JPS59208355A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59208355A
JPS59208355A JP8333883A JP8333883A JPS59208355A JP S59208355 A JPS59208355 A JP S59208355A JP 8333883 A JP8333883 A JP 8333883A JP 8333883 A JP8333883 A JP 8333883A JP S59208355 A JPS59208355 A JP S59208355A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
evaporator
liquid
expansion mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8333883A
Other languages
Japanese (ja)
Other versions
JPH0251110B2 (en
Inventor
渡辺 憲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP8333883A priority Critical patent/JPS59208355A/en
Publication of JPS59208355A publication Critical patent/JPS59208355A/en
Publication of JPH0251110B2 publication Critical patent/JPH0251110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、飽和圧力の異なる2種の非共沸冷媒を充填し
たノ冷媒方式の冷凍装置に閃するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a refrigerant type refrigeration system filled with two types of non-azeotropic refrigerants having different saturation pressures.

従来から第1図図示の如き冷媒回路を有するス冷媒方式
の冷凍装置は知られている(例えば実開昭57−/乙3
よ乙)号公報参照および社団法人日本冷凍協会発行「冷
凍」昭和3z年/7月号)。
A refrigerant type refrigeration system having a refrigerant circuit as shown in FIG.
(See the ``Refrigeration'' issue published by the Japan Refrigeration Association, July 1939 issue).

この冷凍装置は、圧縮機/と凝縮器ノおよび蒸発器3と
を備え、該凝縮器λの出口側に気液分離器ケを接続して
該気液分離器≠のガス域と液域とに、ガス管イと膨張機
榴夕をもつだ液管ワとをそれぞれ接続するとともに、前
記ガス管ざと液管りとを流れる冷媒を熱交換させる熱交
換器乙を設けて、前記液管りに接続する熱交換器乙の出
口側を前記圧縮機/の吸入側に接続し、前記ガス管ざに
接続する熱交換器乙の出口側を、膨張機構7を介して前
記蒸発器30入口側に接続して冷媒回路Aを構成し、該
冷媒回路Aに飽和圧力の異なるユ種の冷媒を充填する如
くしている。
This refrigeration system is equipped with a compressor, a condenser, and an evaporator 3, and a gas-liquid separator is connected to the outlet side of the condenser λ to separate the gas region and liquid region of the gas-liquid separator. A heat exchanger B is provided to connect the gas pipe A and the liquid pipe W having an expander spout, respectively, and to exchange heat between the refrigerant flowing through the gas pipe and the liquid pipe. The outlet side of heat exchanger B, which is connected to A refrigerant circuit A is constructed by connecting the refrigerant circuit A to the refrigerant circuit A, and the refrigerant circuit A is filled with refrigerants having different saturation pressures.

かかる構成の冷凍装置では、過負条件下での運転に問題
がある。即ち、蒸発器3では、気液分離器グで分離され
た低沸点冷媒を多く含む冷媒が蒸発するため、外気から
の吸熱量が非常に多くなシ、その結果、圧縮機/にかか
る負荷が増大し、運転不能になることがある。これを防
止するためには、圧縮機/に高価な容量制御機能を設け
て対処していた。
A refrigeration system having such a configuration has a problem in operation under overload conditions. That is, in the evaporator 3, since the refrigerant containing a large amount of low boiling point refrigerant separated by the gas-liquid separator evaporates, a very large amount of heat is absorbed from the outside air, and as a result, the load on the compressor increases. It may increase and become inoperable. In order to prevent this, the compressor has been provided with an expensive capacity control function.

本発明は、上記の点に鑑みて、冷媒回路を循環する混合
冷媒の成分比率を変化させることにより圧縮機にかかる
負荷を軽減し、以って過負荷特性の改善を図ることを目
的とするものであるCかかる目的達成のため、本発明は
上記構成の!冷媒方式の冷凍装置において、蒸発器入口
側のか張機溝の抵抗値を可変とするとともに、気液分蓬
器の液域を膨張機構を介して前記蒸発器の入口側に接続
して、過負荷時に蒸発器人口側の膨張機構の抵抗値を大
きくすることによって、気液分難器で分離した冷媒ガス
と冷媒液とを熱交換させる酪交換器内に低沸点冷媒液を
貯溜させ、以って冷媒回路を循環する混合冷媒が高沸点
冷媒を多く含むようになし得るようにすることを特徴と
している。
In view of the above points, the present invention aims to reduce the load on the compressor by changing the component ratio of the mixed refrigerant circulating in the refrigerant circuit, thereby improving overload characteristics. In order to achieve this object, the present invention has the above configuration! In a refrigerant-type refrigeration system, the resistance value of the expansion groove on the inlet side of the evaporator is made variable, and the liquid region of the gas-liquid divider is connected to the inlet side of the evaporator via an expansion mechanism. By increasing the resistance value of the expansion mechanism on the evaporator side during load, low boiling point refrigerant liquid is stored in the milk exchanger that exchanges heat between the refrigerant gas and refrigerant liquid separated by the gas-liquid separator, and the following This is characterized in that the mixed refrigerant circulating in the refrigerant circuit can contain a large amount of high boiling point refrigerant.

