JPS5920574A - Power recovery device - Google Patents

Power recovery device

Info

Publication number
JPS5920574A
JPS5920574A JP12916582A JP12916582A JPS5920574A JP S5920574 A JPS5920574 A JP S5920574A JP 12916582 A JP12916582 A JP 12916582A JP 12916582 A JP12916582 A JP 12916582A JP S5920574 A JPS5920574 A JP S5920574A
Authority
JP
Japan
Prior art keywords
pressure
cylinder
liquid
recovery device
power recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12916582A
Other languages
Japanese (ja)
Inventor
Shigezo Kawakami
川上 茂三
Kunihiko Tsuji
辻 邦彦
Koichi Beppu
別府 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12916582A priority Critical patent/JPS5920574A/en
Publication of JPS5920574A publication Critical patent/JPS5920574A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To prevent a pulsating current from occurring at the time when a high pressure liquid is fed and a pressure reduced liquid is discharged, by connecting a cylinder chamber of a plunger type cylinder for pressure medium use to each of medium feeding and discharging parts used for low and high pressures via plural valves. CONSTITUTION:When a supplying valve 12 is opened, then a selector valve 15 is switched to a first position at the left, the supply of a high pressure coal liquefied product solution to a cylinder 14 from a gas-liquid separation tower 5 at the high pressure side gets starting, and as a result, plungers 11a and 14a are energized to the right whereby a pressure medium is raised up in pressure and fed to a hydraulic motor 27 from the cylinder 14 via the selector valve 15 and a line 42. A combined motor and generator GM is coupled with this hydraulic motor 27 so that pressure energy is recovered as electric energy.

Description

【発明の詳細な説明】 本発明は動力回収装置、具体的には、プランジャ形シリ
ンダのシリンダ室に高圧液、特に、固形物粒子を含有す
る液体(以下、固形物粒子含有液という)を供給し、そ
の圧力エネルギをプランジャの運動エネルギに変換して
動力を回収するようにした動力回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a power recovery device, specifically, a method for supplying high-pressure liquid, particularly liquid containing solid particles (hereinafter referred to as solid particle-containing liquid), to the cylinder chamber of a plunger type cylinder. The present invention relates to a power recovery device that recovers power by converting the pressure energy into kinetic energy of a plunger.

この種の動力回収装置は、高1王液をwl、圧して輸送
する工程を含む種々の化学プラントにおいて使用しうる
が、本明細書では、動力回収装置直にとって特に問題と
なる固形物粒子含有液を扱う化学プラントのうち、近年
石油事情の悪化に伴ない再認識されてきた石炭液化プラ
ントを例とし、弁その他の接液部品にとって過酷な条件
となる灰分その他の鉱物質粒子を含む高温高圧の石炭液
化生成物溶液から動力回収する場合について説明する。
This type of power recovery device can be used in various chemical plants including processes for pressurizing and transporting high 1 royal liquid. Among chemical plants that handle liquids, we will take coal liquefaction plants, which have been rediscovered in recent years due to the deterioration of the petroleum situation, as an example.The plants handle high temperatures and high pressures that contain ash and other mineral particles, which are harsh conditions for valves and other parts in contact with liquids. A case will be described in which power is recovered from a coal liquefaction product solution.

この石炭液化プラントにおいては、通常、石炭を粉砕し
、脱水した後、溶剤を加えてスラリー化(−1これを昇
圧、予熱した後、触媒および水素添加作用により液化反
応させ、得られた高温高子の石炭液化生成物溶液を気液
分離させた後、減圧させ、それを直接若しくはさらに気
液分離した後、生成物たる重軽質油を分別蒸留する操作
が行なわれる。
In this coal liquefaction plant, coal is usually crushed and dehydrated, then a solvent is added to form a slurry (-1), which is pressurized and preheated, then subjected to a liquefaction reaction using a catalyst and hydrogenation. After gas-liquid separation of the coal liquefaction product solution, the pressure is reduced, and after directly or further gas-liquid separation, an operation is performed to fractionally distill the product, heavy and light oil.

