JPS59202173A - Controlling method of current for welding accompanying short circuit - Google Patents

Controlling method of current for welding accompanying short circuit

Info

Publication number
JPS59202173A
JPS59202173A JP7535483A JP7535483A JPS59202173A JP S59202173 A JPS59202173 A JP S59202173A JP 7535483 A JP7535483 A JP 7535483A JP 7535483 A JP7535483 A JP 7535483A JP S59202173 A JPS59202173 A JP S59202173A
Authority
JP
Japan
Prior art keywords
current
welding
arc
welding wire
spatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7535483A
Other languages
Japanese (ja)
Inventor
Takaaki Ogasawara
小笠原 隆明
Tokuji Maruyama
徳治 丸山
Takashi Saito
敬 斉藤
Masaharu Sato
佐藤 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7535483A priority Critical patent/JPS59202173A/en
Publication of JPS59202173A publication Critical patent/JPS59202173A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To decrease the amt. of the spatter to be generated by supplying the current during generation of an arc with the large current within the prescribed time after the generation of the arc and with the small current of a constant current characteristic after the prescribed time. CONSTITUTION:A power source for welding which supplies current to a welding wire and which has a constant voltage characteristic and constant current characteristic is used in the welding in which a short circuit and the generation of the arc are alternately repeated between the welding wire and base materials while the welding wire using a consumable electrode wire is fed in shielding gas at the constrolled speed toward the base materials. The relatively large current is supplied at the constant voltage characteristic to the welding wire for the specified time after the generation of the arc. A step is given to the current and the low current is supplied at the constant current characteristic to the welding wire after the specified time during generation of the arc.

Description

【発明の詳細な説明】 技術分野 短絡を伴う溶接における溶滴の移行過程を第1図を用い
て説明する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The transfer process of droplets in welding involving a short circuit will be explained with reference to FIG.

第1図において、 ta)は短絡直前のアーク発生状態、 +b)は溶滴か溶融池に接触した短絡初期状態、fc)
は溶滴と溶融池の接触が確実となり、溶滴が移行してい
る短絡中期状態、 td)は溶滴が溶融池側に移行し溶接ワイヤと溶滴との
間にくびれが生じた短絡後期状態 (e)は短絡が破れ溶接アークが再発生した瞬間(f)
は溶接ワイヤが溶融し、溶滴が成長するアーク発生状態
、 を示し、fa)〜(f)の過程がくり返し行なわれる。
In Figure 1, ta) is the arc generation state immediately before a short circuit, +b) is the initial short circuit state when the droplet or molten pool is in contact, and fc)
td) is the middle stage of short circuit when the contact between the droplet and the molten pool is ensured and the droplet is moving, and td) is the late stage of short circuit when the droplet is moving to the molten pool side and a constriction is created between the welding wire and the droplet. Condition (e) is the moment when the short circuit is broken and the welding arc re-occurs (f)
shows an arc generation state in which the welding wire melts and a droplet grows, and the processes fa) to (f) are repeated.

この過程において、スパッターは、短絡が破れアークが
再発生した瞬間((e)の状態)や溶滴が溶融池と接触
しようとする際((a)の状態)に発生することが明ら
かになっており、特に大粒のスパッターは後者の場合に
発生することが多い。この大粒のスパッターは、溶滴又
は溶滴の一部が溶接アークの反発力によって吹き飛ばさ
れ、飛散するものなので、溶接ワイヤの溶着効率の低下
を招くばかりでなく、飛散したスパッターが溶接部以外
の被溶接物表面に融着して溶接後の作業としてスパッタ
ーの除去作業が必要となったり、シールドノズルに付着
し、シールドガスの流れを阻害して溶融金属中に大気中
の窒素が混入し、溶接部の機械的性能が劣化するなど種
々のトラブルの原因となっていた。
In this process, it has become clear that spatter occurs at the moment when the short circuit breaks and the arc re-occurs (state (e)), or when the droplet attempts to come into contact with the molten pool (state (a)). In particular, large spatter often occurs in the latter case. These large spatters are caused by the droplets or part of the droplets being blown away by the repulsive force of the welding arc, which not only causes a decrease in the welding efficiency of the welding wire, but also causes the scattered spatter to spread outside the welded area. Spatter may adhere to the surface of the workpiece, making it necessary to remove spatter after welding, or it may adhere to the shield nozzle, obstructing the flow of shielding gas and causing nitrogen from the atmosphere to mix into the molten metal. This has caused various problems such as deterioration of the mechanical performance of welded parts.

