JPS59207134A - Radiation tomographic apparatus - Google Patents

Radiation tomographic apparatus

Info

Publication number
JPS59207134A
JPS59207134A JP58083143A JP8314383A JPS59207134A JP S59207134 A JPS59207134 A JP S59207134A JP 58083143 A JP58083143 A JP 58083143A JP 8314383 A JP8314383 A JP 8314383A JP S59207134 A JPS59207134 A JP S59207134A
Authority
JP
Japan
Prior art keywords
radiation
detector
subject
correction
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58083143A
Other languages
Japanese (ja)
Inventor
勝俣 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58083143A priority Critical patent/JPS59207134A/en
Publication of JPS59207134A publication Critical patent/JPS59207134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、診断のための医療機器の分野に属し、さらに
詳しくは、放射線透過型である補正用検出器を有する放
射線断層撮影装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the field of medical equipment for diagnosis, and more particularly relates to a radiation tomography apparatus having a radiation-transmitting correction detector.

〔発明の技術公的背景とその問題点〕[Technical public background of the invention and its problems]

(以下余白) 第1図はCT装置の概略図である。 (Margin below) FIG. 1 is a schematic diagram of a CT apparatus.

先ずCT装置の構成および作用について第1図を参照し
て概説する。ガントリー1及びその内部に収納され/こ
回転架台2の中心部には撮影孔3が形成されており、こ
の撮影孔3内には支持台4に載r<された被検体5の撮
影部位5aが支持台4のスライドによジ挿入されるよう
になっている。回転架台2はその駆動機構6によってそ
の中心5の周囲を回転可能になっている。又、回転架台
2には、放射線源例えはX線管8と、これに対向し被検
体5を挾む位置に設けられたX線検出器9とか取付けら
れており、X線管8よりの出力X線は、撮影部位5aを
含む撮影領域7を透過してX線検出器9に入射するよう
になっている。ここで、X線管8より出力されるX18
bは図示左右方向に広がりを不する扇形状ビームとなっ
ており、これに対応してX線検出器9も、全体が弧状を
成し、前記X線ビーム8bを任意の角度毎に分割し各小
角度内のビームの強度をそれぞれ独立に測定できるよう
に、多部tに分割配置されたセルDI = Dnによっ
て構成さnている。
First, the configuration and operation of the CT apparatus will be outlined with reference to FIG. A photographing hole 3 is formed in the center of the gantry 1 and the rotating mount 2 housed therein, and within this photographing hole 3 is a photographed region 5a of a subject 5 placed on a support base 4. is adapted to be inserted into the slide of the support base 4. The rotating pedestal 2 is rotatable around its center 5 by its drive mechanism 6. Furthermore, a radiation source, for example an X-ray tube 8, and an X-ray detector 9, which is placed opposite to this and sandwiching the subject 5, are attached to the rotating mount 2. The output X-rays are configured to pass through an imaging region 7 including the imaging region 5a and enter the X-ray detector 9. Here, X18 output from the X-ray tube 8
b is a fan-shaped beam that does not spread in the horizontal direction shown in the figure, and correspondingly, the X-ray detector 9 also has an arc shape as a whole, and divides the X-ray beam 8b into arbitrary angles. It is composed of cells DI = Dn divided into multiple parts so that the intensity of the beam within each small angle can be measured independently.