従来、高圧液の減圧は/i!f量調節弁の絞り効果を利
用して行なわれていたが、石炭液化生成物溶液の場合、
灰分や触媒等の固形物粒子によって、弁の接液部材が著
しく摩耗し易いこと、また、減王時の液体の圧力エネル
ギが熱エネルギとして浪費されることに鑑み、固形物粒
子を含有する高llf液をシリンダ内の容積変化により
減圧すると同時に、その圧力エネルギを動力として回収
する装置が、例えは、特願昭56−108365号明細
書にて提案された。この動力回収装置は、高庄液体によ
り駆動され、流入した高圧液を減圧して排出する高圧液
減圧用シリンダと、該減圧用シリンダに連結リメ動され
、圧力妨体タンクから圧力媒体を吸入し昇圧して吐出す
る圧力媒体昇土用ンリングと、該圧力媒体用シリンダの
吐出1]から前記タンクに至る帰還流路に配設されたア
キュムレータと、該アキュムレータから排出される圧力
媒体の圧力エネルギを機械的エネルギに変換するアクチ
ュエータとからなることを特徴とするものであるが、動
力回収回路にアキュムレータを介在させているため、プ
ランジャの速度を制御する絞り弁、およびアキュムレー
タのガス圧を制御する様器等を必要とし、制御が複雑で
、減圧用シリンダに供給する高圧液おまひ減圧用シリン
ダから排出される減圧液に脈流を生じ、化学プラントの
操作に悪影響を及はすという問題があった。
Conventionally, the pressure reduction of high-pressure liquid was /i! This was done using the throttling effect of the f amount control valve, but in the case of a coal liquefaction product solution,
In view of the fact that solid particles such as ash and catalysts cause significant wear on valve parts in contact with liquid, and that the pressure energy of the liquid during king reduction is wasted as thermal energy, For example, a device was proposed in Japanese Patent Application No. 108365/1983, in which the pressure of the ILF liquid is reduced by changing the volume within the cylinder, and at the same time, the pressure energy is recovered as power. This power recovery device is driven by a high-pressure liquid and is connected to a high-pressure liquid depressurization cylinder that depressurizes and discharges the inflowing high-pressure liquid and is connected to the depressurization cylinder and sucks pressure medium from a pressure barrier tank. A pressure medium elevating ring for pressurizing and discharging a pressure medium; an accumulator disposed in a return flow path from the pressure medium cylinder discharge 1 to the tank; and a pressure medium discharged from the accumulator. It is characterized by consisting of an actuator that converts it into mechanical energy, but since an accumulator is interposed in the power recovery circuit, a throttle valve that controls the speed of the plunger and a gas pressure of the accumulator are used. The problem is that the high-pressure liquid that is supplied to the depressurizing cylinder causes pulsating flow in the depressurizing liquid that is discharged from the depressurizing cylinder, which adversely affects the operation of the chemical plant. Ta.

本発明はこのような問題に鑑みてなされたもので、高I
lf液の供給および減圧液の排出を連続的に、かつ配管
系に脈流を生じさせることなく行なうことができ、制御
が容易な動力回収装置を提供することを目的とし、その
要旨は、プランジャ形シリンダのシリンダ室に高圧液供
給弁を介して高(上液を供給し、該高圧液の圧力エネル
ギをプランジャの運動エネルギに変換して動力を回収す
るようにした動力回収装置において、前記プランジャ形
シリンダに対向して圧力謀体用プランジャ形シリンダを
配設し、該王力媒体用プランジセ形シリンダのシリンダ
室を複数の答弁を介してそれぞれ低匝および高田中圧力
媒体給排部に接続すると共に、低1王用王力媒体給排部
に接続された前記弁を介して流量制御機構付液王アクチ
ュエータに接続してなることを特徴とする動力回収装置
にある。
The present invention was made in view of such problems, and
The purpose is to provide a power recovery device that can supply lf liquid and discharge depressurized liquid continuously and without causing pulsation in the piping system, and that is easy to control. In a power recovery device that supplies high-pressure liquid to the cylinder chamber of a type cylinder through a high-pressure liquid supply valve, and recovers power by converting the pressure energy of the high-pressure liquid into kinetic energy of a plunger, the plunger A plunger-type cylinder for pressure control is disposed opposite to the cylinder, and the cylinder chambers of the plunger-type cylinder for pressure medium are connected to the low pressure medium and high pressure medium supply and discharge parts via a plurality of valves, respectively. In addition, the power recovery device is connected to a liquid king actuator with a flow rate control mechanism via the valve connected to a low king power medium supply/discharge section.

