JPS59202647A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59202647A
JPS59202647A JP58076204A JP7620483A JPS59202647A JP S59202647 A JPS59202647 A JP S59202647A JP 58076204 A JP58076204 A JP 58076204A JP 7620483 A JP7620483 A JP 7620483A JP S59202647 A JPS59202647 A JP S59202647A
Authority
JP
Japan
Prior art keywords
insulating film
layer
single crystal
semiconductor substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58076204A
Other languages
Japanese (ja)
Inventor
Taiji Usui
臼井 太二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58076204A priority Critical patent/JPS59202647A/en
Publication of JPS59202647A publication Critical patent/JPS59202647A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To form an island of dielectric isolation structure by etching a polycrystalline silicon layer through alkali etching in a self-alignment manner as an etching mask for isolating a single crystal silicon layer by an insular isolating groove by a silicon oxide film on the single crystal silicon layer. CONSTITUTION:Silicon oxide films 41 are formed on the upper surfaces of epitaxial growth layers 38 through oxidation heat treatment, and polycrystalline silicon layers 40 are polished from the upper surface sides. The adhering silicon oxide films 41 are also removed simultaneously at that time, one parts of the polycrystalline silicon layers 40 are exposed, and the silicon oxide films 41 remain only on the upper surfaces of single crystal silicon layers 39 and the side surfaces of the polycrystalline silicon layers 40. The polycrystalline silicon layers 40 are etched and treated by using an alkaline liquid such as an alkali mixed liquid of KOH, alcohol and water, and complementary type islands isolated by grooves 43 are formed. One parts of the side surfaces of the single crystal islands 39 are etched at that time, but newly exposed 111 faces display stopping action to subsequent etching because of alkaline anisotropic etching, and the single crystal islands 39 are formed in a self-alignment manner without getting out of their shapes.

Description

【発明の詳細な説明】 (技術分野) この発明は、誘電体分離構造を有し、相補型トランジス
タからなる半導体装置を得るのに好適な半導体基板の製
造方法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a method of manufacturing a semiconductor substrate having a dielectric isolation structure and suitable for obtaining a semiconductor device comprising complementary transistors.

(従来技術) 従来、パーティカル構造のPNP )ランジスタをNP
Nトランジスタと同一チップ内に形成し誘電体分離され
た高耐圧相補型素子を形成する製法として、たとえば第
1図に示す方法が提案されている。
(Prior art) Conventionally, PNP with particle structure) NP with transistor
For example, a method shown in FIG. 1 has been proposed as a manufacturing method for forming a dielectrically isolated high voltage complementary element formed in the same chip as an N transistor.

すなわち、第1図(a)に示す、J、うに、半導体基板
1の上面の一部にくぼみ2を形成し、次に第1図(b)
に示すように、くぼみ2の底部に窒化シリコン膜を含む
マスク層3をホトリソ工程を用いて形成した後、半導体
基板1と同じ導電型の高濃度不純物層4を形成する。
That is, a recess 2 is formed in a part of the upper surface of the semiconductor substrate 1 as shown in FIG. 1(a), and then as shown in FIG. 1(b).
As shown in FIG. 2, after a mask layer 3 containing a silicon nitride film is formed at the bottom of the recess 2 using a photolithography process, a highly concentrated impurity layer 4 of the same conductivity type as the semiconductor substrate 1 is formed.

次に通常の酸化熱処理工程によって第1図(c)に示す
工うに、酸化シリコン@5を形成した後、マスク層3を
除去する。
Next, silicon oxide@5 is formed by a normal oxidation heat treatment process as shown in FIG. 1(c), and then the mask layer 3 is removed.

次に、第1図(d)に示すように半導体基板1の上面に
この半導体基板1と逆の導電型不純物を含んだシリコン
層を堆積する。ここでくぼみ2の上面には単結晶シリコ
ン層6が、酸化シリコン膜5の上面には多結晶シリコン
’m 7がそれぞれ形成される。
Next, as shown in FIG. 1(d), a silicon layer containing impurities of a conductivity type opposite to that of the semiconductor substrate 1 is deposited on the upper surface of the semiconductor substrate 1. Here, a single crystal silicon layer 6 is formed on the upper surface of the depression 2, and a polycrystalline silicon 'm7 is formed on the upper surface of the silicon oxide film 5.