ところで、nJ述のようなCT装置においては、各小角
度毎のX線ビームの強度の変化は直接画像の画質の悪化
につながり、結果として診断能の低下をもたらすことに
なる。そこで、前R2X線の強度を検出し、この検出情
報に基ついて補正を行い、画質の悪化を防止しようとす
る試みかなされている。このような補正方法としては第
2図(a)及び(b)に示すようなものが考えられてい
る。即ち、同図(a)は、X線管8の側部方向(X線ビ
ーム8bを、連断しない方向)に補正用検出器10を配
置し、X線強度をモニターする方法であり、同図(b)
は検出器9の両端のセルD1とDnに入射するX線が通
常、被検体を通過しないように配置しておき、このセル
で検出される信号を補正情報として使用する方法である
。しかしながら、第2図(a)に示す方法では実際に被
検体を透過する中央部のX線ビームを検出できないため
、補正箱度が低いという欠   点があった0又、通常
X線管8としては回転陽極型X線管が使用されておジ、
陽極が高速回転するのでvj極の振動や回転位置によっ
ては強度分布曲線が第3図に示すように11〜13の如
く変化する(製造上のバラツキに基づくものと思われる
)ことが確認されている。従って第2図(b)の如き方
法によっても被検体を透過するX線の強度を正確にネ山
正することはできな〃ムつた。
By the way, in a CT apparatus such as that described in nJ, changes in the intensity of the X-ray beam for each small angle directly lead to deterioration of image quality, resulting in a deterioration of diagnostic performance. Therefore, attempts have been made to detect the intensity of the front R2 X-rays and perform correction based on this detected information to prevent the image quality from deteriorating. As such a correction method, methods as shown in FIGS. 2(a) and 2(b) have been considered. That is, FIG. 3(a) shows a method of arranging the correction detector 10 in the side direction of the X-ray tube 8 (in a direction that does not disconnect the X-ray beam 8b) and monitoring the X-ray intensity. Figure (b)
This is a method in which the cells D1 and Dn at both ends of the detector 9 are arranged so that the X-rays incident on them do not normally pass through the subject, and the signals detected by these cells are used as correction information. However, the method shown in Fig. 2(a) has the drawback of low correction accuracy because it cannot detect the central X-ray beam that actually passes through the object. A rotating anode X-ray tube is used.
Since the anode rotates at high speed, it has been confirmed that the intensity distribution curve changes as shown in Figure 3, depending on the vibration and rotational position of the vj pole (this is thought to be due to manufacturing variations). There is. Therefore, even with the method shown in FIG. 2(b), it is not possible to accurately correct the intensity of the X-rays passing through the object.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなさ牡たものであり、X線の
強度を正確に補正できる機能をΦ1aえたCT装置を提
供することによシ画質の向上及び診断能の向上を図るこ
とを目的とするものである。
The present invention was developed in view of the above circumstances, and an object of the present invention is to improve image quality and diagnostic ability by providing a CT apparatus that has a function of Φ1a that can accurately correct the intensity of X-rays. That is.

〔発明の概秩〕[General rules of invention]

前記目的を達成するための本発明の概妥は前記放射線源
と被検体との間に前記扇形状の放射線と交差する方向に
配置されたシリコン層とその両面に蒸着形成された一対
の電極とから成る補正用検出器を具備し、被検体到達前
の放射線強度を測定して得られたデータに基づいてAi
l記透過放射線に基づくデータを補正することを特徴と
するものである。
The outline of the present invention for achieving the above object includes a silicon layer disposed between the radiation source and the subject in a direction intersecting the fan-shaped radiation, and a pair of electrodes formed by vapor deposition on both sides of the silicon layer. Based on the data obtained by measuring the radiation intensity before reaching the subject, the Ai
The present invention is characterized by correcting data based on transmitted radiation.

〔発明の実施例〕[Embodiments of the invention]

以下実施例により本発明を具体的に説明する0第4図(
at r (b)は本発明の一実施例を示す説明図であ
る。図中8は扇形状に広がるX線ビーム8bを出力する
X線管でおる。このX線ビーム8bの前方には実際にX
線検出器9のセル])1−Dnに入射するX線ビーム8
bの全域にわたり透過させる位置にX線透過型の補正用
検出器20が設けられている。したがって、X線検出器
9に入射するX線ビーム(被検体5及び寝台4を介して
入射するX線ビームも含める)は、すべて補正用検出器
20を透過したものである。
The present invention will be specifically explained with reference to examples below.
at r (b) is an explanatory diagram showing one embodiment of the present invention. In the figure, 8 is an X-ray tube that outputs an X-ray beam 8b that spreads in a fan shape. There is actually an X-ray in front of this X-ray beam 8b.
Cell of ray detector 9]) X-ray beam 8 incident on 1-Dn
An X-ray transmission type correction detector 20 is provided at a position that transmits light over the entire area b. Therefore, all of the X-ray beams that enter the X-ray detector 9 (including the X-ray beams that enter through the subject 5 and bed 4) have passed through the correction detector 20.