流量制御機構付液田アクチュエータとしては、例えば、
可変容例形液田モータあるいはポンプ、又は片ロンド形
またはプランジャ形シリンダと該シリンダに対向して接
続されたプランジャ形シリンダからなるポンプユニット
が使用される。
Examples of liquid field actuators with flow rate control mechanisms include:
A variable volume liquid field motor or a pump, or a pump unit consisting of a single rond type or plunger type cylinder and a plunger type cylinder connected oppositely to the cylinder is used.

9、下、添付の図面を参照して本発明を説明する。9 below, the invention will be described with reference to the accompanying drawings.

本発明の動力回収装置を石炭液化プラントの減圧工程に
適用した実施例を示す第1図において、1は石炭スラリ
タンク、2は可変容量形石炭スラリ供給ポンプ、3は予
熱器、4は石炭液化反応塔、5は高圧側気液分離塔、6
は低圧側気液分離塔、8はj…常閉となっている緊急用
温■弁で、タンク1内の石炭スラリは、供給ポンプ2に
より200〜300に9/d程度に昇王され、石炭スラ
リ供給ライン7を経て予熱器3に送給され、そこで約3
00〜400℃に加熱された後、反応塔4に供給され、
妙媒および水素添加作用により液化され、石炭液化生成
物溶液として反応塔4から高If 111.1気液分離
塔5に圧送される。この気液分離塔5て分離されたガス
は塔頂から系外に導出さね、塔底から導出される石炭液
化生成物溶液は本発明の動力回収装置により圧力エネル
ギを回収され、′fk、rlEされて低圧側気液分離塔
6へ輸送される。
In FIG. 1 showing an embodiment in which the power recovery device of the present invention is applied to the depressurization process of a coal liquefaction plant, 1 is a coal slurry tank, 2 is a variable displacement coal slurry supply pump, 3 is a preheater, and 4 is a coal liquefaction plant. Reaction tower, 5 is a high pressure side gas-liquid separation tower, 6
is a low-pressure side gas-liquid separation tower, 8 is an emergency hot valve that is normally closed, and the coal slurry in tank 1 is raised to about 9/d from 200 to 300 by supply pump 2, The coal slurry is fed through the coal slurry supply line 7 to the preheater 3 where about 3
After being heated to 00 to 400°C, it is supplied to the reaction tower 4,
It is liquefied by the action of a suitable medium and hydrogenation, and is pumped from the reaction tower 4 to the high If 111.1 gas-liquid separation tower 5 as a coal liquefaction product solution. The gas separated by this gas-liquid separation tower 5 is led out of the system from the top of the tower, and the pressure energy of the coal liquefaction product solution led out from the bottom of the tower is recovered by the power recovery device of the present invention. rlE and transported to the low pressure side gas-liquid separation column 6.

本発明に係る動力回収装置は、複数のプランジャ形シリ
ンダ11,16.21と、該各シリンダに対向して配設
された圧力媒体用プランジャ形シリンダ14.19.2
4とからなり、シリンダ11゜16.21の各プランジ
ャlla、16a、21aは圧力媒体用シリンダ14,
19.24の各プランジャ14a、19a、24aとそ
れぞれ連結され一体化されている。シリンダ11.16
.21はそねそれ給液弁12,17.22および排液弁
13,18.23を介して相互に並列接続されると共に
、ライン45および46を介して高圧側気液分離塔5お
よび低田側気液分削塔6に接続されている。圧力媒体用
シリンダ14,19.24はそれぞれ切換弁15,20
.25を介して圧力媒体給排ライン41および動力回収
ライン42に接続される一方、切換弁36.37.38
を介して高田比力媒体供給ライン43に接続されている
The power recovery device according to the present invention includes a plurality of plunger type cylinders 11, 16.21, and a pressure medium plunger type cylinder 14.19.2 arranged opposite to each cylinder.
4, and each plunger lla, 16a, 21a of the cylinder 11° 16.21 is connected to the pressure medium cylinder 14,
The plungers 19 and 24 are connected and integrated with each of the plungers 14a, 19a, and 24a, respectively. cylinder 11.16
.. 21 are connected in parallel to each other via liquid supply valves 12, 17.22 and drain valves 13, 18.23, and are connected to the high pressure side gas-liquid separation tower 5 and Takada via lines 45 and 46. It is connected to the side gas-liquid cutting tower 6. The pressure medium cylinders 14, 19, 24 have switching valves 15, 20, respectively.
.. 25 to the pressure medium supply and discharge line 41 and the power recovery line 42, while the switching valve 36.37.38
It is connected to the Takada specific force medium supply line 43 via.

