JPS59210652A - Temperature measuring process of semiconductor substrate - Google Patents

Temperature measuring process of semiconductor substrate

Info

Publication number
JPS59210652A
JPS59210652A JP8528483A JP8528483A JPS59210652A JP S59210652 A JPS59210652 A JP S59210652A JP 8528483 A JP8528483 A JP 8528483A JP 8528483 A JP8528483 A JP 8528483A JP S59210652 A JPS59210652 A JP S59210652A
Authority
JP
Japan
Prior art keywords
temperature
substrate
semiconductor substrate
thermocouple
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8528483A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Masaaki Kuzuhara
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8528483A priority Critical patent/JPS59210652A/en
Publication of JPS59210652A publication Critical patent/JPS59210652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable rapid temperature change to be measured very fast and accurately with excellent reproducibility by a method wherein, when a substrate such as Si, GaAs etc. is irradiated by infrared radiation to be heated, a thermocouple is utilized as a means for measuring the temperature through the intermediary of an Si3N4 film. CONSTITUTION:An Si substrate 4 the temperature of which is to be measured is placed on a quartz plate 3 and an infrared radiation lamp 1 the backside of which is provided with an infrared radiation reflecting mirror 2 is arranged on the substrate 4 to heat the substrate 4 up to the specified temperature. At this time, an Si3N4 film 6 around 1,000Angstrom thick is provided on a part of the surface of said substrate 4 to fix an alumel-chromel thermocouple 5 on the film 6. Through these procedures, the temperature may be measured very fast subject to no change at repeated measurement regardless of around 0.1sec temperature lag due to the existence of said Si3N4 film 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体基板の温度測定方法に関し、特に、赤
外線を照射して半導体基板を昇温する装置における半導
体基板の温度測定方法に関するものである。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention relates to a method for measuring the temperature of a semiconductor substrate, and more particularly to a method for measuring the temperature of a semiconductor substrate in an apparatus that heats up the semiconductor substrate by irradiating infrared rays. be.

〔従来技術〕[Prior art]

近年、イオン注入法を用いて半導体能動層を形成するに
際し、イオン注入後のアニールとして、従来の電気炉に
よる等温、長時間のアニールに代わって、赤外線を照射
し、急激に昇降温させて非常に短時間のアニール方法の
実用化への検討が感発に行なわれている。
In recent years, when forming a semiconductor active layer using the ion implantation method, instead of the conventional isothermal, long-term annealing in an electric furnace, the annealing after ion implantation is performed using infrared rays to rapidly raise and lower the temperature. The practical application of short-time annealing methods is now being studied.

本赤外線を用いた短時間アニール方法の利点は、非常に
アニール時間が短いために、注入された不純物がアニー
ル時に拡散しないこと、かつ、アニール時間が短いため
に、電気炉を用いたアニール法に比べてアニール温度を
より高温にすることができ、よシ高濃度キャリアの能動
層を形成できることなどであシ、従って、これらの利点
を活用することによシ、非常に浅いp蝶合、あるいはオ
ーム性電極用の浅い高濃度キャリア層の形成を実現でき
、集積回路の高速度化・高集積化を実現しうる0 第1図に曲線■で赤外線を用いた短時間アニール方法に
おける温度サイクルの一例を示す。第1図において、縦
軸は半導体基板温度を、横軸は時間を示す。そして温度
T、は予備加熱温度を、温度T2はアニール温度を示す
。この第1図に示すような温度サイクルは、半導体基板
温度を測定し、赤外線を発光する赤外線ランプ電源にフ
ィードバックし、赤外線ランプに加える電力を増減し、
赤外線ランプよシ発光される赤外線強度を制御すること
によル実現される。
The advantage of this short-time annealing method using infrared rays is that the implanted impurities do not diffuse during annealing because the annealing time is very short, and because the annealing time is short, it is better than an annealing method using an electric furnace. In comparison, the annealing temperature can be raised to a higher temperature and an active layer with a higher concentration of carriers can be formed. It is possible to form a shallow high-concentration carrier layer for ohmic electrodes, making it possible to achieve higher speed and higher integration of integrated circuits. An example is shown. In FIG. 1, the vertical axis represents the semiconductor substrate temperature, and the horizontal axis represents time. The temperature T indicates the preheating temperature, and the temperature T2 indicates the annealing temperature. The temperature cycle shown in Figure 1 measures the temperature of the semiconductor substrate, feeds it back to the infrared lamp power source that emits infrared rays, increases or decreases the power applied to the infrared lamp, and
This is achieved by controlling the intensity of the infrared light emitted by the infrared lamp.