この補正用検出器20の構造を第5図に示す。The structure of this correction detector 20 is shown in FIG.

第5図は補正用検出器20の概略斜視断面図である。同
図に示すように補正用検出器20はシリコン(Si)層
(厚さLa=0.02a+程肛)の両面に、金蒸着層(
厚さLl=〜100X)17及びアルミ蒸着層(厚さL
2 =〜100X)19を蒸着することによシ形成され
、前記金蒸着層17とアルミ蒸着層19とを一対の電極
とすることにより、X線ビームが矢印X方向に透過する
除に生じる電位差を取り出すことができる。補正用検出
器20はこのように構造上極めて薄いためスペースを要
さず、また補正用信号として十分なXa検出が可能であ
って、X線ビーム透過の際の吸収率は極めて低い(アル
ミニウム当量にして10分の教訓+8反にすることは容
易でちる)。
FIG. 5 is a schematic perspective sectional view of the correction detector 20. As shown in the figure, the correction detector 20 has a gold vapor-deposited layer (
Thickness Ll=~100X) 17 and aluminum vapor deposition layer (thickness L
2 = ~100 can be taken out. Since the correction detector 20 is extremely thin in structure, it does not require space, and is capable of detecting sufficient Xa as a correction signal, and has an extremely low absorption rate (aluminum equivalent (It's easy to make it 10 minutes of lessons + 8 lessons).

このような補正用検出器20の電極17,19から取シ
出される電位差はA/D(アナログ・ディジタル)変換
手段14においてディジタル信号に変換され、後段に配
置された補正手段15に入力する。また同様にX線検出
器9の出力信号もψ変換手段14を介して補正十段工5
に入力する。
The potential difference taken out from the electrodes 17 and 19 of the correction detector 20 is converted into a digital signal by an A/D (analog/digital) conversion means 14, and inputted to a correction means 15 disposed at a subsequent stage. Similarly, the output signal of the X-ray detector 9 is also transmitted through the ψ conversion means 14 to the correction stage 5.
Enter.

補正手段15は前記補正用検出器20からのX線強度に
基づいてX線検出器9から出力される画像再構成用原デ
ータを補正し、補正された画像再構成川原r−夕は後段
に配置される画像再構成手段16において、画像の再構
成がなされる。
The correction means 15 corrects the original data for image reconstruction output from the X-ray detector 9 based on the X-ray intensity from the correction detector 20, and the corrected image reconstruction Kawahara r-Yu is sent to a subsequent stage. The image is reconstructed in the image reconstruction means 16 arranged therein.

このように、実際にX線検出器9に入射するX線ビーム
の全域にわたジその強度をXa透過型検出器であるシリ
コン検出器20によって直接測定し、その結果を補正情
報として使用するため補正精度が極めて向上する。
In this way, the intensity of the X-ray beam actually incident on the X-ray detector 9 is directly measured over the entire area by the silicon detector 20, which is an Xa transmission type detector, and the result is used as correction information. Correction accuracy is greatly improved.