−ライン41には低Eの圧力媒体を供給するポンプ29
が逆止#−31を介して接続されてい□ると共に、リリ
ーフ弁30が接続さ1t1 ライン42には流量制御機
構刊液圧アクチュエータとしての可変容量形液圧モータ
27が接続されている。また、ライン43には逆止弁3
9を介して高圧の圧力媒体を供給するポンプ28が接続
されている。26は圧力媒体タンク、32は冷却器、4
0はIJ IJ−フ弁、44は圧力媒体排出ライン、M
はモータ、GMはモータ兼発電機である。
- pump 29 supplying pressure medium with low E in line 41;
is connected via check #31, and the relief valve 30 is connected to the 1t1 line 42. A variable displacement hydraulic motor 27 as a hydraulic actuator of the flow rate control mechanism is connected to the line 42. Also, a check valve 3 is connected to the line 43.
A pump 28 is connected via 9 for supplying high-pressure pressure medium. 26 is a pressure medium tank, 32 is a cooler, 4
0 is the IJ IJ-F valve, 44 is the pressure medium discharge line, M
is a motor, and GM is a motor/generator.

前記構成の動力回収装置は、第2図に示すように、固形
物粒子含有液としての石炭液化生成物溶液について、該
溶液をシリンダ11.16.21に供給する給液行W 
(A−+B )、シリンダ内の溶液を所定圧力まで減圧
する減圧行程(、B−+C)、減圧された溶液をシリン
ダから排出する排液行程(C→D)、シリンダ内に残留
する溶液を所定圧力まで昇干させる昇圧行程(D、A 
)の四行程からなる動作サイクルを有し、その動作は次
のようにして行なわれる。なお、シリンダ11.16゜
2】の各系統は位相が異なるのみで全く同じであるので
、シリンダ11の系統について説明する。
As shown in FIG. 2, the power recovery device having the above configuration includes a liquid supply line W that supplies the solution to the cylinders 11, 16, and 21 for a coal liquefaction product solution as a solid particle-containing liquid.
(A-+B), pressure reduction stroke to reduce the pressure of the solution in the cylinder to a predetermined pressure (,B-+C), draining stroke to discharge the reduced pressure solution from the cylinder (C→D), drain the solution remaining in the cylinder Pressure raising process (D, A
), and its operation is performed as follows. The systems of the cylinders 11, 16[deg.]2] are completely the same except for the phase difference, so the system of the cylinder 11 will be explained.

図示の状態は昇圧行程終了直後の状態を示し、給液弁1
2、排液弁13は閉、切換弁15は中立位置、切換弁3
6は第2位置(図の右方)にある。
The illustrated state shows the state immediately after the end of the boost stroke, and the fluid supply valve 1
2. Drain valve 13 is closed, switching valve 15 is in neutral position, switching valve 3
6 is in the second position (to the right of the figure).

