JPS5920238A - Production of butanediol - Google Patents

Production of butanediol

Info

Publication number
JPS5920238A
JPS5920238A JP57130697A JP13069782A JPS5920238A JP S5920238 A JPS5920238 A JP S5920238A JP 57130697 A JP57130697 A JP 57130697A JP 13069782 A JP13069782 A JP 13069782A JP S5920238 A JPS5920238 A JP S5920238A
Authority
JP
Japan
Prior art keywords
catalyst
butanediol
alcohol
phase
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57130697A
Other languages
Japanese (ja)
Other versions
JPH036131B2 (en
Inventor
Hidetaka Kojima
秀隆 小島
Katsumi Miwa
三輪 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Daicel Chemical Industries Ltd filed Critical Daicel Corp
Priority to JP57130697A priority Critical patent/JPS5920238A/en
Publication of JPS5920238A publication Critical patent/JPS5920238A/en
Publication of JPH036131B2 publication Critical patent/JPH036131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce butanediol, economically, by hydroformylating allyl alcohol in an aromatic hydrocarbon in the presence of an Rh catalyst, hydrogenating the product in the presence of a solid Ni catalyst without separating the Rh catalyst, separating the reaction product into two liquid phases, and recovering and reusing the Rh catalyst. CONSTITUTION:Allyl alcohol is hydroformylated in an aromatic hydrocarbon solvent in the presence of a rhodium catalyst in the form of solution, and the resultant reaction liquid is hydrogenated in the presence of a solid nickel catalyst without separating the rhodium catalyst, i.e. in the form of non-aqueous solution. The obtained reaction liquid is separated into a hydrocarbon phase containing the rhodium catalyst, and an alcohol phase containing butanediol. The hydrocarbon phase (i.e. rhodium catalyst solution) is reused in the above hydroformylation reaction, and the objective butanediol is recovered from the alcohol phase.

Description

【発明の詳細な説明】 この発明はアリルアルコールからブタンジオールを製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing butanediol from allyl alcohol.

ロジウム触媒の存在下アリルアルコールをヒドロホルミ
ル化して得たヒドロキシブチルアルデヒドを水素添加し
てブタンジオールを製造する方法は公知である。前記二
反応は、それぞれ触媒反応であり、触媒の分離再使用が
必要であるが特に溶液状態になっており、また高価であ
るロジウム触媒の分離回収は、この技術を工業的に成功
させる為のきめてとなる。
A method for producing butanediol by hydrogenating hydroxybutyraldehyde obtained by hydroformylating allyl alcohol in the presence of a rhodium catalyst is known. Each of the above two reactions is a catalytic reaction, and it is necessary to separate and reuse the catalyst, but in particular, the rhodium catalyst, which is in a solution state and is expensive, must be separated and recovered in order to make this technology an industrial success. It becomes a decision.

この点について従来提案されている技術としては水抽出
法(特公昭53−19563)、蒸留分離法(特開昭5
5−45646)などにより、第一工程で生成したヒド
ロキンブチルアルデヒドをロジウム触媒溶液と分離する
方法がある。
Techniques that have been proposed in the past in this regard include the water extraction method (Japanese Patent Publication No. 53-19563) and the distillation separation method (Japanese Patent Publication No. 53-19563).
There is a method of separating the hydroquine butyraldehyde produced in the first step from the rhodium catalyst solution by, for example, 5-45646).

しかし、ヒドロキシブチルアルデヒドは熱的に安定でな
く、さらに分子間アセタール化による高沸点物として存
在するものは蒸留により触媒から分離し難い。また、蒸
留法の場合の溶媒はヒドロキシブチルアルデヒド及びそ
の逐次反応生成物よりも沸点の高いものに限定され、自
ずと粘度なども高くなり、取扱い土問題を生じ易い。
However, hydroxybutyraldehyde is not thermally stable, and furthermore, it is difficult to separate hydroxybutyraldehyde from the catalyst by distillation if it exists as a high boiling point product due to intermolecular acetalization. Furthermore, the solvent used in the distillation method is limited to those having a boiling point higher than that of hydroxybutyraldehyde and its sequential reaction products, which naturally results in higher viscosity and tends to cause handling problems.

水抽出法は、ヒドロホルミル化反応液中よりヒドロキシ
ブチルアルデヒドを効率よく分離することは可能である
が、多量の水を抽剤として使用する為に水素比反応後ブ
タンジオールを得るには水を留去する為の多大なエネル
ギーを必要とする。
The water extraction method can efficiently separate hydroxybutyraldehyde from the hydroformylation reaction solution, but since a large amount of water is used as an extractant, water must be distilled to obtain butanediol after the hydrogen ratio reaction. It requires a lot of energy to remove.