以下第2図を参照して本発明の実施例にかかる冷凍装置
を説明する。
A refrigeration system according to an embodiment of the present invention will be explained below with reference to FIG.

本実施例の冷凍装置における冷媒回路Aは、主要な構成
要素を第1図図示の従来例のものと同一トシているので
共通の符号を付してその詳細な説明を省略する。
The main components of the refrigerant circuit A in the refrigeration system of this embodiment are the same as those of the conventional example shown in FIG.

第2図において、符号/は圧縮機、2は凝縮器、3は蒸
発器、弘は気液分離器、j、7は膨張機構、乙は熱交換
器、gはガス管、りは液管である。
In Figure 2, the symbol / is a compressor, 2 is a condenser, 3 is an evaporator, Hiro is a gas-liquid separator, j and 7 are expansion mechanisms, O is a heat exchanger, g is a gas pipe, and ri is a liquid pipe. It is.

本実施例にンいては、本発明の特徴として、前記膨張機
構7を、直列接続した電磁開閉弁10および抵抗値の小
さいキャピラリチューブ//と、これらをバイパスする
抵抗値の大きいキャピラリチューブ/コとによって構成
し、電磁開閉弁10の開閉作動に対応して、抵抗値が可
変と々るようにされている。つ1シ、この膨張機構7は
、電磁開閉弁10を開あるいは閉作動するとき、その抵
抗値が小さくあるいは大きくなるように構成されている
のである。なお、この膨張機構7として、可変形の膨張
弁を用いてもよいことは勿論である。
In this embodiment, as a feature of the present invention, the expansion mechanism 7 is connected in series with an electromagnetic on-off valve 10 and a capillary tube with a low resistance value, and a capillary tube with a high resistance value that bypasses these. The resistance value is made variable in response to the opening/closing operation of the electromagnetic on-off valve 10. First, the expansion mechanism 7 is constructed so that its resistance value becomes small or large when the electromagnetic on-off valve 10 is opened or closed. Note that, of course, a variable-type expansion valve may be used as the expansion mechanism 7.

又、前記液管りにおいて膨張機構jの上流側には、過負
荷時に気液分離器≠の液冷媒を蒸発器30入口側に供給
するだめのバイパス回路/3が接続されている。
Further, in the liquid pipe, a bypass circuit /3 is connected to the upstream side of the expansion mechanism j for supplying liquid refrigerant from the gas-liquid separator to the inlet side of the evaporator 30 during overload.

該バイパス回路/3には、膨張機構/llと電磁開閉弁
/3とが直列に介設されている。該電磁器閉弁/夕は、
前記膨張機構7の電磁開閉弁10と逆対応して開閉作動
されるようになっている。
The bypass circuit /3 is provided with an expansion mechanism /ll and an electromagnetic on-off valve /3 in series. When the solenoid valve is closed,
It is opened and closed in reverse correspondence to the electromagnetic on-off valve 10 of the expansion mechanism 7.

この冷媒回路へには、高沸点のR/2および低沸点のn
/3B/の1種のフロン冷媒から分る非共沸混合冷媒が
充填される。
To this refrigerant circuit, a high boiling point R/2 and a low boiling point n
A non-azeotropic mixed refrigerant consisting of one type of fluorocarbon refrigerant of /3B/ is charged.

この冷凍装置は次のように作用する。This refrigeration system works as follows.

通常運転時には、電磁開閉弁10を開放して膨張機構7
の抵抗値を小とし、且つ電磁開閉弁/jを閉止する。
During normal operation, the electromagnetic on-off valve 10 is opened and the expansion mechanism 7
The resistance value of is made small, and the electromagnetic on-off valve /j is closed.