その後、単結晶シリコン層6の上面にマスク層8を形成
した後、アルカリエツチングを行ない、多結晶シリコン
層7および単結晶シリコン層6の一部を除去して、第1
図(e)で示すようにV溝9でそれぞれの島に分離され
た相補型の島を形成する。
Thereafter, after forming a mask layer 8 on the upper surface of the single crystal silicon layer 6, alkali etching is performed to remove a portion of the polycrystalline silicon layer 7 and the single crystal silicon layer 6.
As shown in Figure (e), complementary islands separated by V grooves 9 are formed.

その後、単結晶シリコン層6と同じ伝導型の高濃度不純
物層10を形成してから酸化シリコン膜5を除去する。
Thereafter, a high concentration impurity layer 10 having the same conductivity type as the single crystal silicon layer 6 is formed, and then the silicon oxide film 5 is removed.

次に、↓く知られた通常の紡電体分離工程にしたがい、
第1図(f)で示すように、絶縁膜11を形成した後、
半導体基板1の支持体となる多結晶シリコン層12を形
成し、その後の研磨工程を経て、相補型の分離島を有す
る半導体装置k N造する。
Next, following the well-known normal spindle separation process,
As shown in FIG. 1(f), after forming the insulating film 11,
A polycrystalline silicon layer 12 serving as a support for the semiconductor substrate 1 is formed, and through a subsequent polishing process, a semiconductor device having complementary isolated islands is manufactured.

しかしながら、上記の製法に2いては、次の難点がある
。すなわち、第1図(d)に2いて、エピタキシャル成
長時に単結晶シリコン1−6と多結晶シリコン層7の境
界部に第2図の拡大図で示すようにくぼみ21が生じ、
単結晶シリコン層6の上面にマスク層8を形成するホト
リソ工程が因難になジ、このため、たとえば第1図(e
) K >いて単結晶シリコンI46iV溝9で分離し
て形成される島の形状がくずれ、寸法も小さくなること
で素子特性の劣化を招く原因となっていた。
However, the above manufacturing method 2 has the following drawbacks. That is, as shown in FIG. 1(d), a depression 21 is formed at the boundary between the single crystal silicon 1-6 and the polycrystalline silicon layer 7 during epitaxial growth, as shown in the enlarged view of FIG.
The photolithography process for forming the mask layer 8 on the upper surface of the single-crystal silicon layer 6 is difficult.
) K>, the shape of the islands formed separately by the single crystal silicon I46iV grooves 9 is distorted and the dimensions become smaller, causing deterioration of device characteristics.

(発明の目的) この発明は、これらの欠点を除去するためになされたも
ので、アルカリエツチング処理で誘電体分離構造の島を
高精度で形成でき、相補型誘電体分離構造を必要とする
半導体装置の製造に利用できる半導体装置の製造方法全
提供することを目的とする。
(Objective of the Invention) This invention was made to eliminate these drawbacks, and it is possible to form islands of dielectric isolation structure with high precision by alkaline etching treatment, and to improve semiconductors that require a complementary dielectric isolation structure. The purpose of this invention is to provide all methods for manufacturing semiconductor devices that can be used to manufacture devices.

(発明の構成) この発明の半導体装置の製造方法は、半導体基板の第1
の主面上に局部的にくぼみ領域を形成(7、このくぼみ
領域の一部に窒化シリコン1摸を含む第1の絶縁膜全形
成し、この第1の絶9、丈膜をマスクとして第1主面上
に半導体基板と同じ導it型でそれよりも高不純物濃度
の半導体層を形成し、この半導体層上に第2の絶縁膜全
形成し7た後に第1の絶縁膜を除去し、第1の主面側に
エピタキシャル層を介して第3の絶縁膜全形成し、この
エピタキシャル層領域内で第2の杷伏膜−ヒに成長した
エピタキシャル層の厚さを減少し、第3の絶縁膜をマス
クとしてエピタキシャル層の一部を除去するとともに第
3の絶縁膜を除去し、第2の絶縁膜をマスクとしてエピ
タキシャル層と同じ導電型でこのエピタキシャル層に比
して高不純物濃度の半導体層を形成し、第2の絶縁膜を
除去した後半導体基板の第1の主面側に第4の絶i[を
形成してその上に多結晶半導体層を形成し、半導体基板
、エピタキシャル層および第4の絶縁lI!!全半導体
基板の第2の主面と平行して横切って延長した面に沿っ
て切断して第3の主面を形成するようにしたものである
(Structure of the Invention) A method for manufacturing a semiconductor device according to the present invention includes a method for manufacturing a semiconductor device.
A recessed region is locally formed on the main surface of the recessed region (7. A first insulating film containing silicon nitride 1 is entirely formed on a part of this recessed region, and a first insulating film containing a silicon nitride layer is formed on a part of the recessed region. A semiconductor layer of the same conductivity type as the semiconductor substrate but with a higher impurity concentration than that of the semiconductor substrate is formed on the first main surface, and after the second insulating film is completely formed on this semiconductor layer, the first insulating film is removed. , a third insulating film is entirely formed on the first main surface side via an epitaxial layer, and the thickness of the epitaxial layer grown in this epitaxial layer region is reduced, and the third insulating film is Using the second insulating film as a mask, a part of the epitaxial layer is removed, and the third insulating film is removed. Using the second insulating film as a mask, a second insulating film is removed that has the same conductivity type as the epitaxial layer but has a higher impurity concentration than this epitaxial layer. After forming the semiconductor layer and removing the second insulating film, a fourth insulation layer is formed on the first main surface side of the semiconductor substrate, a polycrystalline semiconductor layer is formed thereon, and the semiconductor substrate and epitaxial layer are formed. The third main surface is formed by cutting along a plane extending parallel to and across the second main surface of the entire semiconductor substrate.