本発明はヒドロキシブチルアルデヒドの段階でロジウム
触媒と分離するこれらの技術と異なり、ロジウム触媒の
あるままで水素化反応を行ない、そこで目的物と触媒と
を分離するもので、芳香族炭化水素溶媒中で溶液状ロジ
ウム触媒を用いてアリルアルコールをヒドロホルミル化
して得た反応液をロジウム触媒を含む炭化水素相とブタ
ンジオールを主とするアルコール相とに液相分離し、炭
fヒ水素相(ロジウム触媒液)はヒドロホルミル化反応
に再使用し、アルコール相からブタンジオールを回収す
ることを特徴とするブタンジオールの製造方法である。
Unlike these techniques in which the rhodium catalyst is separated at the hydroxybutyraldehyde stage, the present invention performs the hydrogenation reaction while the rhodium catalyst is present, and then separates the target product from the catalyst. The reaction solution obtained by hydroformylating allyl alcohol using a solution rhodium catalyst is separated into a hydrocarbon phase containing a rhodium catalyst and an alcohol phase mainly containing butanediol. The method for producing butanediol is characterized in that the liquid) is reused in the hydroformylation reaction and the butanediol is recovered from the alcohol phase.

このように、ヒドロホルミル化触媒の分離を水素化後に
行なう技術としては、オレフィン類のヒドロホルミル化
及び水素化により、アルコールを製造する方法において
、ヒドロホルミル化触媒の存在するまま\水を加えたア
ルデヒドの水溶液を水素化してアルコールの水溶液とな
し、この水溶液とロジウム触媒の有機溶液とを相分離す
る方法が知られており、アリルアルコールからブタンジ
オールへのプロセスも実施例に示されている(特開昭5
5−151521)。しかし、この方法では第一工程で
得たアルデヒドにその05倍以上の水を加えることが必
須とされており、所定量の水の添加のない場合は水素化
反応速度がきわめて小さくなり、副反応や分離性の面で
も悪い影響のあることが示されている。例えば、フタル
酸ジオクチル溶媒で水の添加がないとき、水素ガス吸収
速度は遅く、反応が進行しにくいので、液分離も起こっ
ていない。このように従来の技術ではヒドロホルミル化
反応液に水を加えないとアルコールの生成自体不可能と
思われていた。
As described above, as a technique for separating the hydroformylation catalyst after hydrogenation, in a method for producing alcohol by hydroformylation and hydrogenation of olefins, an aqueous solution of an aldehyde in which water is added while the hydroformylation catalyst is present is used. There is a known method of hydrogenating alcohol to form an aqueous solution of alcohol, and then phase-separating this aqueous solution from an organic solution of a rhodium catalyst, and a process for converting allyl alcohol to butanediol is also shown in an example (Japanese Patent Laid-Open Publication No. 5
5-151521). However, in this method, it is essential to add more than 5 times the amount of water to the aldehyde obtained in the first step, and if a predetermined amount of water is not added, the hydrogenation reaction rate will be extremely low, resulting in side reactions. It has also been shown that this has a negative effect on separability and separability. For example, when a dioctyl phthalate solvent is used and no water is added, the hydrogen gas absorption rate is slow and the reaction is difficult to proceed, so liquid separation does not occur. As described above, in the conventional technology, it was thought that it was impossible to produce alcohol unless water was added to the hydroformylation reaction solution.

しかし、オレフィンとしてアリルアルコールを選び、溶
媒として芳香族炭化水素を選んだ特殊な場合に限って水
の存在しない非水溶液のままでニッケル触媒でブタンジ
オールへの水素化が進行し、かつ水素化反応液は触媒溶
液とブタンジオール相とに分液できることがはじめて見
出された。
However, only in special cases where allyl alcohol is selected as the olefin and an aromatic hydrocarbon is selected as the solvent, hydrogenation to butanediol proceeds with a nickel catalyst in a non-aqueous solution without water, and the hydrogenation reaction proceeds. It was discovered for the first time that a liquid can be separated into a catalyst solution and a butanediol phase.

