192683A (en) Separation of free fatty acid
JP2017148735A (en) Solvent separation method
JPS602117B2 (en) Treatment method for oil and fat refining process wastewater
SU1106529A1 (en) Method of removing arsenic from gases
JPH11215980A (en) Treatment of liquid containing microbial cell
JPH04183795A (en) Purification of fatty oil
SU749420A1 (en) Method of regeneration of catalyst of paraffin oxidation
CZ284042B6 (en) Process of refining glycerol solutions from cleavage of triacylglycerols by making use of membrane filtration
JPH06114400A (en) Concentration of sludge