(実施例) 以下、この発明の半導体装置の製造方法の一実施例につ
いて図面に基づき説明する。第3図(a)〜第3図(j
)はその一実施例の工程説明図である。
(Example) An example of the method for manufacturing a semiconductor device of the present invention will be described below with reference to the drawings. Figures 3(a) to 3(j)
) is a process explanatory diagram of one example.

まず、第3図(a)に示すごとく、相対向する主面31
.32全有するたとえばP型の不純物濃度1.5 X 
1015/fflで(100)面を有するシリコン半導
体基板33の第1の主面31にくぼみ34を異方性エツ
チングにて50μm程の深さに形成する。
First, as shown in FIG. 3(a), the opposing main surfaces 31
.. For example, P-type impurity concentration 1.5
A recess 34 with a depth of about 50 μm is formed by anisotropic etching on the first main surface 31 of the silicon semiconductor substrate 33 having a (100) plane with a ratio of 1015/ffl.

エツチング液としては、たとえばKOHとアルコールと
水との混合液を用いる。
As the etching solution, for example, a mixed solution of KOH, alcohol, and water is used.

次に、第3図(b)に示すごとく、くぼみ34の底部に
マスク層35をホトリソ工程を使用して形成する。マス
ク層35は窒化シリコン膜を含むもので、たとえば厚さ
100OAの酸化シリコン膜・厚さ2000Aの窒化シ
ータコン膜の2層構造をなしている。
Next, as shown in FIG. 3(b), a mask layer 35 is formed at the bottom of the depression 34 using a photolithography process. The mask layer 35 includes a silicon nitride film, and has a two-layer structure, for example, a silicon oxide film with a thickness of 100 Å and a thetacon nitride film with a thickness of 2000 Å.

次に、第3図(C)に示すごとく、半導体基板33の第
1の主面31側に、P型不純物の拡散処理にエフ、不純
物濃度I X 1020/c4 、厚さ1μm程度のP
+型の半導体領域36を溝底部を除き形成する〜この半
導体領域36はその後の酸化熱処理によジ厚さ10μm
位になるものであり、同時に厚さ1.5μm程の酸化シ
リコン膜37を半導体領域36上に形成する。
Next, as shown in FIG. 3C, on the first main surface 31 side of the semiconductor substrate 33, a P-type impurity is diffused at an impurity concentration of I x 1020/c4 and a thickness of about 1 μm.
A +-type semiconductor region 36 is formed except for the bottom of the groove. This semiconductor region 36 is made to have a thickness of 10 μm through subsequent oxidation heat treatment.
At the same time, a silicon oxide film 37 with a thickness of about 1.5 μm is formed on the semiconductor region 36.

次に、第3図(d)に示すごとく、マスク層35と酸化
シリコン膜37とのエツチング速度差を利用し、たとえ
ば(CF4 + 02 )ガスでプラズマエツチングす
ることで、マスク層35を選択的に除去する。
Next, as shown in FIG. 3(d), the mask layer 35 is selectively etched by plasma etching with, for example, (CF4 + 02) gas, utilizing the etching rate difference between the mask layer 35 and the silicon oxide film 37. to be removed.