従来、スパッター発生量を減少させる対策としては、シ
ールドガスとして不活性ガス(たとえばAr、Heなと
)と活性ガス(たとえばC02など)の混合ガスを用い
ることにより、スパッター発生量を減少させることが可
能であるが、この場合はある一定値以上の高電流でアー
ク溶接をすることが必要で、溶滴が自由移行いわゆるス
プレー移行状態で用いなければ効果的にスパッターを抑
制し得ないのである。たとえば、直径が1.2 mmの
実体溶接ワイヤを用いて溶接する場合、溶接電流を28
0〜300A以上に設定しなければ溶滴がスプレー移行
とならないことが知られている。280〜300A以下
の溶接電流で溶接するとシールドガスとして不活性ガス
と活性ガスの混合ガスを用いているにもかかわらず、第
1図に示す様な溶滴の短絡移行状態が現出し、スパッタ
ーが発生するのである。更に被溶接物の形状などから受
ける制限のためにスパッターが最も発生し易い条件(た
とえば1.、2 mm径の実体溶接ワイヤでは略200
〜25OA)で溶接を行なっているのが一般的で、スパ
ッター発生に対する改善はほとんどなされていないのが
現状である。
Conventionally, as a measure to reduce the amount of spatter generated, it has been possible to reduce the amount of spatter generated by using a mixed gas of an inert gas (for example, Ar, He, etc.) and an active gas (for example, C02, etc.) as a shielding gas. Although it is possible, in this case it is necessary to perform arc welding with a high current above a certain value, and spatter cannot be effectively suppressed unless the droplets are used in a free transfer state, ie, a spray transfer state. For example, when welding using a solid welding wire with a diameter of 1.2 mm, the welding current is 28 mm.
It is known that the droplets will not transfer to the spray unless it is set at 0 to 300 A or more. When welding with a welding current of 280 to 300 A or less, a short-circuit transfer state of droplets appears as shown in Figure 1, and spatter occurs even though a mixed gas of inert gas and active gas is used as a shielding gas. It happens. Furthermore, due to restrictions imposed by the shape of the workpiece, etc., spatter is most likely to occur (for example, for a solid welding wire with a diameter of 1.2 mm, approximately 200 mm
Welding is generally carried out at a pressure of ~25 OA), and at present, little improvement has been made to prevent the occurrence of spatter.

ところで溶滴の移行現象を高速度カメラなどで撮影し、
スパッターの飛散状況を観察すると、大粒のスパッター
は第1図の(a)から(+))の過程において多く発生
するのが見られた。即ち、溶滴が溶融池に接触しようと
する際に溶滴の下部から発生している溶接アークの反発
力のために溶接ワイヤの方向に溶滴が押し上げられ、ま
たは吹き飛ばされてスパッターとなっているのである。
By the way, the droplet migration phenomenon was photographed using a high-speed camera, etc.
When observing the state of spatter scattering, it was found that many large spatter particles were generated in the process from (a) to (+) in FIG. 1. In other words, when a droplet tries to contact the molten pool, the repulsive force of the welding arc generated from the bottom of the droplet pushes the droplet up in the direction of the welding wire, or it is blown away and becomes spatter. There is.

従って、溶滴が成長し、溶融池と接触しようとする状態
においては、溶接アークの反発力が小さければ即ち、溶
接電流出力が小さければ溶滴の溶融池への移行はスムー
ズに行なわれ、大粒のスパッタ〜は、発生し難くなるの
である。
Therefore, when a droplet grows and tries to come into contact with the molten pool, if the repulsion force of the welding arc is small, that is, if the welding current output is small, the transition of the droplet to the molten pool is smooth, and large particles This makes it difficult for spatter to occur.