第1図に示すような温度サイクルを実現すること、すな
わち、非常な短時間に温度を制御するためには、半導体
基板の温度を正確に、速く、再現性よく測定する必要が
ある。まず速く測定するた熱電対を用いて正確かつ良い
再現性で温度測定をするためには、まず被測定物体に十
分に接触していること、また被測定物体と熱電対が高−
温で反応しないことが必要である。
In order to realize the temperature cycle as shown in FIG. 1, that is, to control the temperature in a very short time, it is necessary to measure the temperature of the semiconductor substrate accurately, quickly, and with good reproducibility. First of all, in order to measure temperature accurately and with good reproducibility using a thermocouple that measures quickly, it is first necessary to make sufficient contact with the object to be measured, and to make sure that the object to be measured and the thermocouple are at a high temperature.
It is necessary that it does not react at high temperatures.

第2図は従来の半導体基板の温度測定方法の一例を説明
するための模式図である。
FIG. 2 is a schematic diagram for explaining an example of a conventional method for measuring the temperature of a semiconductor substrate.

被測定シリコン基板4を石英板3の上に置き、赤外線ラ
ンプ1で照射して昇温させる。2は赤外線反射鏡で、赤
外線照射の効率を高めるためのものである。シリコン基
板4の表面に熱電対5を当てて温度を測定する。熱電対
5にはクロメル−アルメル熱電対を用いる。この温度測
定法によシ、第1図に示す温度サイクルを実測すると、
始めは第1図中の曲線■に示すように正確に一1定でき
ていたものが、繰シ返し5回目の測定では曲線■に示す
ようになシ、温度T1から温度112への立上シ傾斜が
緩やかになるとともに、到達温度も可成シ(約10℃)
低くなっている。このような現象の起る原因は、高温に
おいて熱電対材料とシリコン基板との間に固相反応が進
むによシ、シリコンと熱電対材料による熱伝導率の低い
金芦蛙化物が形成されるためであると考えられる。この
ため3回程度の測定回数までは新しい熱電対と#1は同
じ温度サイクルを示すが、5回以上になるとシリコンと
熱電対とが明瞭な反応を起し始め、指示温度は実際温度
よシ低くなシ、所定のアニールを行なうことができなく
なる。
A silicon substrate 4 to be measured is placed on a quartz plate 3 and irradiated with an infrared lamp 1 to raise the temperature. 2 is an infrared reflecting mirror, which is used to increase the efficiency of infrared irradiation. A thermocouple 5 is applied to the surface of the silicon substrate 4 to measure the temperature. As the thermocouple 5, a chromel-alumel thermocouple is used. Using this temperature measurement method, we actually measure the temperature cycle shown in Figure 1.
At the beginning, the temperature remained exactly constant as shown in curve ■ in Figure 1, but after the fifth repeated measurement, the temperature rose from T1 to 112, as shown in curve ■. The slope becomes gentler and the temperature reached is also achievable (approximately 10°C).
It's getting lower. The reason for this phenomenon is that a solid-phase reaction progresses between the thermocouple material and the silicon substrate at high temperatures, resulting in the formation of a goldfish with low thermal conductivity between the silicon and the thermocouple material. This is thought to be due to the Therefore, up to about 3 measurements, the new thermocouple and #1 show the same temperature cycle, but after 5 or more measurements, the silicon and thermocouple start to react clearly, and the indicated temperature is less similar to the actual temperature. Otherwise, it becomes impossible to perform the prescribed annealing.

すなわち、従来の半導体基板の温度測定方法には、正確
に、速く、再現性良く急激な温度変化を測定することが
できないという欠点がある。
That is, the conventional method for measuring the temperature of a semiconductor substrate has the drawback that it is not possible to measure sudden temperature changes accurately, quickly, and with good reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来技術の欠点を除去すること
によシ、熱電対を用いて、正確に、速く。
The object of the present invention is to eliminate the drawbacks of such prior art techniques by using thermocouples accurately and quickly.

再現性良く急激な温度変化を測定できるところの半導体
基板の温度測定方法を提供することにある。
An object of the present invention is to provide a method for measuring the temperature of a semiconductor substrate, which can measure rapid temperature changes with good reproducibility.