オレン1ンとしてのアリルアルコールの使用も溶媒とし
てのトルエンも特開昭55r151521に書いてあて
)にもかかわらず、先行技術では水が必須とされていた
が、これらを組合せた場合に限り水なして水添が進行し
、かつ分液可能なことは、まことに惹外である。
Despite the use of allyl alcohol as an oleene and toluene as a solvent (as described in JP-A-55-151-521), water is essential in the prior art, but only when these are combined, no water can be used. It is truly surprising that hydrogenation progresses and liquid separation is possible.

また一方、ロジウムを触媒とし、アリルアルコールに高
温、高圧で一酸化炭素と水素を反応させブタンジオール
を製造する方法が提案されている(特開昭53−849
07 )。この際、溶媒としてヘキサンを用いると生成
物混合物は幾分粘稠な2相液となる、としているが、ベ
ンゼンを溶媒とした場合には分液せず、本発明のように
芳香族炭化水素溶媒を用いた場合の分液性を予測させる
ものではない。ヘキサンの如き脂肪族炭化水素溶媒はブ
タンジオールとの液相分離性はよいが、ロジウム触媒の
溶解性がわるくヒドロホルミルにとっては、本発明で用
いる芳香族炭化水素溶媒はど好ましいものではない。上
記特開の実施例1てはブチルホスフィンを用いてロジウ
ム触媒濃度を高くし、ヒドロホルミル化反応と水素化反
応を同一条件下、同一触媒を用いて行なっており、多量
のプロパツールが副生じ、ブタンジオールの収率は低い
On the other hand, a method has been proposed for producing butanediol by reacting allyl alcohol with carbon monoxide and hydrogen at high temperature and pressure using rhodium as a catalyst (Japanese Patent Laid-Open No. 53-849
07). At this time, it is said that when hexane is used as a solvent, the product mixture becomes a somewhat viscous two-phase liquid, but when benzene is used as a solvent, there is no separation, and aromatic hydrocarbons are produced as in the present invention. It does not predict the liquid separation properties when a solvent is used. Although aliphatic hydrocarbon solvents such as hexane have good liquid phase separation properties from butanediol, the aromatic hydrocarbon solvents used in the present invention are not preferred for hydroformyl because the rhodium catalyst has poor solubility. In Example 1 of the above-mentioned patent application, butylphosphine was used to increase the rhodium catalyst concentration, and the hydroformylation reaction and hydrogenation reaction were performed under the same conditions and using the same catalyst, and a large amount of propatool was produced as a by-product. The yield of butanediol is low.

このように先行技術からは芳香族炭化水素溶媒で水の添
加の全くない場合に7リンジオールへの水素化が選択性
よく進行すること、得られたフリンジオールがロジウム
触媒溶液と相分離できることは全く予想できなかった。
As described above, it is clear from the prior art that hydrogenation to 7-phosphorus diol proceeds with good selectivity when an aromatic hydrocarbon solvent is used without the addition of any water, and that the obtained frindiol can be phase-separated from the rhodium catalyst solution. I couldn't have predicted it at all.

しかるに、特定の条件、即ち出発物質としてのアリルア
ルコール媒としての芳香族炭化水素、水素化触媒として
の固体状ニッケルのそろった場合に限って、ヒドロホル
ミル化反応混合物中のアルデヒドは、対応するアルコー
ルに容易に変化し、かつ二液分離して生成シたアルコー
ル相がロジウム触媒液と分離できる。この場合アルコー
ル相の主成分(ま)゛タンジオール、即ち1.4−フリ
ンジオール及び2−メチル−1.3−プロパンジオール
であり、これらGま蒸留により分離することができる・ 本発明で用いられるロジウム錯体触媒は特公昭+5−1
0730.特公昭53−17573などで公知のもので
あり、HRh (Co ) (PH1)3 、 Rh 
(C0)2(アセチルアセトネート) 、 Rh4(C
O)+ 2. R116(CO)蛤などのロジウムカル
ボニルなど一酸化炭素、水素、三級ボスフィンの存在下
容易にILRh (Co ) (PH1)3に変換され
るものであればなんでも触媒として用いることができる
However, only under certain conditions, i.e. an aromatic hydrocarbon as a starting material, an allyl alcohol as a medium, and solid nickel as a hydrogenation catalyst, the aldehyde in the hydroformylation reaction mixture is converted into the corresponding alcohol. It is easily changed and the alcohol phase produced by separating the two liquids can be separated from the rhodium catalyst liquid. In this case, the main components of the alcohol phase are tanediol, namely 1,4-fringiol and 2-methyl-1,3-propanediol, which can be separated by distillation. Rhodium complex catalyst is Tokko Sho+5-1
0730. It is known from Japanese Patent Publication No. 53-17573, etc., and HRh (Co) (PH1)3, Rh
(C0)2(acetylacetonate), Rh4(C
O)+2. Anything that can be easily converted to ILRh (Co ) (PH1)3 in the presence of carbon monoxide, hydrogen, and tertiary bosphine, such as rhodium carbonyl such as R116(CO) clam, can be used as a catalyst.