この状態で、まず給液弁12が開かれ、次いで、切換弁
15が図の左方の第1位面に切換えられると、高圧側気
液分離塔5からシリンダ11への高圧の石炭液化生成物
溶液の供給が開始され、その結果、プランジャlla、
14a、が右方へ推進され、圧力媒体が昇圧されてシリ
ンダ14から切換弁15、ライン42を介して液圧モー
タ27へjjj:、恰される。この液圧モータ27の回
転数は、例えは、高11E fll11気液分離塔5の
液面レベルを検出するセンサ35からの出力信号により
制?Im+されるため、気液分離塔5からシリンダ11
.16.21に供給される石炭液化生成物溶液の15!
f量は、液圧モータ27の回転数によって決まり、従っ
て、二以上のシリンダ11,16.21がラップ動作す
る場合でも、ライン45を流ねる石炭液化生成物溶液に
脈流を生じさせることがない。液朋モータ27にはモー
タ兼発電機GMが連結されており、圧力媒体のU−カエ
ネルキに変換された石炭液化生成物溶液の■カエネルギ
が電気エネルギとして回収される。シリンダ11に所定
量の石炭液化生成物溶液が供給されると、切換弁15が
中立位置に切換えられて液流が停止し、次いで給液弁1
2が閉じられる。次に、切換弁15が図の右方の第2位
(イ)゛に切換えられ、圧力媒体用シリンダ14内の圧
力媒体がライン41、IJ IJ−フ弁301冷却器3
2を経てタンク26に排出されて、シリンダ11内の石
炭液化生成物溶液が減圧される。所定圧力までlr+王
されると、切換弁15が中立位置に戻されて7ftl庄
行程を終り、その後、排液弁13が開かれ、次いで切換
弁15が第2位置に切換えられ、排液行程が開始される
。この排雇行程では、前記センサ35からの信号により
ライン41内の圧力が一定になるように吐出量を制御さ
れる=T変8憐ブbポンプ29からシリンダ14に供給
さ11る所定圧の圧力媒体の作用により、プランジャ1
4a。
In this state, first the liquid supply valve 12 is opened, and then the switching valve 15 is switched to the first position on the left side of the figure, and high pressure coal liquefaction generation is carried out from the high pressure side gas-liquid separation tower 5 to the cylinder 11. The supply of the substance solution is started, and as a result, the plunger lla,
14a is propelled to the right, the pressure medium is increased in pressure, and is transferred from the cylinder 14 to the hydraulic motor 27 via the switching valve 15 and line 42. Is the rotation speed of this hydraulic motor 27 controlled by, for example, an output signal from a sensor 35 that detects the liquid level of the high 11E fl11 gas-liquid separation tower 5? Im+, the cylinder 11 is removed from the gas-liquid separation tower 5.
.. 15 of the coal liquefaction product solution supplied to 16.21!
The amount f is determined by the rotation speed of the hydraulic motor 27, and therefore, even when two or more cylinders 11, 16, 21 perform lap operations, it is possible to prevent pulsating flow from occurring in the coal liquefaction product solution flowing through the line 45. do not have. A motor/generator GM is connected to the liquid motor 27, and the energy of the coal liquefaction product solution converted into the pressure medium U-energy is recovered as electrical energy. When a predetermined amount of coal liquefaction product solution is supplied to the cylinder 11, the switching valve 15 is switched to the neutral position to stop the liquid flow, and then the liquid supply valve 1
2 is closed. Next, the switching valve 15 is switched to the second position (A) on the right side of the figure, and the pressure medium in the pressure medium cylinder 14 is transferred to the line 41, IJ-F valve 301, cooler 3.
2 to the tank 26, and the coal liquefaction product solution in the cylinder 11 is depressurized. When the pressure is increased to the predetermined pressure, the switching valve 15 is returned to the neutral position to complete the 7 ftl pressure stroke, after which the drain valve 13 is opened, and then the switching valve 15 is switched to the second position to complete the drain stroke. is started. In this discharge stroke, the discharge amount is controlled by the signal from the sensor 35 so that the pressure in the line 41 is constant. Due to the action of the pressure medium, plunger 1
4a.

