JPS59203808A - Rotor for ceramic radial turbine - Google Patents

Rotor for ceramic radial turbine

Info

Publication number
JPS59203808A
JPS59203808A JP58078908A JP7890883A JPS59203808A JP S59203808 A JPS59203808 A JP S59203808A JP 58078908 A JP58078908 A JP 58078908A JP 7890883 A JP7890883 A JP 7890883A JP S59203808 A JPS59203808 A JP S59203808A
Authority
JP
Japan
Prior art keywords
rotor
blade
tip
moving vane
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58078908A
Other languages
Japanese (ja)
Other versions
JPS6360201B2 (en
Inventor
Naoto Sasaki
直人 佐々木
Yoshinori Hattori
服部 善憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
Nissan Motor Co Ltd
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical Nissan Motor Co Ltd
Priority to JP58078908A priority Critical patent/JPS59203808A/en
Publication of JPS59203808A publication Critical patent/JPS59203808A/en
Publication of JPS6360201B2 publication Critical patent/JPS6360201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent the damage of the nose of a moving vane due to the collisions of particulates by forming the sectional shape of the nose section in a gas inlet section for the moving vane made of ceramics by a smooth curve continuing extending over the positive pressure surface side from the negative pressure surface side. CONSTITUTION:The sectional shape of a nose section in a gas inlet section for a moving vane 4 made of ceramics is formed by smooth curves 4F, 4E continuing extending over the positive pressure surface side from the negative pressure surface 4G side. Particulates flying in the C2 direction from an upstream have relative velocity in the C02 direction to the moving vane 4, but the collision resistance of smooth curves 4F, 4E sections can be increased because the sectional shape of the moving vane 4 is formed by the curves 4F, 4E. Accordingly, the damage of the nose of the moving vane due to particulates can be prevented.

Description

【発明の詳細な説明】 特にガスタービンエンジンやターボチャージャに用いら
れるセラミック製のラジアルタービンロータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a ceramic radial turbine rotor used in gas turbine engines and turbochargers.

近年は、ガスタービンやターボチャージャなどの高温部
品に、耐熱材料として優れた特性を有し。
In recent years, it has excellent properties as a heat-resistant material for high-temperature parts such as gas turbines and turbochargers.

その他の機械的特性においても金属材料に比し劣らぬ適
性のあるセラミックスの適用が研究されてきており、な
かでもそのラジアル型のタービンロータには窒化硅素や
炭化硅素などのセラミック製品の実用化が進められてい
る。
Research has been conducted into the application of ceramics, which have other mechanical properties comparable to those of metal materials, and in particular, ceramic products such as silicon nitride and silicon carbide are being put to practical use in radial turbine rotors. It is progressing.

第1図は従来のこのようなセラミックタービンロータの
一例を示し、ここで、ロータトは軸コと共にセラミック
スで一体に形成されており、そのロータディスク部3の
外周部には複数枚からなる動翼ダが軸対称に配置されて
いる。その詳細は省略スるが、ガスはロータ/の周りに
構成されているハウジングSのガス流路6から動翼亭の
入口部翼端4tAに導かれ、ここから動翼qに沿ってタ
ービン出ロア側へ流出するまでの間にタービンロータl
を回転させる仕事を−する。
FIG. 1 shows an example of such a conventional ceramic turbine rotor, in which the rotor and the shaft are integrally formed of ceramics, and the outer periphery of the rotor disk portion 3 is equipped with a plurality of rotor blades. The das are arranged axially symmetrically. Although the details are omitted, the gas is guided from the gas flow path 6 of the housing S constructed around the rotor to the blade tip 4tA of the inlet part of the rotor blade bower, and from there along the rotor blade q to the turbine output. Before it flows out to the lower side, the turbine rotor l
The job is to rotate the -.

しかしながら、このような従来のセラミックタービンロ
ータ/にあっては、動翼ダの入口部翼端llAにおける
先端形状が、断面でみると第2図に示すように鋭い角型
に形成されていた。そこで。
However, in such a conventional ceramic turbine rotor, the tip of the rotor blade at the inlet tip 11A is formed into a sharp square shape when viewed in cross section as shown in FIG. Therefore.