しかるに、従来の消耗電極式アーク溶接法において、ス
パッター発生量を減少せしめる効果的な手段が依然とし
て具体化されないのは以下の理由が最も大きい。従来の
消耗電極式アーク溶接法では、定電圧特性を有する直流
電源装置が用いられていたが、この定電圧特性電源装置
による短絡移行溶接時の電流出力波形は、第2図に示す
様になっている。即ち、溶滴が溶融池に接触して短絡し
た瞬間から溶接電流は、その電気回路の持つ時定数によ
って定まる増加率で増加し続ける。また、短絡が破れ、
溶接アークが再発生した後は時定数によって定まる減少
率で溶滴が短絡するまで減少する。
However, in the conventional consumable electrode arc welding method, effective means for reducing the amount of spatter generated has not yet been realized for the following reasons. In the conventional consumable electrode arc welding method, a DC power supply with constant voltage characteristics was used, but the current output waveform during short-circuit transition welding using this constant voltage power supply was as shown in Figure 2. ing. That is, from the moment the droplet contacts the molten pool and short-circuits, the welding current continues to increase at a rate determined by the time constant of the electric circuit. Also, the short circuit is broken,
After the welding arc is generated again, the droplet decreases at a rate determined by a time constant until it short-circuits.

ここで問題となるのは、ジュール熱あるいはアーク熱に
よって溶融し、成長する際の溶滴の挙動である。溶滴が
十分に成長した時点で、溶接アークの反発力が大きいと
、溶滴あるいは溶滴の一部が吹き飛ばされて、大粒のス
パッターとなることは前述した通りである。即ち定電圧
特性電源の溶接電流出力は時定数によって定まる減少率
で減少中なのでアーク時間が長いほど電流値は小さくな
り、溶接アークの反発力も小さくなるが、逆に溶滴は大
きく成長するので、溶接ワイヤ先端から離脱し易くなっ
ており、わずかな溶接アークの反発力によっても吹き飛
ばされ易い状況になっていることが、高速度撮影フィル
ムなどにより観察されている。
The problem here is the behavior of the droplets as they melt and grow due to Joule heat or arc heat. As described above, if the repulsive force of the welding arc is large once the droplet has grown sufficiently, the droplet or a portion of the droplet will be blown away and become large spatter. In other words, the welding current output of the constant voltage power supply is decreasing at a rate determined by the time constant, so the longer the arc time, the smaller the current value and the smaller the repulsive force of the welding arc, but conversely, the droplet grows larger. It has been observed using high-speed photographic film that the welding wire tends to separate from the tip and is easily blown away by even the slightest repulsive force of the welding arc.

この定電圧特性電源装置で大粒のスパッター発生量を減
少せしめようとすれば、溶接電源装置の電気回路内のイ
ンダクタンスし及び/又は、電気抵抗にの値を適当に調
整し、減少率を大即ち溶接アーク電流が急速に低下して
アークの反発力を小さくする様に時定数を設定すること
である。減少率を大きくするには電気回路内のインダク
タンスLを小さくする事が1つの方法であるが、アーク
発生時間が長い場合は、溶滴と溶融池が短絡する以前に
電流出力が小さくなり過ぎ、アーク切れなどの溶接不安
定状態が現われる。特に平均溶接電流が低い場合には不
安定となり易いことが知られている。又短絡終了時の電
流が過大なものとなりこの際のスパッタが増大するため
適当なインダクタンスLを選択していた。
In order to reduce the amount of large spatter generated using this constant voltage characteristic power supply, the reduction rate should be increased by appropriately adjusting the inductance and/or electrical resistance in the electrical circuit of the welding power supply. The time constant is set so that the welding arc current rapidly decreases and the repulsive force of the arc is reduced. One way to increase the reduction rate is to reduce the inductance L in the electric circuit, but if the arc generation time is long, the current output becomes too small before the droplet and molten pool are short-circuited. Unstable welding conditions such as arc breakage appear. It is known that instability tends to occur particularly when the average welding current is low. Furthermore, since the current at the end of the short circuit becomes excessive and spatter increases at this time, an appropriate inductance L is selected.