ここでP R3で表わされる三級ホスフィンとしては、
トリフェニルホスフィン、トリトリルホスフィン、トリ
ノ上ニルホスツアイト、トリトリルホスフィンや一般式
(C6■45)2 P(CH2)nP(C6H5)2n
 = 1〜6で表わされるジホスフィンなども用いられ
、これら単独もしくは二種以上混合して用いてもよい。
Here, the tertiary phosphine represented by PR3 is:
Triphenylphosphine, tritolylphosphine, trinosuperinylphostuite, tritolylphosphine and general formula (C6■45)2P(CH2)nP(C6H5)2n
Diphosphines represented by = 1 to 6 are also used, and these may be used alone or in combination of two or more.

本発明では、ヒドロホルミル化触媒は通常用いられる有
機溶媒溶液の状態で水素処理され、溶媒トシテハヘンゼ
ン、トルエン、キシレン、エチルベンゼンなどの芳香族
炭化水素が用いられる。
In the present invention, the hydroformylation catalyst is hydrogen-treated in the form of a solution in a commonly used organic solvent, and the solvent used is aromatic hydrocarbons such as tocite, toluene, xylene, and ethylbenzene.

アリルアルコールのヒドロホルミル化反応条件として圧
力は大気圧以上あればよいが、生産性及び経済性の観点
から1〜301cg / C$程度が好ましい。−酸化
炭素に対する水素の比率としては50〜01、好ましく
は20〜04でよく、反応温度は20〜200℃、好ま
しくは50〜120℃がよい。仕込みアリルアルコール 〜10mOl/p1好ましくは0. 5 〜5 mol
 / 13fJ″−よい。
As conditions for the hydroformylation reaction of allyl alcohol, the pressure may be at least atmospheric pressure, but from the viewpoint of productivity and economy, it is preferably about 1 to 301 cg/C$. - The ratio of hydrogen to carbon oxide may be 50-01, preferably 20-04, and the reaction temperature may be 20-200°C, preferably 50-120°C. Charged allyl alcohol ~ 10 mOl/p1 preferably 0. 5 to 5 mol
/ 13fJ″-Good.

水素化触媒としては、アルデヒドを還元してアルコール
にするものはいろいろある( I+反応別実用触媒11
多羅間公雄監修、頁176〜180、化学工業社刊< 
s 4 5 ) )が、反応性能及びブタンジオールへ
の選択性を考慮した上で固体のニッケル触媒が好ましい
ことが見出された。水素化触媒の形態としては、ラネー
型あるいは活性炭、シリカ、アルミナ、ケイソウ土など
の担体に担持したものが使用できる。これらは懸濁状態
ある℃・はペレット、球または粒状に成型して反応容器
に充填すれば固定床としても使用できる。ニッケルを主
体とするものであれば、これにジルコニウム、銅、クロ
ム、マンガン、ホウ素、チタン、モリブデン、タングス
テン、ランタンなど曲の金属が共存するもrノ)であっ
てもよい。
There are various hydrogenation catalysts that reduce aldehydes to alcohols (I + Practical Catalysts by Reaction 11)
Supervised by Kimio Tarama, pages 176-180, published by Kagaku Kogyosha <
It has been found that a solid nickel catalyst is preferable in consideration of reaction performance and selectivity to butanediol. The hydrogenation catalyst may be of the Raney type or supported on a carrier such as activated carbon, silica, alumina, diatomaceous earth, or the like. These can be used as a fixed bed by molding them into pellets, spheres, or granules when they are in a suspended state and filling them into a reaction vessel. As long as it is mainly composed of nickel, other metals such as zirconium, copper, chromium, manganese, boron, titanium, molybdenum, tungsten, and lanthanum may also coexist.

水素1ヒ条叶としては水素化触媒()1〜50係、好ま
しくは1%以北、水素を1〜” Okg/ cm %好
ましくは1 0 〜7 0 kg /c4,反応温度5
0〜150°0、好ましくは70〜120℃が良い。水
素圧は1 0 0 kg / c$以上でも問題ないが
、高圧設備となるので好ましくない。
Hydrogen catalyst (1 to 50%), preferably 1% or higher, hydrogen at 1 to 50 kg/cm%, preferably 10 to 70 kg/c4, reaction temperature 5
The temperature is preferably 0 to 150°C, preferably 70 to 120°C. There is no problem if the hydrogen pressure is 100 kg/c$ or higher, but this is not preferable because it requires high-pressure equipment.