〔発明の構成〕[Structure of the invention]

本発明の半導体基板の温度測定方法は、半導体基板の少
くとも一部分に絶縁膜を被着し、該絶縁膜上に熱電対を
当てることから構成される。
The method for measuring the temperature of a semiconductor substrate according to the present invention includes depositing an insulating film on at least a portion of the semiconductor substrate and applying a thermocouple onto the insulating film.

〔実施例の説明〕[Explanation of Examples]

第3図は本発明の一実施例を説明するだめの模式図であ
る。なお、図においては前述の第1図と同じものには同
一参照数字を付しである。被測定シリコン基板4上の一
部分に膜厚1000Aのシリコン窒化膜6を被着する。
FIG. 3 is a schematic diagram for explaining one embodiment of the present invention. Note that in the figures, the same parts as in FIG. 1 described above are given the same reference numerals. A silicon nitride film 6 with a thickness of 1000 Å is deposited on a portion of the silicon substrate 4 to be measured.

このシリコン基板4を石英板3の上に置き、赤外線ラン
プ1で加熱し昇温させる。シリコン基板4の温度を測定
する熱電対5はシリコン窒化膜60表面に当てる。熱電
対5としてクロメル−アルメルを用いる。
This silicon substrate 4 is placed on a quartz plate 3 and heated with an infrared lamp 1 to raise the temperature. A thermocouple 5 for measuring the temperature of the silicon substrate 4 is applied to the surface of the silicon nitride film 60. Chromel-alumel is used as the thermocouple 5.

この測定方法によシ、第1図曲線■に示す温度サイクル
を実測した結果は、同図中に点線で示した曲線■のよう
になる。温度T、から温度T2への温度の上昇時に、窒
化シリコン膜6の熱伝導による微少な温度遅れが観測さ
れるが、到達温度には変シない。この観測された温度遅
れも0.1秒程度で、温度T2への保持時間(数秒)に
対してはノ 無視できる値である。また、繰シ返へしての測定回数に
対する変化は、200回目測定においてもなんらの変化
を認めることができない。
Using this measurement method, the temperature cycle shown in curve (2) in Figure 1 was actually measured, and the results were as shown in curve (2) indicated by a dotted line in the same figure. When the temperature rises from temperature T to temperature T2, a slight temperature delay due to heat conduction in the silicon nitride film 6 is observed, but there is no change in the final temperature. This observed temperature delay is also about 0.1 seconds, which is a negligible value compared to the holding time (several seconds) to temperature T2. Further, regarding the number of repeated measurements, no change was observed even in the 200th measurement.

すなわち、本実施例によると、急減に変化する半導体基
板の温度を、正確に、速く、再現性良く測定できること
になる。従ってこれを用いて所定のアニールを行なうこ
とが可能となる。
In other words, according to this embodiment, the rapidly changing temperature of the semiconductor substrate can be measured accurately, quickly, and with good reproducibility. Therefore, it is possible to perform a predetermined annealing using this.

なお、以上の実施例においては、半導体基板と合につい
て説明したけれども、本発明は、例えば半導体基板とし
てゲルマニウム、ガリウム砒素等の半導体基板、絶縁膜
として酸化膜、ボロン窒化膜等の絶縁物、熱電対として
白金系統の熱電対を用いてもよいことは言うまでもない
Although the above embodiments have been described with reference to semiconductor substrates, the present invention is also applicable to semiconductor substrates such as germanium, gallium arsenide, etc. as semiconductor substrates, insulators such as oxide films and boron nitride films, and thermoelectric materials as insulating films. It goes without saying that a platinum-based thermocouple may be used as the pair.