またこのインダクタンスLまたは抵抗にの値は実際に溶
接する際の状況たとえば、電源装置とアーク発生点まで
のパワーケーブルの長さや設置状況によっても大きく変
化するので、アーク溶接に適した値として固定すること
は困難である。従って定電圧特性電源装置では本質的に
スパッター発生に対する効果的な手段は取り得ないので
ある。
Also, the value of this inductance L or resistance varies greatly depending on the actual welding situation, for example, the length of the power cable from the power supply to the arc generation point and the installation situation, so it should be fixed as a value suitable for arc welding. That is difficult. Therefore, a constant voltage power supply device cannot essentially take effective measures against spatter generation.

発明の目的 この発明は従来の溶接法における上述の欠点を除くため
になされたものであって、溶接電流の簡単な制御によっ
てスパッタの発生を有効に阻止できる溶接方法を提供す
ることを目的とする。
Purpose of the Invention The present invention has been made to eliminate the above-mentioned drawbacks of conventional welding methods, and an object of the present invention is to provide a welding method that can effectively prevent the generation of spatter by simply controlling the welding current. .

発明の要点 この発明はガスシールドアーク溶接において、アーク発
生中の電流をアーク発生後所定時間内は大きな電流とし
、所定時間後は上記大きな電流よりも小さい電流で、か
つ定電流特性で溶接ワイヤに供給することにより、スパ
ッタの発生量を減少させるものである。
Summary of the Invention This invention applies to gas-shielded arc welding, in which the current during arc generation is set to be a large current within a predetermined time after the arc is generated, and after the predetermined time, the current is smaller than the above-mentioned large current and is applied to the welding wire with constant current characteristics. This reduces the amount of spatter generated.

上述した様に短絡を伴う消耗電極式アーク溶接法におい
ては大粒のスパッターは溶滴が溶融池と接触し、短絡す
る前に溶接アークの反発力によって吹き飛ばされる場合
や、また更には一度短絡したものの小さな接触面積の短
絡部に大電流が流れ、溶滴と溶融池を引き離す方向に電
磁ピンチ力が働くので、溶滴が移行しないうちにアーク
が再発生しそのアークによる反発力のために溶滴が吹き
飛ばされる場合もある。本発明はこの様なスパッターの
発生量を減少せしめようとするものである。
As mentioned above, in the consumable electrode arc welding method that involves short circuiting, large spatter droplets may come into contact with the molten pool and be blown away by the repulsive force of the welding arc before shorting, or even after shorting occurs. A large current flows through a short circuit with a small contact area, and an electromagnetic pinch force acts in the direction of separating the droplet and the molten pool, causing the arc to re-occur before the droplet has migrated, and the repulsive force caused by the arc causes the droplet to collapse. may be blown away. The present invention aims to reduce the amount of such spatter generated.

実施例 この発明においては、消耗電極ワイヤを用いた溶接ワイ
ヤを母材に向かって速度制御しながらシールドガス中で
送給し、溶接ワイヤと母材との間で、第1図に示すよう
に短絡とアーク発生とを交互にくり返す溶接において、
溶接ワイヤに電流を供給する溶接電源として定電圧特性
と定電流特性とをもつものを用いる。そして、第3図に
cpで示すようにアーク発生時から一定時間は比較的大
きい電流を、定電圧特性で溶接ワイヤに供給する。
Embodiment In this invention, a welding wire using a consumable electrode wire is fed into a shielding gas while controlling the speed toward a base metal, and a welding wire is passed between the welding wire and the base metal as shown in FIG. In welding, where short circuits and arcing occur alternately,
A welding power source that supplies current to the welding wire has constant voltage characteristics and constant current characteristics. Then, as shown by cp in FIG. 3, a relatively large current is supplied to the welding wire with constant voltage characteristics for a certain period of time after the arc is generated.