また、前記補正用検出器として、例えばガス封入容器内
にキセノンガス、アルゴンガス、クリゾトンガス等を封
入し、更に高圧電極板に数100ボルトの高電圧を印加
し、X線ビームが透過する際の電離作用を利用して信号
電極板により透過するX線強度を検出するような従来の
透過型検出器も使用できるが、次の点でシリコン検出器
の方が優れている。すなわち、従来の透過型検出器はガ
ス封入容器及びガス自体でのX線吸収が多いがシリコン
検出器はX線吸収が極めて少ない。iた従来の検出器は
高電圧の印加が不可欠であるがシリコン検出器は不要で
ある。更に従来の検出器はその構造上検出器自体の外形
が大きくなるが、シリコン検出器は、検出器自体が極め
て薄いためスペースをとらない。
In addition, as the correction detector, for example, xenon gas, argon gas, chryzoton gas, etc. is sealed in a gas-filled container, and a high voltage of several hundred volts is applied to a high-voltage electrode plate, so that the A conventional transmission type detector that uses ionization to detect the intensity of X-rays transmitted by a signal electrode plate can also be used, but a silicon detector is superior in the following respects. That is, while conventional transmission type detectors absorb a lot of X-rays in the gas-filled container and the gas itself, silicon detectors absorb very little X-rays. Conventional detectors require the application of high voltage, but silicon detectors do not. Furthermore, while conventional detectors have a large external shape due to their structure, silicon detectors do not take up much space because they are extremely thin.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明によれは、Xa検出器及び補正用検
出器それぞれにおけるX線ビームの変動量は全く同一と
なるためX線の強度を正確に補正できる機能を備えたC
T装置を提供することができる。したがって、このCT
装置によれば再構成画像の画質の向上及び診断能の向上
を図ることができる。
According to the present invention described in detail above, since the amount of fluctuation of the X-ray beam in each of the Xa detector and the correction detector is exactly the same, the C
T device can be provided. Therefore, this CT
According to the apparatus, it is possible to improve the image quality of reconstructed images and to improve diagnostic performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCT装置の概略説明図、第2図(a) 、 (
b)は従来の強度補正態様の説明図、第3図は強度分布
曲線の変化を示す図、第4図(a) p (b)は本発
明の一実施例を説明するための概略図であって、(a)
はX線ビームのファン方向から見た図、(b)はX線ビ
ームのスライス方向から見た図、第5図は本発明に適用
される補正用検出器の構成を説明するための概略図であ
る。 4・・・寝台、5・・・被検体、8・・・Xa管、9・
・・X線検出器、14・・・A/D変換手段、15・・
・補正手段、16・・・画像再構成手段、17・・・電
極(金蒸着層)、18・・・シリコン層、19・・・電
極(アルミ蒸着)@)、20・・・補正用検出器。 第2図 e□ 第  4 図
Figure 1 is a schematic explanatory diagram of the CT apparatus, Figure 2 (a), (
b) is an explanatory diagram of the conventional intensity correction mode, FIG. 3 is a diagram showing changes in the intensity distribution curve, and FIGS. 4(a) and 4(b) are schematic diagrams for explaining one embodiment of the present invention. Yes, (a)
5 is a diagram seen from the fan direction of the X-ray beam, (b) is a diagram seen from the slice direction of the X-ray beam, and FIG. 5 is a schematic diagram for explaining the configuration of the correction detector applied to the present invention. It is. 4... Bed, 5... Subject, 8... Xa tube, 9...
...X-ray detector, 14...A/D conversion means, 15...
- Correction means, 16... Image reconstruction means, 17... Electrode (gold vapor deposited layer), 18... Silicon layer, 19... Electrode (aluminum vapor deposited) @), 20... Detection for correction vessel. Figure 2 e□ Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)放射線源から扇形状の放射線を被検体に向けて曝
射し、その際に得られる透過放射線に基づくデータをコ
ンピュータにより画像再構成処理して被検体の断層像を
得るようにした放射線断層撮影装置において、前記放射
線源と被検体との間に前記扇形状の放射線と交差する方
向に配置されたシリコン層とその両面に蒸着形成された
一対の電極上から成る補正用検出器を具備し、被検体到
達前の放射線強度を測定して得られたデータに基づいて
前記透過放射線に基づくデータを補正することを特徴と
する放射線断層撮影装置。
(1) Radiation that emits fan-shaped radiation from a radiation source toward the subject, and uses a computer to perform image reconstruction processing on data based on the transmitted radiation obtained at that time to obtain a tomographic image of the subject. The tomography apparatus includes a correction detector comprising a silicon layer disposed between the radiation source and the subject in a direction intersecting the fan-shaped radiation, and a pair of electrodes deposited on both sides of the silicon layer. A radiation tomography apparatus characterized in that data based on the transmitted radiation is corrected based on data obtained by measuring radiation intensity before reaching the subject.
(2)  前記1対の電極はそれぞれ金蒸着層とアルミ
ニウム蒸着層とから成ることを特徴とする特許請求の範
囲第1項記載の放射線断層撮影装置。
(2) The radiation tomography apparatus according to claim 1, wherein each of the pair of electrodes comprises a gold vapor-deposited layer and an aluminum vapor-deposited layer.
JP58083143A 1983-05-11 1983-05-11 Radiation tomographic apparatus Pending JPS59207134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083143A JPS59207134A (en) 1983-05-11 1983-05-11 Radiation tomographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083143A JPS59207134A (en) 1983-05-11 1983-05-11 Radiation tomographic apparatus