次に、くぼみ34上お工び半導体基板33の第1の主面
31上に第3図(e)に示すごとく連続延長するN型の
不純物濃度I X 10”/iのエピタキシャル成長層
38を厚さ50μm程度に形成する。この場合、マスク
層35で覆われていた領域上は単結晶シリコン層39が
形成されるが酸化シリコン膜37の領域上は多結晶シリ
コン層40が形成される。
Next, as shown in FIG. 3(e), an epitaxially grown layer 38 of an N type impurity concentration of I x 10"/i is continuously grown on the first main surface 31 of the semiconductor substrate 33 formed over the depression 34. In this case, a single crystal silicon layer 39 is formed on the region covered by the mask layer 35, but a polycrystalline silicon layer 40 is formed on the region of the silicon oxide film 37.

次に、第3図(f)で示す=うに通常の酸化熱処理でエ
ピタキシャル成長層の上面に厚さ帆5μm程の酸化シリ
コン膜41を形成した後、多結晶シリコン層40を上面
側より研磨し、40μm程除去し、多結晶シリコン層4
0を10μm程残す。
Next, as shown in FIG. 3(f), a silicon oxide film 41 with a thickness of about 5 μm is formed on the upper surface of the epitaxial growth layer by a normal oxidation heat treatment, and then the polycrystalline silicon layer 40 is polished from the upper surface side. Remove about 40 μm and remove polycrystalline silicon layer 4.
Leave about 10 μm of 0.

このとき研磨除去された多結晶シリコン層40に付着し
ていた酸化シリコン膜41も同時に除去され、多結晶シ
リコン層40の一部が露出し、単結晶シリコン層39の
上面および多結晶シリコン層40の側面にのみ酸化シリ
コン膜41が残る。
At this time, the silicon oxide film 41 attached to the polycrystalline silicon layer 40 that was removed by polishing is also removed at the same time, and a part of the polycrystalline silicon layer 40 is exposed, and the upper surface of the single crystal silicon layer 39 and the polycrystalline silicon layer 40 are exposed. The silicon oxide film 41 remains only on the side surfaces.

次に、第3図(f)で残された酸化シリコン膜41全マ
スクとして、たとえばKOHとアルコールと水とのアル
カリ混液を用いて多結晶シリコン層40に対するエツチ
ング処理ンニシて、第3図(g)に示すごとく、溝43
で分離された相補型の島を形成する。
Next, as a mask for the entire silicon oxide film 41 left in FIG. 3(f), the polycrystalline silicon layer 40 is etched using, for example, an alkaline mixture of KOH, alcohol, and water. ), the groove 43
form complementary islands separated by

このとき、単結晶島39の側面の一部がエツチングされ
るが、アルカリ異方性エツチングのため、新りに蕗出し
;f(111)面がその後のエツチングに対して阻止作
用を示し、単結晶島39が形状をくずすことなくセルフ
ァライン的に形成される。
At this time, a part of the side surface of the single crystal island 39 is etched, but due to the alkali anisotropic etching, a new surface is exposed; The crystal islands 39 are formed in a self-aligned manner without changing their shape.

その後、マスクとなった酸化シリコン膜41をフッet
含むエツチング液で除去する。このとき、酸化シリコン
@37はマスクとなった酸化シリコン膜41に比べ十分
に厚いために除去されず残る。
After that, the silicon oxide film 41, which served as a mask, is etched.
Remove with etching solution containing At this time, the silicon oxide @37 is sufficiently thicker than the silicon oxide film 41 serving as a mask, so it remains without being removed.

次に、第3図(h)に示すごとく半導体基板33の第1
の主面31側にぺ型不純物をイオン注入法または、N型
不純物を含むC,、V、D膜を拡散源(あるいは通常拡
散法でもよい)として単結晶シリコン層39の島の上面
に不純物濃度I X 1020/ctt1程度のN+型
の半導体領域44を形成する。
Next, as shown in FIG. 3(h), the first
P-type impurities are ion-implanted onto the main surface 31 side of the single crystal silicon layer 39, or impurities are added onto the top surface of the island of the single crystal silicon layer 39 using a C, V, D film containing N-type impurities as a diffusion source (or a normal diffusion method may also be used). An N+ type semiconductor region 44 having a concentration of about I x 1020/ctt1 is formed.