そしてアーク発生中において一定時間後、電流に段差り
を与えてCCで示すように低い電流■3を定電流特性で
溶接ワイヤに供給する。第1図の(b)〜+e)に至る
間の電流制御は従来方式と同じである。
After a certain period of time while the arc is being generated, a step is given to the current, and a low current (3) is supplied to the welding wire with constant current characteristics as shown by CC. Current control from (b) to +e) in FIG. 1 is the same as in the conventional system.

また第4図に示すようにアーク発生時の電流が低い場合
には電流の段差を設けないで、一定時間後、低い電流1
aを定電流特性で溶接ワイヤに供給してもよい。
In addition, as shown in Figure 4, when the current at the time of arc generation is low, there is no step in the current, and after a certain period of time, the low current 1
a may be supplied to the welding wire with constant current characteristics.

上記の場合において、短絡から所定期間までの間も定電
流特性としてもよい。
In the above case, the constant current characteristic may also be used for a predetermined period after the short circuit.

いずれの場合でも、アーク発生直後は高電流を出力する
この時、溶滴は短絡移行した直後なので大きく成長して
おらず溶接ワイヤ先端と溶融池との間に強いアークが発
生しても、スパッターが発生することは少い。しかし短
絡時に溶滴の移行が完全には行なわれず、溶滴の一部が
溶接ワイヤの先端に残っている場合もあるので、アーク
発生の瞬間は、低電流とし、その後に高いアーク電流を
供給してもよい。
In either case, a high current is output immediately after the arc occurs. At this time, the droplet has just short-circuited and transferred, so it has not grown large, and even if a strong arc occurs between the tip of the welding wire and the molten pool, spatter rarely occurs. However, during a short circuit, the droplets may not transfer completely and some of the droplets may remain at the tip of the welding wire, so a low current is applied at the moment the arc occurs, and then a high arc current is applied. You may.

これによってアーク再生時のスパッタも減少できる。ア
ーク発生から定電流特性の低い溶接電流を出力するまで
の時間はアーク発生直後の電流値などによって適宜に設
定することができる。いずれの場合も定電流特性とする
ことによりアーク切れを阻止できる。
This also reduces spatter during arc regeneration. The time from arc generation to output of a welding current with low constant current characteristics can be appropriately set depending on the current value immediately after arc generation, etc. In either case, arc breakage can be prevented by providing constant current characteristics.

実験結果 溶接条件(A)はアーク発生後、定電圧特性を用いて一
定の減少率で溶接電流が減少する場合溶接条件(B)は
アーク発生後、一定時間後に低電流、定電流特性にした
場合で溶接条件(A)と(B)とのスパッター発生量を
比較した。他の条件は下記の通りである。
Experimental results Welding condition (A) is that after the arc occurs, the welding current decreases at a constant rate of decrease using constant voltage characteristics.Welding condition (B) is that after the arc occurs, the welding current decreases at a constant rate after a certain period of time. The amount of spatter generated under welding conditions (A) and (B) was compared. Other conditions are as follows.

平均溶接電流  150A 電圧   21V 溶接ワイヤ送給速度 3.5 m/m i n溶接ワイ
ヤJ 、S YCW−2(1,2mmφ)母材   5
M41 (12mmt) ビードオンプレート溶接 なおアーク発生後のピーク電流を33OA、アーク発生
から低電流に切り換えるまでの時間を4m5ec、低電
流を10OAとした。
Average welding current 150A Voltage 21V Welding wire feeding speed 3.5 m/min Welding wire J, SYCW-2 (1.2mmφ) Base material 5
M41 (12mmt) Bead-on-plate welding The peak current after arc generation was 33OA, the time from arc generation to switching to low current was 4m5ec, and the low current was 10OA.

そして10分間溶接して後シールドノズルに付着したス
パッタ量を測定したところ表1に示す結果を得た。
After welding for 10 minutes, the amount of spatter adhering to the shield nozzle was measured, and the results shown in Table 1 were obtained.