通例の場合II00 m/s以上の流速を有する高速の
ガスが入口部翼端4tAからロータ/の翼間に流入する
際に、ガスタービンの場合であれば内張用の断熱材の微
細な破片や、その燃焼器においてときに生成されるカー
ボン粒子、更にまたターボチャージャの場合であれば排
出ガス中の微粒子がガス中に混入しているので、これら
の微粒子が入口部翼端グAに衝突して、欠損させるとい
う問題点があった。
In the case of a gas turbine, when high-speed gas with a flow velocity of II00 m/s or more flows between the blades of the rotor from the inlet blade tip 4tA, fine fragments of the lining insulation material , carbon particles that are sometimes generated in the combustor, and in the case of a turbocharger, fine particles in the exhaust gas are mixed into the gas, so these particles collide with the inlet blade tip A. There was a problem that it would be lost.

すなわち、セラミックスは硬質ではあるが、比較的に靭
性がなく脆い材料であるので、極めて軽量ではあっても
高速のために運動量を有するガス中の微粒子によって翼
端lIへの特に角部4(Bに欠損が生じやすく、このた
めに空気力学的に見ても損失が大きい。また、ときには
動翼ダ全体の破損事故を発生させる虞があった。
That is, although ceramics are hard, they are brittle materials with relatively low toughness, so even though they are extremely lightweight, due to their high speed, fine particles in the gas, which have momentum, can cause damage to the blade tip II, especially at the corner 4 (B). The rotor blades are easily damaged, which causes a large loss from an aerodynamic point of view.In addition, there is a risk that the entire rotor blade may be damaged.

本発明の目的は、このような問題点に着目し、提供する
ことにある。
An object of the present invention is to address such problems and provide solutions.

かかる目的を達成するために、Rのガス入口部の先端の
断面形状を連続した滑らかな曲線形状に形成する。
In order to achieve this purpose, the cross-sectional shape of the tip of the gas inlet portion of R is formed into a continuous and smooth curved shape.

以下に1図面に基づいて本発明の詳細な説明する。The present invention will be explained in detail below based on one drawing.

第3図および第4図は本発明のそれぞれ一実施例を示す
もので、これらの図においては動翼グの入口部翼端lI
Aにおけるその先端断面形状のみを示し、その他の構成
は省略するが、その構成については第1図に示したと同
様とする。
FIGS. 3 and 4 each show an embodiment of the present invention, and in these figures, the inlet tip lI of the moving blade
Only the cross-sectional shape of the tip in A is shown and the other configurations are omitted, but the configuration is the same as that shown in FIG. 1.

第3図はその先端の断面形状を円弧9Cとしたもの、第
4図は長軸な半径方向としただ円曲線4’Dを用いて形
成したものである。なお、このような断面形状の形成は
これらに限るものではなく。
In FIG. 3, the cross-sectional shape of the tip is a circular arc 9C, and in FIG. 4, it is formed using an elliptical curve 4'D with the long axis in the radial direction. Note that the formation of such cross-sectional shapes is not limited to these.

だ円や放物線等の二次曲線および三次曲線等の一部を適
宜に用いることもでき、広ぐこのような曲線と翼yの両
面の線とが滑らかに連続して形成されるようにしたもの
であればよい。
Parts of quadratic curves and cubic curves such as ellipses and parabolas can be used as appropriate, so that such curves and the lines on both sides of the wing y are formed smoothly and continuously. It is fine as long as it is something.

第3A図および第5B図は本発明の更に他の実施例を示
す。本例においてもまた。翼端fAにおける断面形状の
みを示すが、ここで動翼弘は反時計回りの方向に回転す
るものとする。
Figures 3A and 5B show yet another embodiment of the invention. Also in this example. Although only the cross-sectional shape at the blade tip fA is shown, it is assumed here that the rotor blade rotates in a counterclockwise direction.