次に、酸化シリコン膜37をフッ酸を含むエツチング液
で完全に除去した後、第3図(i)に示すごとく通常の
酸化熱処理で絶縁膜45を半導体基板33の第1主面3
1側全体に形成し、さらに、絶縁@45の上面に半導体
基板33と同程度の厚さに多結晶シリコン層46を形成
する。
Next, after completely removing the silicon oxide film 37 with an etching solution containing hydrofluoric acid, the insulating film 45 is removed from the first main surface 3 of the semiconductor substrate 33 by ordinary oxidation heat treatment as shown in FIG. 3(i).
Further, a polycrystalline silicon layer 46 is formed on the upper surface of the insulating layer 45 to a thickness comparable to that of the semiconductor substrate 33.

次に、半導体基板33の第2の主面32側の研磨処理に
よって、第3図(j)に示すごとく、半導体基板33.
単結晶シリコン層39.お工び絶縁膜45全主面31と
平行に横切って延長し/上面で切断されて得られる態様
の主面47を形成する。
Next, by polishing the second main surface 32 side of the semiconductor substrate 33, as shown in FIG. 3(j), the semiconductor substrate 33.
Single crystal silicon layer 39. A main surface 47 is formed by extending the fabricated insulating film 45 across the entire main surface 31 in parallel with it and cutting it at the upper surface.

かくして、N型エピタキシャル単結晶7937層39.
およびP型半導体基板33エタな2)相補型誘電体分離
構造をもつ半導体装置を得る。
Thus, the N-type epitaxial single crystal 7937 layer 39.
and P-type semiconductor substrate 33. 2) A semiconductor device having a complementary dielectric isolation structure is obtained.

以上説明したように、第3図(f)で示される酸化シリ
コン膜41が、単結晶シリコン層39の島を分離溝43
で分離するためのエツチングマスクとなる。このため、
ホトリソ工程を必要とせず、いわゆるセルファライン的
に多結晶シリコン層をエツチングして単結晶シリコン層
39の島を精度よく分離形成できるという利点がある。
As explained above, the silicon oxide film 41 shown in FIG.
It serves as an etching mask for separation. For this reason,
There is an advantage that the islands of the single crystal silicon layer 39 can be precisely separated and formed by etching the polycrystalline silicon layer in a so-called self-line manner without requiring a photolithography process.

第1の実施例では、半導体基板33とエピタキシャル成
長した単結晶シリコン層39を逆の導電型として説明し
たが、この両者は同じ導電型でたとえば比抵抗の異なる
場合でも、同様の効果を生じる。
In the first embodiment, the semiconductor substrate 33 and the epitaxially grown single crystal silicon layer 39 were described as having opposite conductivity types, but even if they are of the same conductivity type and have different specific resistances, the same effect will be produced.