次に実施例及び参考例、比較例を示し、本発明をさらに
詳しく、具体的に説明する。
Next, Examples, Reference Examples, and Comparative Examples will be shown to further specifically explain the present invention.

参考例1 ヒドロホルミル化反応液の合成ヒドリドカル
ボニルトリス(トリ)フェニルホスフィン)ロジウム1
 mmol,/g 、  ) ’)フェニルポスフィン
1501ηmol/−# ヲ含ム)ルエン溶液に2 m
ol / eとなる量のアリルアルコールを加え、全圧
が3 /cg / c決となるようにCO,H2ガスを
供給して、65°Cで2時間反応させた。反応終了後冷
却、放圧して反応液をガスクロ分析するとグロピオンア
ルデヒド(Pr4−()1.4%、n−プロパツール(
NPR)0.3%、アリルアルコール04%、4−ヒド
ロキシブチルアルデヒド(HBA)16%、3−ヒドロ
キシ−2−メチルプロピオンアルデヒド(HMPA)1
.3%が液中に存在した。
Reference Example 1 Synthesis of hydroformylation reaction solution Hydridocarbonyltris(tri)phenylphosphine)rhodium 1
mmol,/g, )') Phenylphosphine 1501ηmol/-# Contains 2 m) in toluene solution
Allyl alcohol was added in an amount of 65 °C for 2 hours, and CO and H2 gases were supplied so that the total pressure was 3 /cg/c. After the reaction was completed, the reaction solution was cooled, depressurized, and analyzed by gas chromatography.
NPR) 0.3%, allyl alcohol 04%, 4-hydroxybutyraldehyde (HBA) 16%, 3-hydroxy-2-methylpropionaldehyde (HMPA) 1
.. 3% was present in the liquid.

実施例1 参考例1で合成した反応液70mlに水素化触媒Ni 
(La)/SiOz 4 gを加え、水素圧50kg/
d、90°Cで2時間反応させた後冷却、放圧してガス
クロ分析を行なうと、グロピオンアルデヒド991%、
HMPA100%、HBA99.9係の転化率で水素化
され、NPR、2−メチル−13−プロパンジオール(
MPG)、14−ブタンジオールが生成しており、1.
4−13Qへの水素化選択率は996係であった。
Example 1 Hydrogenation catalyst Ni was added to 70 ml of the reaction solution synthesized in Reference Example 1.
(La)/SiOz 4 g was added and the hydrogen pressure was 50 kg/
d. After reacting at 90°C for 2 hours, cooling and depressurizing, gas chromatography analysis revealed that 991% of gropionaldehyde,
Hydrogenated with 100% HMPA and 99.9 HBA conversion, NPR, 2-methyl-13-propanediol (
MPG), 14-butanediol is produced, and 1.
The hydrogenation selectivity to 4-13Q was 996.

この水素化反応液からNi (La )/S i02触
媒を1過で除くと、r液は上相がロジウム触媒液、下相
アルコールと分液していた。下相中のRhは8鼠であり
、生成アルコールの回収率は14−13Q99%、MP
Ω974係、NPR70ヂであった。
When the Ni (La 2 )/Si02 catalyst was removed from this hydrogenation reaction solution in one filtration, the r solution was separated into an upper phase of the rhodium catalyst solution and a lower phase of alcohol. Rh in the lower phase was 8, and the recovery rate of the alcohol produced was 14-13Q99%, MP
It was Ω974 and NPR70.

実施例2〜1 水素1ヒ触媒としてNi (Zr ) /ケイソウ土、
N1(CLI、Cr)/ケイソウ土、エタノールおよび
トルエン洗浄ラネーNi  を用いた他は、実施例1と
回し方法で水素化し、水素化触媒をl−1過により除く
と、実施例1と同様にロジウム触媒液と、生成アルコー
ル類は分離した。表1にこれらの水素化結果を示ず。
Examples 2-1 Ni(Zr)/diatomaceous earth as hydrogen catalyst,
Hydrogenation was carried out in the same manner as in Example 1 except that N1(CLI, Cr)/diatomaceous earth, ethanol and toluene-washed Raney Ni was used, and the hydrogenation catalyst was removed by 1-1 filtration. The rhodium catalyst liquid and the produced alcohols were separated. Table 1 does not show these hydrogenation results.