11aが左方へ推進され、その結果、シリンダ11内の
減圧された石炭液化生成物溶液がライン46を介して所
定の圧力、流量で低圧側気液分肺塔6に輸送される。こ
の時、減圧行程にある他のシリンダ系、例えば、シリン
ダ19からライン41に高圧の圧力媒体が排出されても
、ポンプ29の吐出量゛がそれに応じて制御されるため
、ライン41従って、ライン46の液流に脈動を生しさ
せることはない。このようにしてシリンダ11から所定
量の石炭液化生成物が排出されると、まず、切換弁15
が中立位置に戻され、次いで排液弁13が閉じられて排
液行程を終る。なお、減1モ行程完了後、切換弁15を
中立位置に戻さす右方の第2位置に維持したまま、城、
田が終り次第、排液弁13を開き排液行程に入るように
して弁操作を単純化してもよい。排液行程が終った状態
では、シリン、 ダニ1内の残留液の圧力はライン46
内の仕方と開田であるため、このまま給液弁12から高
圧の石炭液化生成物溶液を供給すると、急激に溶液がシ
リンダ11に$Jt込み、配管系に衝撃を与えるため、
竹田行程が行なわれるが、これは、切換弁36を左方の
第2位置に切換え、高圧液供給ポンプ28から高圧の子
方媒体をシリンダ14に供給し、シリンダ11内の残留
液を高圧側気液分離塔5内の圧力と同圧まで昇圧させる
ことにより行なう。所定圧になると切換弁36は再び右
方の第1位置に切換えらねて、昇圧行程を終り、次のサ
イクルの給液行程に移るという動作を繰り返す。
11a is propelled to the left, and as a result, the reduced pressure coal liquefaction product solution in the cylinder 11 is transported to the low pressure side gas-liquid separating tower 6 via the line 46 at a predetermined pressure and flow rate. At this time, even if high-pressure pressure medium is discharged from other cylinder systems in the decompression stroke, for example, cylinder 19, to line 41, the discharge amount of pump 29 is controlled accordingly. No pulsation occurs in the liquid flow of 46. When a predetermined amount of coal liquefaction product is discharged from the cylinder 11 in this way, first, the switching valve 15
is returned to the neutral position, and then the drain valve 13 is closed to complete the drain stroke. After the completion of the decrement stroke, the castle,
The valve operation may be simplified by opening the drain valve 13 and entering the drain process as soon as the draining is finished. When the draining process is completed, the pressure of the residual liquid in the cylinder and tick 1 is at line 46.
Because of this, if the high-pressure coal liquefaction product solution is supplied from the liquid supply valve 12 as it is, the solution will suddenly enter the cylinder 11 and give a shock to the piping system.
The Takeda stroke is carried out by switching the switching valve 36 to the second position on the left, supplying high-pressure child medium from the high-pressure liquid supply pump 28 to the cylinder 14, and diverting the remaining liquid in the cylinder 11 to the high-pressure side. This is carried out by increasing the pressure to the same pressure as the pressure inside the gas-liquid separation column 5. When the predetermined pressure is reached, the switching valve 36 again switches to the first position on the right, ends the pressure increase stroke, and repeats the operation of moving to the liquid supply stroke of the next cycle.

このように、前記実施例によれば、可変容量形液王モー
タの回転数で固形物粒子含有液の流量が決まるため、多
連のプランジャをラップ作動させてサイクルを継ぐ場合
でも脈流を生じることかなく、また、固形物粒子含有液
側および1王力媒体側の弁がそれぞれ装置の片側に並ぶ
ので酊1管を短かくできるとい・・う効果が得られる。
In this way, according to the embodiment, the flow rate of the solid particle-containing liquid is determined by the rotational speed of the variable displacement liquid king motor, so even when multiple plungers are lap-operated to continue the cycle, a pulsating flow occurs. In addition, since the valves on the solid particle-containing liquid side and the liquid medium side are arranged on one side of the device, it is possible to shorten the length of one tube.

第3図は本発明の他の実施例を示し、石炭液化生成物溶
液の圧力エネルギを、石炭スラリ昇圧輸送用動力として
回収するようにしたものである。
FIG. 3 shows another embodiment of the present invention, in which the pressure energy of the coal liquefaction product solution is recovered as power for pressurizing and transporting coal slurry.