本例は翼先端の断面形状を曲率半径の小さい曲線lIg
で、更にまた翼先端に続(翼負圧面側の翼端形状を曲率
半径の大きい曲線47Fで形成するようにして、翼グの
両面の線とこれらの曲線+gおよびfFとを何れも滑ら
かに連続させるようにしたものである。
In this example, the cross-sectional shape of the blade tip is a curve lIg with a small radius of curvature.
Then, following the blade tip (the blade tip shape on the suction side side of the blade is formed by a curve 47F with a large radius of curvature, the lines on both sides of the blade and these curves +g and fF are smoothed. It is made to be continuous.

このように構成したタービンロータ/にあっては、入口
部翼端4’Aにおける断面形状がその先端部において厚
さが減じられているので空気力学的にガスの流体摩擦損
失を低減することができる。
In the turbine rotor constructed in this way, since the cross-sectional shape at the inlet blade tip 4'A has a reduced thickness at the tip, it is possible to aerodynamically reduce the fluid friction loss of the gas. can.

以下にこのように構成した理由について述べる。The reason for this configuration will be described below.

一般に、この種のラジアルタービンロータlでは、設計
の時点でその入口部翼端4tAK流入してくるガスのロ
ータ/に対する相対速度の方向が翼ダの軸方向と一致す
るようにして理論的に無衝突な状態が得られるようにし
ている。すなわち、第5A図に示す速度三角形のように
、動翼ダの周速なUoとしたときにガスの流入速度とそ
の方向を01とすることによってガスのロータ/に対す
る相対速度が00で示されるようになり、上述した無衝
突状態を実現することができる。
In general, this type of radial turbine rotor is designed so that the direction of the relative velocity of the gas flowing into the inlet blade tip 4tAK with respect to the rotor coincides with the axial direction of the blade. I am trying to get a collision state. That is, as shown in the velocity triangle shown in Fig. 5A, when Uo is the circumferential speed of the rotor blade, and the gas inflow velocity and its direction are set to 01, the relative velocity of the gas to the rotor is indicated as 00. As a result, the collision-free state described above can be achieved.

しかるに一方、タービンロータlにその上流からガスの
流れに乗って飛来してくる微粒子はその密度がガスの少
な(とも1000倍以上であるために、完全にはガスの
流れに乗り切らず、そこで入口部翼端lIAの位置では
微粒子の飛来方向とその速度が、第jB図で示すC2の
状態となり、したがって微粒子の口〜りlに対する相対
速度とその方向はC82で示されるようになる。
However, on the other hand, the fine particles that fly into the turbine rotor l from upstream along with the gas flow have a density lower than that of the gas (more than 1000 times that of the gas), so they do not completely survive the gas flow, and are therefore unable to pass through the inlet. At the position of the wing tip lIA, the flying direction and velocity of the fine particles are in the state C2 shown in Figure JB, and therefore the relative velocity and direction of the fine particles with respect to the mouth to the l are shown as C82.

すなわち、第jB図からも明らかなように、微粒子は動
翼ダの負圧面fG側から流速C82の大きさと方向でも
って翼面に衝突するので、上述したように負圧面グG@
に偏した入口部翼端4tAの断面形状を緩やかな曲線を
用いて形成することによリ、この部の対衝突性を高める
ことができる。
That is, as is clear from Fig. jB, the fine particles collide with the blade surface from the suction surface fG side of the moving blade DA with the magnitude and direction of the flow velocity C82, so that the suction surface G@
By forming the cross-sectional shape of the inlet blade tip 4tA biased to a gentle curve, the collision resistance of this portion can be improved.

なお、このような微粒子の飛来方向とその衝突位置等に
ついて上述したような結果の得られることを本願人は実
験によって確認した。
The applicant has confirmed through experiments that the above-mentioned results can be obtained regarding the flying direction of the fine particles and the collision position thereof.

以上説明してきたように1本発明によれば、動翼のガス
入口部における先端の断面形状を翼の負圧面側から翼の
正圧面側にかけて連続した滑らかな曲線で形成するよう
にしたので、上流からガス流に乗って飛翔する微粒物の
衝突によって翼端近傍が欠損したりするのが防止でき、
流体摩擦損失による空力性能の低下が抑制され、更に動
翼全体の破損につながる事故を防止することができる。
As explained above, according to the present invention, the cross-sectional shape of the tip at the gas inlet of the rotor blade is formed with a continuous smooth curve from the suction side of the blade to the pressure side of the blade. This prevents damage near the blade tips due to collisions with fine particles flying from upstream on the gas flow.
Deterioration of aerodynamic performance due to fluid friction loss is suppressed, and accidents that lead to damage to the entire rotor blade can be prevented.