圧縮機/から吐出された混合冷媒ガス(几/2およびR
/ J’ B / )は凝縮器ノにて冷却されて几/2
の大部分が液化された後、気液分離器≠にて、R/ 3
 B /を多く含む冷媒ガスとR/2を多く含む冷媒液
どに分離される。これら冷媒ガスと冷媒液とは熱交換器
乙で互いに熱交換して、それぞれ液化およびガス化され
、一方は膨張機構7で減圧された後、蒸発器3で蒸発し
、他方は蒸発器3の出口冷媒ガスと合流して圧縮機/に
吸入される。
Mixed refrigerant gas discharged from the compressor (K/2 and R
/ J' B / ) is cooled in the condenser to 几/2
After most of the liquid is liquefied, R/3
The refrigerant gas is separated into a refrigerant gas containing a large amount of B/2 and a refrigerant liquid containing a large amount of R/2. These refrigerant gas and refrigerant liquid exchange heat with each other in the heat exchanger B and are liquefied and gasified, respectively. One is depressurized in the expansion mechanism 7 and then evaporated in the evaporator 3, and the other is evaporated in the evaporator 3. It is combined with the outlet refrigerant gas and sucked into the compressor.

この場合、蒸発器3へは気液分離器≠で分離されたB、
/3BIC低沸点冷媒)を多く含む冷媒が供給されるの
である。
In this case, B separated by the gas-liquid separator≠ is sent to the evaporator 3,
/3BIC low boiling point refrigerant) is supplied.

一方、過負荷運転時には、電磁開閉弁10を閉止して膨
張機構7の抵抗値を犬とし、且つ電磁開閉弁/jを開放
してバイパス回路/3を開通させる0 この場合には、気液分離器弘で分離した几/2(高沸点
冷媒)を多く含む冷媒液の7部が減圧されて蒸発器3の
入口側に供給され、且つ膨張機構7の抵抗値が大きくな
ったことによシ、熱交換器6内にn/3B/(低沸点冷
媒)を多く含む冷媒が液状で貯溜されることとなる。従
って、この冷媒回路Aを循環する混合冷媒は通常運転時
に比べてR/、2 (高沸点冷媒)を多く含むこととな
シ、蒸発器3での吸熱量を減少できる。即ち、実質的に
容量制御運転となるのである。
On the other hand, during overload operation, the electromagnetic on-off valve 10 is closed to set the resistance value of the expansion mechanism 7 to zero, and the electromagnetic on-off valve /j is opened to open the bypass circuit /3. 7 parts of the refrigerant liquid containing a large amount of 几/2 (high boiling point refrigerant) separated in the separator is depressurized and supplied to the inlet side of the evaporator 3, and the resistance value of the expansion mechanism 7 is increased. A refrigerant containing a large amount of n/3B/ (low boiling point refrigerant) is stored in the heat exchanger 6 in liquid form. Therefore, the mixed refrigerant circulating in the refrigerant circuit A contains more R/,2 (high boiling point refrigerant) than during normal operation, and the amount of heat absorbed by the evaporator 3 can be reduced. In other words, this is essentially a capacity control operation.

なお、本実施例におけるバイパス回路/3の起点を点線
図示の如く液管りに接続された熱交換器乙の出口側とし
てもよい。この場合、膨張機構夕と/≠とは共用される
Note that the starting point of the bypass circuit /3 in this embodiment may be the outlet side of the heat exchanger B connected to the liquid pipe as shown by the dotted line. In this case, the expansion mechanism and /≠ are shared.

第3図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

この場合、気液分離器≠の分離冷媒液を蒸発器3の入口
側に供給するために、特別外バイパス回路を設けること
なく、液管ゾに接続した熱交換器乙の出口側を蒸発器3
0入口側に接続することによって行なっている。なお、
膨張機構夕と/4Lと(媛共用されている。その他の構
成および作用は、第1図の実施例と同様なので、その説
明を省略する。
In this case, in order to supply the separated refrigerant liquid from the gas-liquid separator≠ to the inlet side of the evaporator 3, the outlet side of the heat exchanger 3
This is done by connecting to the 0 inlet side. In addition,
The expansion mechanism 1 and 4L are commonly used.The other configurations and functions are the same as those of the embodiment shown in FIG. 1, so a description thereof will be omitted.

絖いて、本発明の冷凍装置の効果を以下に列記する。In addition, the effects of the refrigeration system of the present invention are listed below.

(1)過負荷運転時に、気液分離器弘の高沸点冷媒を多
く含む分離冷媒液を蒸発器3の入口側へ減圧供給し、且
つ熱交換器6内に低沸点冷媒を貯溜するようにして、冷
媒回路人を循環する混合冷媒が、通常運転時に比べて高
沸点冷媒を多く含むようにしたので、蒸発器3での吸熱
量を抑えることができることとなシ、特別カ容量制御機
構を設けることなく、過負荷運転限界の拡大が図れる。
(1) During overload operation, the separated refrigerant liquid containing a large amount of high boiling point refrigerant from the gas-liquid separator Hiroshi is supplied under reduced pressure to the inlet side of the evaporator 3, and the low boiling point refrigerant is stored in the heat exchanger 6. Since the mixed refrigerant circulating through the refrigerant circuit contains more high-boiling point refrigerant than during normal operation, the amount of heat absorbed by the evaporator 3 can be suppressed. The overload operation limit can be expanded without providing the above.