すなわち、この実施例においては、流量制御機構付U圧
アクチュエータとして、プランジャ形シリンダ47.4
8.49と、各シリンダに対向して配設されたプランジ
ャ形シリンダ54,55゜56からなるポンプユニット
を用い、各シリンダ11.16.21の給液行程時、例
えば、シリンダ11の給液行程時、ライーン42に排出
される高圧の田力媒体を切換弁50を介してシリンダ4
7に供給し、シリンダ54内の石炭スラリを昇圧して石
炭スラリ供給ライン7へ供給する動力として回収するよ
うにし石炭スラリ昇圧ポンプ2を小吉―あるいは不用と
するようにしたもので、石炭液化プラントにおける減圧
部が、回収した動力をブラントの昇圧部での石炭スラリ
の昇圧に使用する場合、たとえ遠く離れていても、クリ
ーンな圧力媒体液、例えは、石炭スラリ製造用溶剤、作
動液による圧力伝送手段により高圧液の圧力エネルギを
効率よく直接帰還させるようにした点が異なるのみで、
他は第1図のものと同じである。この実施例においても
、前記の場合と同様な効果が得られる。
That is, in this embodiment, the plunger type cylinder 47.4 is used as a U-pressure actuator with a flow rate control mechanism.
8.49 and plunger-type cylinders 54, 55, and 56 disposed opposite to each cylinder, during the liquid supply stroke of each cylinder 11, 16, and 21, for example, during the liquid supply stroke of cylinder 11. During the stroke, the high-pressure power medium discharged into the line 42 is transferred to the cylinder 4 via the switching valve 50.
7, the pressure of the coal slurry in the cylinder 54 is increased, and the coal slurry is recovered as power to be supplied to the coal slurry supply line 7, so that the coal slurry boost pump 2 can be used for a short time or is not needed. When the pressure reduction section in the blunt uses the recovered power to boost the pressure of the coal slurry in the pressure increase section of the blunt, even if it is far away, the pressure caused by the clean pressure medium fluid, e.g. the solvent for producing the coal slurry, the working fluid The only difference is that the pressure energy of the high-pressure liquid is efficiently returned directly using the transmission means.
The other parts are the same as those in FIG. In this embodiment as well, the same effects as in the above case can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動力回収装置を適用した石炭液化プラ
ントの系統図、第2図はその動力回収装置の動作サイク
ルを示す指圧、陣図、第3図は本発明の他の実施例を示
す石炭液化プラントの系統図1である。 11.16.21・・・プランジャ形シリンダ、14.
19.24・・・子方媒体用プランジャ形シリンダ、1
2.17.22・・・給液弁、13,18゜23・・・
排液弁、15.20.25.36,37゜38.50,
51.52・・・切換弁、28.29・・・可変容量形
液圧ポンプ、2,63・・・可変吐出形スラリーポンプ
、27.53・・・可変容瞬形液王モータ、47.48
,49,54,55.56・・・プランジャ形シリンダ
FIG. 1 is a system diagram of a coal liquefaction plant to which the power recovery device of the present invention is applied, FIG. FIG. 1 is a system diagram of a coal liquefaction plant shown in FIG. 11.16.21... Plunger type cylinder, 14.
19.24... Plunger type cylinder for child medium, 1
2.17.22...Liquid supply valve, 13,18°23...
Drain valve, 15.20.25.36, 37°38.50,
51.52...Switching valve, 28.29...Variable displacement hydraulic pump, 2,63...Variable discharge slurry pump, 27.53...Variable displacement liquid king motor, 47. 48
, 49, 54, 55. 56...Plunger type cylinder.

Claims (3)