さらに、使用する絶縁膜の厚さ社温度上昇時における立
上シの温度遅れから考えて、その厚さは十分に薄いこと
が必要である。しかし余シ薄いと艮 半導体基板と熱電対の固相ルを防止できなくなるので適
当な厚さとする必要がある。だソし、この立上シの温度
遅れの時間attは一定であるので、始めに温度サイク
ルのT2温度の保持時間をその分だけ補正しておくこと
によっても、所定のアニールが可能となる。
Furthermore, the thickness of the insulating film used must be sufficiently thin in consideration of the temperature delay during startup when the temperature rises. However, if it is too thin, it will not be possible to prevent the solid contact between the semiconductor substrate and the thermocouple, so it is necessary to have an appropriate thickness. However, since the temperature delay time att of this start-up is constant, predetermined annealing is also possible by first correcting the T2 temperature holding time of the temperature cycle by that amount.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したとおシ、本発明によれば、半導体
基板上に絶縁膜を介して、熱電対を当てることによ多温
度測定を行なうので、従来のように多数回繰シ返へし測
定していると測定温度の立ち上シ傾斜が緩かになシ、到
達温度も低くなると言うことが無くなシ、正確に、速く
、再現性良く急激な温度変化を測定できると言う効果が
得られる。
As described above in detail, according to the present invention, multiple temperature measurements are performed by applying thermocouples to a semiconductor substrate through an insulating film, so it is not necessary to repeat the measurement many times as in the conventional method. During measurement, the rising slope of the measured temperature is gentle, the temperature reached does not become low, and rapid temperature changes can be measured accurately, quickly, and with good reproducibility. can get.

従って本発明を赤外線アニールに用いると所定のアニー
ルを正しく行なうことが可能となシその効果は大きい。
Therefore, when the present invention is used for infrared annealing, it is possible to carry out a predetermined annealing correctly, which has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外線アニールにおける温度サイクルと従来の
方法および本発明の一実施例によるその測定結果を示す
図、第2図は従来の半導体基板の温度測定方法の一例を
説明するだめの模式図、第3図は本発明の一実施例を説
明するための模式図である。
FIG. 1 is a diagram showing a temperature cycle in infrared annealing, a conventional method, and the measurement results according to an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating an example of a conventional method for measuring the temperature of a semiconductor substrate. FIG. 3 is a schematic diagram for explaining one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の少くとも一部分に絶縁膜を被着し、
該絶縁膜上に熱電対を当てることを特徴とする半導体基
板の温度測定方法。
(1) depositing an insulating film on at least a portion of the semiconductor substrate;
A method for measuring the temperature of a semiconductor substrate, comprising applying a thermocouple to the insulating film.
(2)半導体基板がシリコン、もしくはガリウム砒素お
縁膜がシリコン窒化膜である特許請求の範囲第(1)項
記載の半導体基板の温度測定方法。
(2) The method for measuring the temperature of a semiconductor substrate according to claim (1), wherein the semiconductor substrate is silicon or the gallium arsenide edge film is a silicon nitride film.
JP8528483A 1983-05-16 1983-05-16 Temperature measuring process of semiconductor substrate Pending JPS59210652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8528483A JPS59210652A (en) 1983-05-16 1983-05-16 Temperature measuring process of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8528483A JPS59210652A (en) 1983-05-16 1983-05-16 Temperature measuring process of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS59210652A true JPS59210652A (en) 1984-11-29

Family

ID=13854268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8528483A Pending JPS59210652A (en) 1983-05-16 1983-05-16 Temperature measuring process of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS59210652A (en)

Similar Documents

Publication Publication Date Title
US20060051077A1 (en) Rapid thermal processing apparatus and method of manufacture of semiconductor device
JPH0511415B2 (en)
Fiory Recent developments in rapid thermal processing
Seidel et al. Temperature transients in heavily doped and undoped silicon using rapid thermal annealing
JP2004063863A (en) Method for manufacturing semiconductor device
JP2610853B2 (en) Semiconductor junction formation method
JPH0377657B2 (en)
JPS6072227A (en) Method of diffusing dopant into semiconductor wafer in high temperature drive-in manner
JPS59210652A (en) Temperature measuring process of semiconductor substrate
Kakoschke et al. The appearance of spatially nonuniform temperature distributions during rapid thermal processing
JPS60239400A (en) Process for annealing compound semiconductor
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH04334018A (en) Heat treatment device
Usami et al. Studies of deep-level defects in flash lamp annealing of ion-implanted silicon
JPH0210569B2 (en)
JPS62271420A (en) Treatment equipment for semiconductor substrate
JP2530157B2 (en) Selective heating method for transparent substrates
JPS60239030A (en) Annealing method of compound semiconductor
JPH04334017A (en) Heat-treatment device
JPS63265425A (en) Selective heating method of transparent substrate
US3469308A (en) Fabrication of semiconductive devices
Grob et al. Rapid thermal annealing‐induced epitaxy of ion‐implanted amorphous layers on< 100> silicon
JPH025295B2 (en)
JPS60732A (en) Annealing method
Fiory et al. Spike annealing of boron-implanted polycrystalline-silicon on thin SiO 2