(発明の効果) 以上のように、この発明の半導体装置の製造方法によれ
ば、半導体基板上に形成した単結晶シリコン層上に酸化
シリコン膜により、この単結晶シリコン層の島状の分離
溝で分離するためのエツチングマスクとして、ホトリソ
工程を、必要としないセルファランイ的にアルカリエツ
チングで多結晶シリコン層全エツチングするようにした
ので誘電体分離構造の島を形成することができ、島形成
を精度よくできる利点があり、相補型誘電体分離構造全
必要とする半導体装置の製造に利用することができる。
(Effects of the Invention) As described above, according to the method of manufacturing a semiconductor device of the present invention, a silicon oxide film is formed on a single crystal silicon layer formed on a semiconductor substrate to form island-shaped isolation grooves in the single crystal silicon layer. As an etching mask for isolation, the entire polycrystalline silicon layer is etched using alkaline etching, which does not require a photolithography process, making it possible to form islands with a dielectric isolation structure. It has the advantage of being readily available and can be utilized in the fabrication of semiconductor devices that require a complementary dielectric isolation structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜第1図(f)はそれぞれ従来の相補型誘
電体分離半導体装置の製造方法を示す断面図、第2図は
従来の半導体装置の製造方法の製造工程において特にく
ぼみ部へエピタキシャル成長を行なった後の略式断面図
、第3図(a)〜第3図Cノ)はそれぞれこの発明の半
導体装置の製造方法の一実施例の工程を説明するための
断面図である。 31・・・第1の主面、32・・・第2の主面、33・
・・半導体基板、34・・・くぼみ部、35.41・・
・マスク層、36・・・半導体領域、37.45・・・
酸化シリコン膜、38・・エピタキシャル成長層、39
・・・単結晶シリコン層、40・・・多結晶シリコン層
、41・・・酸化シリコン膜、43・・・分離溝。 特許出願人  沖電気工業株式会社 第3 手続補正書 昭和5評月−月11日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年 特 許 願第 76204   号2、発
明の名称 半導体装置の製造□方献 3、補正をする者 事件との関係     特 許 出願人(029)沖電
気工業株式会社 4、代理人 5、補正命令の日付  昭和  年  月  日(自発
)6、補正の対象 明細書の特許請求の範囲および発明の詳細な説明の欄 7、補正の内容 別紙の通り 2 補正の内容 1)明細書の「2、特許請求の範囲」を別紙の通り訂正
する。 2)明細書4頁4行「伝導型」を「導電型」と訂正する
。 3)同4頁末行「寸法も小さくなることで」を削除する
。 4)同5頁11行「主面上」を「主面側」と訂正する。 5)同5頁14行「主面上」を「主面側」と訂正する。 6)同5頁18行「鳩を介して・・・・・・エビタキ」
を「層を形成した後、このエピタキシャル層の上面に第
3の絶縁膜を形成し、その後このエビタキ」と訂正する
。 7)同6頁5行「後半導体基」を「後、半導体基」と訂
正する。 8)同6頁18行「1.5×1015/洲」を「3.O
X 10”/crIljと訂正する。 9)同6頁19行「31に」を「31側に」と訂正する
。 10)同8頁2行「くぼみ34上および」を削除する。 11)同8頁3行「31上」を「31側」と訂正する。 12)同8頁4行「N型の不純物濃度I X 10”/
6IIJを「N型のたとえは不純物濃度3.OX 10
14Ard Jと訂正する。 13)同11頁8行ないし18行「以上のように、・・
・・・することができる。」を下記のように訂正する。 記 以上のようにこの発明の半導体装置の製造方法は、〈は
み領域會有し、かつそのくほみ領域の底部を除いて第2
の絶縁膜で握った半導体基板上にエピタキシャル層を成
長させた後、その上面に第3の絶縁膜を形成し、しかる
後、第2の絶縁膜領域上の第3の絶縁膜を除去した上で
、残りの第3の絶縁膜をマスクとしてセルファライン的
にエピタキシャル層の一部をエツチング除去するように
したので、誘電体分離構造の島形べを精度よく行える利
点があり、相補屋誘電体分離構造を必要とする半導体装
置の製造に利用することができる。 2、特許請求の範囲 第1および第2の主面を有する半導体基板の第1の主面
側に局部的なくほみ領域を形成する工程と、このくぼみ
領域の一部に窒化シリコン膜を含む第1の絶縁膜を形成
する工程と、この第1の絶縁膜をマスクとして、上記第
1の主面側に上記半導体基板と同じ導電型でこれに比し
高不純物濃度の半導体層を形成する工程と、この半導体
層上に第2の絶縁膜を形成した後、第1の絶縁膜を除去
する工程と、上記半導体基板の第1の主面側にエピタキ
シャル層を形成してその上面に第3の絶縁膜を形成する
工程と、上記エピタキシャル層領域内で第2の絶縁膜領
域上に成長したエピタキシャル層の上面に成長した第3
の絶縁膜を研磨処理してこのエピタキシャル層の厚さを
砂、する工程と、上記第3の絶縁膜の除去されない領域
をマスクとして、上記エピタキシャル層の一部をエツチ
ング除去した後上記第3の絶縁膜マスクを除去する工程
と、この第3の絶縁膜マスクを除去した後、上記第2の
絶縁膜をマスクとして上記エピタキシャル層と同じ導電
型でこれに比し高不純物濃度の半導体層を形成する工程
と、上記第1の絶縁膜のマスクを除去した後、上記半導
体基板の第1の主面側に第4の絶縁膜を形成する工程と
、この第4の絶縁膜上に連続延長した多結晶半導体層全
形成する工程と、上記半導体基板、上記エピタキシャル
層および上記第4の絶縁膜を上記半導°体基版の第2の
主面と平行に横切って延長した面に沿って切断して得ら
れる態様の第3の主面を形成する工程とを含むことを特
徴とする半導体装置の製造方法。
1(a) to 1(f) are cross-sectional views showing a conventional method for manufacturing a complementary type dielectrically isolated semiconductor device, respectively, and FIG. The schematic cross-sectional views after epitaxial growth and FIGS. 3(a) to 3(C) are cross-sectional views for explaining the steps of an embodiment of the method for manufacturing a semiconductor device of the present invention. 31...first main surface, 32...second main surface, 33.
... Semiconductor substrate, 34... Recessed part, 35.41...
-Mask layer, 36... semiconductor region, 37.45...
Silicon oxide film, 38...Epitaxial growth layer, 39