比較例1〜3 水素化触媒としてPt/CXPd/アルミナ、Co(Z
r)/ケイソウ土を用いた他は、実施例1と同じ方法で
水素化したが、反応成績が悪く、分液も起こらなかった
。これらの結果を表1に示す。
Comparative Examples 1 to 3 Pt/CXPd/alumina, Co(Z
Hydrogenation was carried out in the same manner as in Example 1 except that r)/diatomaceous earth was used, but the reaction results were poor and no liquid separation occurred. These results are shown in Table 1.

特許出願人 ダイセル化学工業株式会社patent applicant Daicel Chemical Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 芳香族炭化水素溶媒中で溶液状ロジウム触媒を用いてア
リルアルコールをヒドロホルミルして得た反応液を非水
溶液のまま固体のニッケル触媒の存在下に水素化し、得
られた反応液をロジウム触媒を含む炭化水素相とブタン
ジオールを主とするアルコール相とに液相分離し、炭化
水素相(ロジウム触媒液)はヒドロホルミル化反応に再
使用し、アルコール相からブタンジオールを回収するこ
とを特徴とするフリンジオールの製造方法。
The reaction solution obtained by hydroformylating allyl alcohol using a solution rhodium catalyst in an aromatic hydrocarbon solvent is hydrogenated as a non-aqueous solution in the presence of a solid nickel catalyst, and the resulting reaction solution is hydrogenated in the presence of a solid nickel catalyst. A fringe characterized in that the liquid phase is separated into a hydrocarbon phase and an alcohol phase mainly containing butanediol, the hydrocarbon phase (rhodium catalyst liquid) is reused in the hydroformylation reaction, and butanediol is recovered from the alcohol phase. How to make oars.
JP57130697A 1982-07-26 1982-07-26 Production of butanediol Granted JPS5920238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130697A JPS5920238A (en) 1982-07-26 1982-07-26 Production of butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130697A JPS5920238A (en) 1982-07-26 1982-07-26 Production of butanediol

Publications (2)

Publication Number Publication Date
JPS5920238A true JPS5920238A (en) 1984-02-01
JPH036131B2 JPH036131B2 (en) 1991-01-29

Family

ID=15040452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130697A Granted JPS5920238A (en) 1982-07-26 1982-07-26 Production of butanediol

Country Status (1)

Country Link
JP (1) JPS5920238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658408B2 (en) 2008-06-09 2014-02-25 Lanza Tech New Zealand Limited Process for production of alcohols by microbial fermentation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658408B2 (en) 2008-06-09 2014-02-25 Lanza Tech New Zealand Limited Process for production of alcohols by microbial fermentation

Also Published As

Publication number Publication date
JPH036131B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
KR101504517B1 (en) Hydroformylation process
US2595096A (en) Synthesis of alcohol from olefins, carbon monoxide, and hydrogen
CN100352794C (en) Process for the preparation of TCD-alcohol DM
US4496781A (en) Process for the production of ethylene glycol through the hydroformylation of glycol aldehyde
KR101200288B1 (en) Process for preparing TCD-alcohol DM
JPS6331450B2 (en)
JP2001010999A (en) Production of tricyclodecanedimethanol and/or pentacyclodecanedimethanol
US20050222452A1 (en) Process for preparing dioxy-functionalized propane compounds
US6426437B1 (en) Hydroformylation process
KR20170095231A (en) Process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol
EP3538264A1 (en) Methods to rejuvenate a deactivated hydroformylation catalyst solution
JPS5920238A (en) Production of butanediol
US2793236A (en) Hydrogenation of oxo aldehyde bottoms
JP2002535321A (en) Preparation of a mixture aqueous solution of formyltetrahydrofuran and its hydrate
JP2672473B2 (en) Process for producing aldehyde substituted at the α-position by an alkyl residue
WO2008151102A2 (en) Hydrogenation process
JP4519255B2 (en) Process for producing optically active 3,7-dimethyl-6-octenol
JPS6358813B2 (en)
CN114522740A (en) Method for preparing 3-acetoxy propanol from vinyl acetate
JPH0436251A (en) Alcohol for plasticizer
US3278611A (en) Hydrogenation of aromatic halides
JPH0344340A (en) Alcohol for plasticizer
JP7501778B2 (en) Method for producing polyhydric alcohols
JPH069461A (en) Production of hydrogenated bisphenol compounds
US4374287A (en) Synthesis of alcohols