(2)過負荷運転時における圧縮機/の負荷が軽減され
るので、圧縮機/の信頼性が著しく向上するQ !!、、  図面の簡単な説明 第1図は従来の冷凍装置の冷媒回路図、第2図および第
3図は本発明の二つの実施例の冷媒回路図である。
(2) Since the load on the compressor during overload operation is reduced, the reliability of the compressor is significantly improvedQ! ! BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant circuit diagram of a conventional refrigeration system, and FIGS. 2 and 3 are refrigerant circuit diagrams of two embodiments of the present invention.

/ ・・・・・圧縮機 ノ ・・・・・・凝縮器 3 ・・・・・蒸発器 グ  ・・・・・気液分離器 乙 ・・・・・熱交換器 7)・・・・・膨張機構 /l A ・・・・・冷媒回路 出願人  ダイキン工業株式会社/・・・・・・Compressor ノ・・・・・・Condenser 3...Evaporator G... Gas-liquid separator B...Heat exchanger 7)...Expansion mechanism /l A...Refrigerant circuit Applicant: Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] /、圧縮機(1)と、凝縮器(。2)および蒸発器(3
)とを備え、該凝縮器(2)の出口側に気液分離器(l
!−)と妖気液分離器(≠)で分離された冷媒ガスと冷
媒液とを熱交換さぜる熱交換器(乙)とを直列に接続し
て冷媒回路(A)を構成し、該冷媒回路(A)に飽和圧
力の異17+2種の冷媒を充填する如くした冷凍装置に
おいて、前記蒸発器(3)の入口側に抵抗値を可変とさ
れた膨張機構(7)を設けるとともに、前記気液分離器
(Il−)の液域を膨張機溝CI<1>を介して前記蒸
発器(3)の入口側に接続したことを特徴とする冷凍装
置。
/, compressor (1), condenser (.2) and evaporator (3)
), and a gas-liquid separator (l) on the outlet side of the condenser (2).
! -) and a heat exchanger (B) that exchanges heat between the refrigerant gas and refrigerant liquid separated by the gas-liquid separator (≠) are connected in series to form a refrigerant circuit (A), and the refrigerant In a refrigeration system in which the circuit (A) is filled with 17+2 types of refrigerants having different saturation pressures, an expansion mechanism (7) with a variable resistance value is provided on the inlet side of the evaporator (3), and the A refrigeration system characterized in that a liquid region of a liquid separator (Il-) is connected to an inlet side of the evaporator (3) via an expander groove CI<1>.
JP8333883A 1983-05-11 1983-05-11 Refrigerator Granted JPS59208355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333883A JPS59208355A (en) 1983-05-11 1983-05-11 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333883A JPS59208355A (en) 1983-05-11 1983-05-11 Refrigerator

Publications (2)

Publication Number Publication Date
JPS59208355A true JPS59208355A (en) 1984-11-26
JPH0251110B2 JPH0251110B2 (en) 1990-11-06

Family

ID=13799644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333883A Granted JPS59208355A (en) 1983-05-11 1983-05-11 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59208355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277548A (en) * 1985-09-28 1987-04-09 新明和工業株式会社 Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277548A (en) * 1985-09-28 1987-04-09 新明和工業株式会社 Refrigerator

Also Published As

Publication number Publication date
JPH0251110B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP2006505763A (en) Cooling system with bypass subcooling and component size deoptimization
US4621501A (en) Refrigeration system having auxiliary cooling for control of coolant flow
US6986264B1 (en) Economized dehumidification system
US4528823A (en) Heat pump apparatus
JPS59208355A (en) Refrigerator
JP2002243284A (en) Air conditioner
US6826918B1 (en) Refrigerant system performance enhancement by use of additional heat exchanger
JPH04313647A (en) Heat pump type air conditioner
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP2000320916A (en) Refrigerating cycle
JPH09229506A (en) Heat pump system
JP3742852B2 (en) Air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
JPH0571825A (en) Multiroom type air-conditioner
JP2005042980A (en) Heat accumulating type air conditioner
JPS5918349A (en) Heat pump system separation type air conditioner
JPS5825232Y2 (en) Heat pump air conditioner
JPS6251383B2 (en)
JPS6256418B2 (en)
JPS63306364A (en) Air-conditioning changeover type air conditioner
JPS5848823B2 (en) Heat recovery air conditioner
JPS6322463Y2 (en)
JPS62178856A (en) Multi-chamber air conditioner
JPH0618860U (en) Heat pump combined refrigeration circuit with intermediate injection circuit
JPS5915768A (en) Refrigeration cycle