(単位1710分)(Unit: 1710 minutes)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は短絡移行溶接の移行過程を示す図、第2図は短
絡移行溶接の溶接電流の一例を示すグラフ、第3図ない
し第5図はこの発明の種々の実施例における電流の変化
を示すグラフである。 特許出願人 株式会社 神戸製鋼所 代理人弁理士青山 葆外2名
FIG. 1 is a diagram showing the transition process of short-circuit transition welding, FIG. 2 is a graph showing an example of welding current in short-circuit transition welding, and FIGS. 3 to 5 show changes in current in various embodiments of the present invention. This is a graph showing. Patent applicant Kobe Steel Co., Ltd. Patent attorney Aoyama and two attorneys

Claims (1)

【特許請求の範囲】[Claims] (1)溶接ワイヤと母材との間で短絡とアーク発生とを
交互に(り返す短絡を伴なう溶接においてアーク発生中
の電流をアーク発生後所定時間内は大きい溶接電流を供
給し、上記所定時間後、上記大きい溶接電流より小さい
電流を定電流特性で溶接ワイヤに供給することを特徴と
する短絡を伴なう溶接の電流制御方法。
(1) In welding with alternating short circuits and arc generation between the welding wire and the base metal (repeated short circuits), a large welding current is supplied during arc generation within a predetermined time after arc generation, A current control method for welding involving a short circuit, characterized in that after the predetermined time, a current smaller than the larger welding current is supplied to the welding wire with constant current characteristics.
JP7535483A 1983-04-28 1983-04-28 Controlling method of current for welding accompanying short circuit Pending JPS59202173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7535483A JPS59202173A (en) 1983-04-28 1983-04-28 Controlling method of current for welding accompanying short circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7535483A JPS59202173A (en) 1983-04-28 1983-04-28 Controlling method of current for welding accompanying short circuit

Publications (1)

Publication Number Publication Date
JPS59202173A true JPS59202173A (en) 1984-11-15

Family

ID=13573811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7535483A Pending JPS59202173A (en) 1983-04-28 1983-04-28 Controlling method of current for welding accompanying short circuit

Country Status (1)

Country Link
JP (1) JPS59202173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013920A (en) * 2011-07-05 2013-01-24 Daihen Corp Welding equipment
US8723081B2 (en) 2007-02-28 2014-05-13 Panasonic Corporation Welding output control method and arc welding equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965355A (en) * 1972-08-24 1974-06-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965355A (en) * 1972-08-24 1974-06-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723081B2 (en) 2007-02-28 2014-05-13 Panasonic Corporation Welding output control method and arc welding equipment
JP2013013920A (en) * 2011-07-05 2013-01-24 Daihen Corp Welding equipment

Similar Documents

Publication Publication Date Title
JP5061007B2 (en) Welding control apparatus, welding control method and program thereof
JP2005528223A (en) Control method and system for metal arc welding
JP3132409B2 (en) Consumable electrode type pulse arc welding machine controller
WO2019188124A1 (en) Gas shielded arc welding control method and control device
JP6757892B2 (en) Arc welding control method
US4618760A (en) Shielded arc welding using auxiliary voltage
US9962786B2 (en) Arc welding method, arc welding apparatus, and arc welding controller
WO2017038060A1 (en) Arc welding method and arc welding device
KR101642547B1 (en) Short arc welding system
JPS59202173A (en) Controlling method of current for welding accompanying short circuit
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JPH0641026B2 (en) Welding power output control method
WO2020075791A1 (en) Arc welding control method
JPH044074B2 (en)
JP2519321B2 (en) Consumable electrode arc welding equipment
JPS59202175A (en) Controlling method of current for welding accompanying short circuit
JPS60145278A (en) Method for controlling output of welding power source
WO2021235210A1 (en) Direct current arc welding control method
JPS58224070A (en) Arc welding
JPS588948B2 (en) Short-circuit transition type arc welding method
JPH0747210B2 (en) Feeding control method for consumable electrodes in DC welding equipment
JPH0438512B2 (en)
JPS60106669A (en) Method for controlling output of power source for welding
JPH0328260B2 (en)
JPS6044181A (en) Method for controlling output of welding power source