. . . single crystal silicon layer, 40 . . . polycrystalline silicon layer, 41 . . . silicon oxide film, 43 . Patent Applicant: Oki Electric Industry Co., Ltd. No. 3 Procedural Amendment Written by May 1930 - May 11 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the Case 1982 Patent Application No. 76204 2. Title of Invention: Manufacture of semiconductor devices □Reference 3, Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa, Month, Day (self-motivated) 6, Specification subject to amendment Scope of Claims and Detailed Description of the Invention Column 7, Contents of Amendment as shown in Attachment 2 Contents of Amendment 1) "2. Scope of Claims" in the specification is corrected as shown in Attachment 2. 2) On page 4 of the specification, line 4, "conduction type" is corrected to "conduction type." 3) Delete "Dimensions will also become smaller" at the end of page 4. 4) On page 5, line 11, "on the main surface" is corrected to "main surface side." 5) On page 5, line 14, "on the main surface" is corrected to "main surface side." 6) Page 5, line 18, “Through the pigeons, the shrimp flycatcher”
is corrected to ``After forming the epitaxial layer, a third insulating film is formed on the top surface of this epitaxial layer, and then this epitaxial layer is formed.'' 7) On page 6, line 5, "later semiconductor base" is corrected to "later, semiconductor base." 8) Change “1.5×1015/zu” to “3.O” on page 6, line 18.
X 10”/crIlj. 9) On page 6, line 19, “to 31” is corrected to “to the 31 side.” 10) Delete 2nd line "Above depression 34" on page 8. 11) On page 8, line 3, "31 top" is corrected to "31 side." 12) Page 8, line 4 “N-type impurity concentration I x 10”/
6IIJ is ``The analogy for N type is impurity concentration 3.OX 10
Correct as 14Ard J. 13) Page 11, lines 8 to 18 “As mentioned above,...
···can do. ” should be corrected as follows. As described above, the method for manufacturing a semiconductor device according to the present invention is as follows:
After growing an epitaxial layer on a semiconductor substrate held by an insulating film, a third insulating film is formed on the upper surface of the epitaxial layer, and then the third insulating film on the second insulating film region is removed. Therefore, a part of the epitaxial layer is etched away in a self-aligned manner using the remaining third insulating film as a mask, which has the advantage that the island shape of the dielectric isolation structure can be formed with high accuracy. It can be used to manufacture semiconductor devices that require an isolation structure. 2. Claims A step of forming a local depression region on the first main surface side of a semiconductor substrate having first and second main surfaces, and including a silicon nitride film in a part of the depression region. forming a first insulating film, and using the first insulating film as a mask, forming a semiconductor layer on the first main surface side that has the same conductivity type as the semiconductor substrate and has a higher impurity concentration than the semiconductor substrate; a step of forming a second insulating film on the semiconductor layer and then removing the first insulating film; forming an epitaxial layer on the first main surface side of the semiconductor substrate and forming an epitaxial layer on the upper surface thereof; a third insulating film grown on the upper surface of the epitaxial layer grown on the second insulating film region within the epitaxial layer region;
a step of polishing the insulating film to reduce the thickness of the epitaxial layer; and a step of removing a part of the epitaxial layer by etching using the unremoved region of the third insulating film as a mask; a step of removing the insulating film mask, and after removing the third insulating film mask, using the second insulating film as a mask, forming a semiconductor layer of the same conductivity type as the epitaxial layer and with a higher impurity concentration than the epitaxial layer; a step of forming a fourth insulating film on the first main surface side of the semiconductor substrate after removing the mask of the first insulating film; forming the entire polycrystalline semiconductor layer, and cutting the semiconductor substrate, the epitaxial layer, and the fourth insulating film along a plane extending parallel to the second main surface of the semiconductor substrate. A method of manufacturing a semiconductor device, comprising the step of forming a third main surface in a manner obtained by:

Claims (1)

【特許請求の範囲】[Claims] 第1お工び第2の主面°を有する半導体基板の第1の主
面側に局部的なくぼみ領域全形成する工程と、このくほ
み領域の一部に窒化シリコン膜を含む第1の絶縁膜を形
成する工程と、この第1の絶縁膜をマスクとして、上記
第1の主面上に上記半導体基板に比し高不純物濃度の半
導体層全形成する工程と、この半導体層上に第2の絶縁
膜を形成した後、第1の絶縁膜全除去する工程と、上記
半導体基板の第1の主面側にエピタキシャル層を形成し
てその上面に第3の絶嫌1換會形成する工程と、上記エ
ピタキシャル層領域内で第2の絶縁膜領域上に成長した
、エピタキシャル層の上面に成長した第3の絶縁膜上、
研磨処理して0のエピタキシャル層の厚さを減する工程
と、上記第3の絶縁膜の除去されない領域全マスクとし
て、上記エピタキシャル層の一部全エッチング除去した
後上記第3の絶縁膜マスクを除去する工程と、この第3
の絶縁膜マスクを除去した後、上記第2の絶縁膜をマス
クトシて上記エピタキシャル層とこれに比し高不純物濃
度の半導体層を形成する工程と、上記第3の絶縁膜のマ
スクを除去した後、上記半導体基板の第1の主面側に第
4の絶縁膜を形成する工程と、この第4の絶縁膜上に連
続延長した多結晶半導体層を形成する工程と、上記半導
体基板、上記エピタキシャル層および上、記第4の絶詠
膜を上記半導体基板の第2の主面と平行に横切って延長
した面に沿って切断して得られる態様の第3の主面を形
成する工程とを含むことを特徴とする半導体装置の製造
方法。
A step of forming the entire local depression region on the first principal surface side of the semiconductor substrate having the second principal surface degree; a step of forming an insulating film with a higher impurity concentration than that of the semiconductor substrate on the first main surface using the first insulating film as a mask; After forming the second insulating film, a step of completely removing the first insulating film, forming an epitaxial layer on the first main surface side of the semiconductor substrate, and forming a third absolute layer on the upper surface thereof. a third insulating film grown on the top surface of the epitaxial layer grown on the second insulating film region within the epitaxial layer region;
A step of reducing the thickness of the epitaxial layer by polishing, and using the third insulating film mask as a mask for the entire region of the third insulating film that is not to be removed, after partially etching and removing all of the epitaxial layer. This third step
After removing the insulating film mask, masking off the second insulating film to form the epitaxial layer and a semiconductor layer with a higher impurity concentration than the epitaxial layer; and after removing the third insulating film mask. , a step of forming a fourth insulating film on the first main surface side of the semiconductor substrate, a step of forming a continuously extended polycrystalline semiconductor layer on the fourth insulating film, the semiconductor substrate, the epitaxial forming a third main surface obtained by cutting the fourth insulating film along a plane extending parallel to the second main surface of the semiconductor substrate; A method of manufacturing a semiconductor device, comprising:
JP58076204A 1983-05-02 1983-05-02 Manufacture of semiconductor device Pending JPS59202647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076204A JPS59202647A (en) 1983-05-02 1983-05-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076204A JPS59202647A (en) 1983-05-02 1983-05-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59202647A true JPS59202647A (en) 1984-11-16

Family

ID=13598624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076204A Pending JPS59202647A (en) 1983-05-02 1983-05-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59202647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074635A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074635A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Manufacture of semiconductor device
JPH0338741B2 (en) * 1983-09-30 1991-06-11 Fujitsu Ltd

Similar Documents

Publication Publication Date Title
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
JPS6052037A (en) Manufacture of semiconductor device
JPH01179342A (en) Composite semiconductor crystal
JPH04106932A (en) Manufacture of bipolar transistor
US4193836A (en) Method for making semiconductor structure
JPS6015944A (en) Semiconductor device
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
US4579625A (en) Method of producing a complementary semiconductor device with a dielectric isolation structure
JPS59202647A (en) Manufacture of semiconductor device
US4268348A (en) Method for making semiconductor structure
JPH0897225A (en) Semiconductor device and its manufacture
JPH05304202A (en) Fabrication of semiconductor device
JPS61182242A (en) Manufacture of semiconductor device
JP3160966B2 (en) Method for manufacturing SOI substrate
JPS5828731B2 (en) All silicon materials available.
JP3136561B2 (en) Method for manufacturing semiconductor device
JPS5846171B2 (en) Manufacturing method of semiconductor device
JPS6359531B2 (en)
JPS6244853B2 (en)
JPS6245042A (en) Manufacture of semiconductor ic
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture
JPS6010748A (en) Manufacture of semiconductor device
JPH05129424A (en) Semiconductor device and manufacture thereof
JPH02177454A (en) Dielectric isolation substrate, dielectric isolation type semiconductor device and manufacture thereof
JPS6226181B2 (en)