更にまた。動翼のガス入口部における先端の断面形状を
、先端は曲率半径の小さい曲線で形成し。
Yet again. The cross-sectional shape of the tip at the gas inlet of the rotor blade is formed by a curved line with a small radius of curvature.

これに続く翼負圧面側は曲率半径の大きい曲線で形成す
ることにより、入口部翼端における耐異物衝突性を向上
させると共に更に空力性能の向上を図ることができる0
By forming the suction side of the blade following this with a curve with a large radius of curvature, it is possible to improve resistance to foreign object collisions at the inlet blade tip and further improve aerodynamic performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は従来のセラミックラジアルタービンロータの形
状とその概要を一例として示す断面図。 第2図はそのA−A線断面図、第3図および第q図は本
発明セラミックラジアルクーピンロータの一実施例とし
ての翼先端の形状をそれぞれに示す断面図、第jへ図お
よび第5B図は本発明の更に他の実施例として翼先端の
形状をガスの速度三角形と共に示す断面図および翼先端
の形状を飛翔微粒物の速度三角形と共に示す断面図であ
る。 /・・・セラミックタービンロータ。 コ・・・軸、       3・・・ロータディスク。 グ・・・動翼、      /lA・・・入口部翼端。 lIB・・・角部、    グC・・・円弧。 lID・・・だ円曲線、  グE・・・曲線、lF・・
・曲線、    グG・・・負圧面。 j・・・ハウジング、   6・・・ガス流路。 7・・・タービン出口。 Ul # Coe C1y Co1 、 C2,Co2
・・・速度(ベクトル)。 第5A図 第58図
FIG. 7 is a sectional view showing an example of the shape and outline of a conventional ceramic radial turbine rotor. FIG. 2 is a sectional view taken along the line A-A, FIGS. 3 and q are sectional views showing the shape of a blade tip as an embodiment of the ceramic radial Coupin rotor of the present invention, and FIGS. FIG. 5B is a cross-sectional view showing the shape of the blade tip together with the velocity triangle of the gas and a cross-sectional view showing the shape of the blade tip together with the velocity triangle of the flying particulate matter as still another embodiment of the present invention. /...Ceramic turbine rotor. K... shaft, 3... rotor disk. G... Moving blade, /lA... Inlet blade tip. lIB...Corner, GuC...Circular arc. lID...Elliptic curve, GE...Curve, lF...
・Curve, G... Negative pressure surface. j...housing, 6...gas flow path. 7...Turbine outlet. Ul # Coe C1y Co1, C2, Co2
...Velocity (vector). Figure 5A Figure 58

Claims (2)

【特許請求の範囲】[Claims] (1)  複数のセラミック製の動翼を有し、該動翼の
翼先端部に沿ってガス入口部が形成されるセラミックラ
ジアルタービンロータにおいて。 前記動翼の前記ガス入口部における先端部の断面形状を
、#記動具の負圧面側がら前記動翼の正圧面側にかけて
連続した滑らかな曲線で形成したことを特徴とするセラ
ミックラジアルタービンロータ。
(1) In a ceramic radial turbine rotor that has a plurality of ceramic rotor blades, and a gas inlet portion is formed along the blade tips of the rotor blades. A ceramic radial turbine rotor characterized in that the cross-sectional shape of the tip of the rotor blade at the gas inlet portion is formed in a continuous smooth curve from the negative pressure side of the moving tool to the pressure side of the rotor blade. .
(2)  特許請求の範囲第1項記載のセラミックラジ
アルタービンロータにおいて、前記曲線を先端では曲率
半径の小さい曲線となし、該先端に続く前記負圧面側で
は曲率半径の大きい曲線となしたことを特徴とするセラ
ミックラジアルタービンロータ。
(2) In the ceramic radial turbine rotor according to claim 1, the curve has a small radius of curvature at the tip, and a curve with a large radius of curvature on the suction surface side following the tip. Features a ceramic radial turbine rotor.
JP58078908A 1983-05-07 1983-05-07 Rotor for ceramic radial turbine Granted JPS59203808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078908A JPS59203808A (en) 1983-05-07 1983-05-07 Rotor for ceramic radial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078908A JPS59203808A (en) 1983-05-07 1983-05-07 Rotor for ceramic radial turbine