Publications (1)

Publication Number Publication Date
JPS59207134A true JPS59207134A (en) 1984-11-24

Family

ID=13793987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083143A Pending JPS59207134A (en) 1983-05-11 1983-05-11 Radiation tomographic apparatus

Country Status (1)

Country Link
JP (1) JPS59207134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524454A (en) * 2002-05-03 2005-08-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection equipment including dosimeter
JP2011022030A (en) * 2009-07-16 2011-02-03 Yokogawa Electric Corp Radiation inspection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142263A (en) * 1979-04-24 1980-11-06 Toshiba Corp Semiconductor radiant ray detector
JPS561144A (en) * 1979-06-15 1981-01-08 Tokyo Shibaura Electric Co Radiation tomographing device
JPS5683333A (en) * 1979-12-11 1981-07-07 Hitachi Medical Corp Ct apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142263A (en) * 1979-04-24 1980-11-06 Toshiba Corp Semiconductor radiant ray detector
JPS561144A (en) * 1979-06-15 1981-01-08 Tokyo Shibaura Electric Co Radiation tomographing device
JPS5683333A (en) * 1979-12-11 1981-07-07 Hitachi Medical Corp Ct apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524454A (en) * 2002-05-03 2005-08-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection equipment including dosimeter
JP2011022030A (en) * 2009-07-16 2011-02-03 Yokogawa Electric Corp Radiation inspection apparatus
US8447012B2 (en) 2009-07-16 2013-05-21 Yokogawa Electric Corporation Radiation inspection apparatus

Similar Documents

Publication Publication Date Title
US4686695A (en) Scanned x-ray selective imaging system
US4672649A (en) Three dimensional scanned projection radiography using high speed computed tomographic scanning system
US4472822A (en) X-Ray computed tomography using flying spot mechanical scanning mechanism
JP3128634B2 (en) Simultaneous transmission and emission focused tomography
US6694172B1 (en) Fault-tolerant detector for gamma ray imaging
US4709382A (en) Imaging with focused curved radiation detectors
JPH0725923Y2 (en) Computer tomograph
JP2002514772A (en) Multi-purpose multi-density multi-atomic number detector media
EP1397700A1 (en) Diagnostic imaging system comprising a source of penetrating radiation and also a radiopharmaceutical source injected into the subject
JP2002148340A (en) Diagnostic image forming nuclear medicine gamma ray camera and diagnostic image forming method by using it
JP5283382B2 (en) Nuclear medicine detector
US6661865B1 (en) Variable axial shielding for pet imaging
US4559639A (en) X-Ray detector with compensation for height-dependent sensitivity and method of using same
GB1602521A (en) Arrangement for producing an image of a body section using gamma or x-radiation
JPH06254082A (en) Device and method for photographing radiation stereoscopic image
US5680427A (en) Normalization of tomographic image data
US6429433B1 (en) Continuous rotation sampling scheme for transmission radiation corrected gamma cameras
JPS59207134A (en) Radiation tomographic apparatus
JP4114467B2 (en) X-ray CT system
GB2074415A (en) Computed tomography with selectable image resolution
Zoltani et al. Flash x‐ray computed tomography facility for microsecond events
JPH0620488Y2 (en) X-ray CT system
JP3763165B2 (en) SPECT absorption correction method
JP2000040478A (en) X-ray tube device
US20160245932A1 (en) Radiation detector and detection method having reduced polarization