【特許請求の範囲】[Claims] (1)プランジャ形シリンダのシリンダ室に高圧液供給
弁を介して高圧液を供給し、該高圧液の圧力エネルギを
プランジャの運動エネルギに変換して動力を回収するよ
うにした動力回収装置において、前記プランジャ形シリ
ンダに対向して王力媒体用プランジャ形シリンダを配設
し、該圧力媒体用プランジャ形シリンダのシリンダ室を
複数の答弁を介してそれぞれ低田および高圧用王力媒体
給排部に接続すると共に、低土用圧力媒体給排部に接続
された前記弁を介して流量制御機構付液圧アクチュエー
タに接続してなることを特徴とする動力回収装置。
(1) In a power recovery device that supplies high-pressure liquid to the cylinder chamber of a plunger-type cylinder via a high-pressure liquid supply valve and recovers power by converting the pressure energy of the high-pressure liquid into kinetic energy of the plunger, A plunger type cylinder for pressure medium is disposed opposite to the plunger type cylinder, and the cylinder chamber of the plunger type cylinder for pressure medium is connected to a low pressure medium and a high pressure medium supply/discharge part, respectively, through a plurality of valves. A power recovery device characterized in that the power recovery device is connected to a hydraulic actuator with a flow rate control mechanism via the valve connected to the low-earth pressure medium supply and discharge section.
(2)前記流量制御機隼付液圧アクチュエータが可変容
量形モータ又はポンプである特許請求の範囲第1項記載
の動力回収装置。
(2) The power recovery device according to claim 1, wherein the hydraulic actuator with a flow rate controller is a variable displacement motor or a pump.
(3)前記流憚制御機構付液圧アクチュエータが、片ロ
ツド形またはプランジャ形シリンダと、該シリンダに対
向して配設されたプランジャ形シリンダからなるポンプ
ユニットである特許請求の範囲第1項記載の動力回収装
置。
(3) The hydraulic actuator with a flow control mechanism is a pump unit comprising a single rod type or plunger type cylinder and a plunger type cylinder arranged opposite to the cylinder. power recovery device.
JP12916582A 1982-07-24 1982-07-24 Power recovery device Pending JPS5920574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916582A JPS5920574A (en) 1982-07-24 1982-07-24 Power recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916582A JPS5920574A (en) 1982-07-24 1982-07-24 Power recovery device

Publications (1)

Publication Number Publication Date
JPS5920574A true JPS5920574A (en) 1984-02-02

Family

ID=15002744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916582A Pending JPS5920574A (en) 1982-07-24 1982-07-24 Power recovery device

Country Status (1)

Country Link
JP (1) JPS5920574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349641A (en) * 1986-08-19 1988-03-02 Sekisui Chem Co Ltd Hot water supply system
JP2009299675A (en) * 2008-06-11 2009-12-24 Korea Mach Res Inst Self-reciprocating energy recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349641A (en) * 1986-08-19 1988-03-02 Sekisui Chem Co Ltd Hot water supply system
JP2009299675A (en) * 2008-06-11 2009-12-24 Korea Mach Res Inst Self-reciprocating energy recovery device

Similar Documents

Publication Publication Date Title
JP5058426B2 (en) Control device for hydraulic press and operation method of hydraulic press
US8770950B2 (en) Pump device for the hydraulic actuation of a valve
JPH0627521B2 (en) Control device for double-acting hydraulic cylinder unit
CN102933839B (en) Allow the relatively flat hydraulic transmission equipment geostationary coupled
JP2003504189A (en) Water desalination method and apparatus
CN105508319B (en) A kind of low pressure servo source control ultrahigh-pressure hydraulic pressure charging system
JPS5920574A (en) Power recovery device
KR100377693B1 (en) Systems for fluid feed and fluid production and methods for performing batch processing
US3183840A (en) Pump
US4354421A (en) Energy recovery reciprocating engine
CN109626509A (en) Membrane seawater desalination energy recycle device and the pump integrated system of energy lift
CN111167312B (en) Concentrated water replacement system of raw water in DT membrane
US1909145A (en) Recovery of energy transmitted to liquids
CN107605852A (en) Fluid pressure pick-up device and equipment
JPS5929778A (en) Power recovery device
US4288406A (en) Process energy recovery
CN113915177A (en) Electro-hydraulic servo driving device and chromatography equipment
CN102562723B (en) Automatic differential pressure pump
CN107850093A (en) Hydraulic pressure unit and the method for operating the hydraulic pressure unit
JPS611900A (en) Turbid liquid transferring apparatus
JPS5912180A (en) Power retrieving device
US3407044A (en) Apparatus for conserving energy in high pressure chemical reactors
JPS5912181A (en) Power retrieving device
JPS58220979A (en) Collective device of power
JPS58222986A (en) Power recovery device