Publications (2)

Publication Number Publication Date
JPS59203808A true JPS59203808A (en) 1984-11-19
JPS6360201B2 JPS6360201B2 (en) 1988-11-22

Family

ID=13674931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078908A Granted JPS59203808A (en) 1983-05-07 1983-05-07 Rotor for ceramic radial turbine

Country Status (1)

Country Link
JP (1) JPS59203808A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026204U (en) * 1983-07-28 1985-02-22 京セラ株式会社 Ceramic cylinder bolata
DE3733119A1 (en) * 1986-10-01 1988-05-05 Ngk Insulators Ltd CERAMIC RADIAL TURBINE ROTOR
JPH0315604A (en) * 1989-03-08 1991-01-24 Ishikawajima Harima Heavy Ind Co Ltd Ceramic turbine wheel
JPH04100002U (en) * 1991-02-07 1992-08-28
JP2014001712A (en) * 2012-06-20 2014-01-09 Toyota Central R&D Labs Inc Radial turbine rotor, and variable geometry turbocharger including the same
CN107304682A (en) * 2016-04-19 2017-10-31 本田技研工业株式会社 Turbine wheel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652502A (en) * 1979-09-18 1981-05-11 Gen Motors Corp Production of combined radial turbine impeller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652502A (en) * 1979-09-18 1981-05-11 Gen Motors Corp Production of combined radial turbine impeller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026204U (en) * 1983-07-28 1985-02-22 京セラ株式会社 Ceramic cylinder bolata
DE3733119A1 (en) * 1986-10-01 1988-05-05 Ngk Insulators Ltd CERAMIC RADIAL TURBINE ROTOR
JPH0315604A (en) * 1989-03-08 1991-01-24 Ishikawajima Harima Heavy Ind Co Ltd Ceramic turbine wheel
JPH04100002U (en) * 1991-02-07 1992-08-28
JP2014001712A (en) * 2012-06-20 2014-01-09 Toyota Central R&D Labs Inc Radial turbine rotor, and variable geometry turbocharger including the same
CN107304682A (en) * 2016-04-19 2017-10-31 本田技研工业株式会社 Turbine wheel

Also Published As

Publication number Publication date
JPS6360201B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
JP5301148B2 (en) Turbine assembly of gas turbine engine and manufacturing method thereof
EP1259711B1 (en) Aerofoil for an axial flow turbomachine
JP4288051B2 (en) Mixed flow turbine and mixed flow turbine blade
JP6001999B2 (en) Airfoil, compressor, vane, gas turbine engine, and stator row
US6283705B1 (en) Variable vane with winglet
JP3927886B2 (en) Axial flow compressor
EP1260674B1 (en) Turbine blade and turbine
JPS5990797A (en) Centrifugal compressor and compression method
JP2010196563A (en) Transonic blade
JPH10502150A (en) Flow orientation assembly for the compression region of rotating machinery
JPS5936119B2 (en) Diffuser for centrifugal compressor
EP1687511A1 (en) High lift rotor or stator blades with multiple adjacent airfoils cross-section
JP3306788B2 (en) Airfoil for combustion turbine
JPH02115596A (en) Radial flow rotor
CN109844263B (en) Turbine wheel, turbine and turbocharger
JPS6133968B2 (en)
JPS59203808A (en) Rotor for ceramic radial turbine
JPH05340265A (en) Radial turbine moving blade
JPH11173104A (en) Turbine rotor blade
US20190301488A1 (en) Gas path duct for a gas turbine engine
JPH03267506A (en) Stationary blade of axial flow turbine
JPS5933841Y2 (en) radial turbine wheel
JPS6332963B2 (en)
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JPH01211605A (en) Turbine nozzle