JPS59202138A - Foam generating method - Google Patents

Foam generating method

Info

Publication number
JPS59202138A
JPS59202138A JP7646783A JP7646783A JPS59202138A JP S59202138 A JPS59202138 A JP S59202138A JP 7646783 A JP7646783 A JP 7646783A JP 7646783 A JP7646783 A JP 7646783A JP S59202138 A JPS59202138 A JP S59202138A
Authority
JP
Japan
Prior art keywords
steel
foam
brick
molten steel
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7646783A
Other languages
Japanese (ja)
Other versions
JPH0330456B2 (en
Inventor
Koichi Takeda
紘一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7646783A priority Critical patent/JPS59202138A/en
Publication of JPS59202138A publication Critical patent/JPS59202138A/en
Publication of JPH0330456B2 publication Critical patent/JPH0330456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To control the diameter of the foam which floats from the surface of a porous body to a desired value in a foam generating method in which gas is blown into a molten metal from the lower part of a vessel thereof through the porous body by generating fluctuating electromagnetic force in the molten metal. CONSTITUTION:A molten steel 12 is put into a vessel 10 such as a ladle and inert gas G is forcibly fed to a porous brick 14 provided in the bottom thereof to generate a large number of foam 18 from the brick 14 into the molten steel 12. A magnetic field directed from the N to S pole is generated in the molten steel 12 by a magnetic field generator consisting of, for example, a pair of permanent magnets 20, 22 having the N and S poles. Electrodes 24, 26 are connected to an AC power source 28 and the electric current is passed from the one electrode to the other electrode or vise versa in the steel 12. An electromagnetic force F is then generated in the steel 12, and when the force F faces upward and downward, the head of the steel 12 on the surface of the brick 14 is respectively apparently large and small, by which the floating of the foam from the surface of the brick 14 is accelerated and suppressed. The size of the foam is thus controlled by changing the frequency, current amplitude, etc. of the power source 28.

Description

【発明の詳細な説明】 本発明は、溶融金属中に発生させる気泡を微細化するこ
とを可能にする気泡発生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bubble generation method that makes it possible to make the bubbles generated in molten metal finer.

鋼材の鋳造においては、転炉、電気炉などで精錬した溶
鋼を取鍋に受は取り、必要があるなら、更に二次的精錬
工程を加え、鋳型に注ぎ、鋼塊あるいは鋼片としていく
。鋼材成分は勿論所定成分となるように予め調整するが
、アルミナなどの介在物や水素、窒素などのガス成分が
混入し、鋼材品質を悪化する恐れがあり、これらを除く
一手段としてバブリングが行なわれる。バブリングは鋳
造に到る工程の間で、取鍋、真空脱ガス精錬炉あるいは
連続鋳造機におけるタンディツシュなどの様々な個所で
実施されうるものである。取鍋に例をとり説明すると、
これは取鍋の底にジルコニアなどからなる多孔性煉瓦を
取付け、該煉瓦を通して取鍋自溶鋼中にアルゴン(A「
)などの不活性ガスを吹き込み、取鍋の底から溶鋼表面
へ立ち昇る気泡を作る。N2.N2ガスなどはこのAr
ガス気泡中に取込まれ、またアルミナなどの介在物はA
rガス気泡の表面に付着して除去される。
In the casting of steel materials, molten steel refined in a converter or electric furnace is placed in a ladle, and if necessary, a secondary refining process is added, and then poured into molds to form steel ingots or slabs. Of course, the composition of the steel material is adjusted in advance so that it has the specified composition, but inclusions such as alumina and gas components such as hydrogen and nitrogen may be mixed in and deteriorate the quality of the steel material, so bubbling is performed as a means to remove these. It will be done. Bubbling can be carried out at various locations during the process leading up to casting, such as a ladle, a vacuum degassing furnace, or a tundish in a continuous casting machine. To explain using a ladle as an example,
This involves attaching a porous brick made of zirconia or the like to the bottom of the ladle, and passing argon (A') through the brick into the self-melting steel in the ladle.
) to create air bubbles that rise from the bottom of the ladle to the surface of the molten steel. N2. For N2 gas etc., use this Ar
Inclusions such as alumina are taken into gas bubbles, and inclusions such as alumina are
r It adheres to the surface of gas bubbles and is removed.

バブリングによる不純物除去を活発に行なわせるには微
細気泡を作るのが有効である。即ち微細気泡にすれば気
泡表面積が増加して非金属介在物の吸着に有利であり、
またN2.N2ガスなども微細、多数気泡の方が捕捉さ
れやすい。ガス、メタル間の精錬反応速度は界面積に比
例する。しかしながら従来法には気泡径を制御する有効
な方法が見当らない。多孔性煉瓦を用いる気泡発生では
、溶鋼ヘッドにより定まる圧力を越える圧力で不活性ガ
スを供給し、多孔性煉瓦を抜けて溶鋼側へ出た該ガスが
次第に大きくなって表面張力に打克つ浮力を得、遂に多
孔性煉瓦を離れて溶鋼中へ浮上開始することにより発生
するので、気泡径をある程度以下(通常数鶴φ程度)に
することは困難である。
In order to actively remove impurities by bubbling, it is effective to create fine bubbles. In other words, if the cells are made into fine cells, the surface area of the cells increases, which is advantageous for adsorption of nonmetallic inclusions.
Also N2. N2 gas and other gases are also more likely to be captured if they are fine and have a large number of bubbles. The refining reaction rate between gas and metal is proportional to the interfacial area. However, in the conventional methods, no effective method for controlling the bubble diameter has been found. In bubble generation using porous bricks, inert gas is supplied at a pressure that exceeds the pressure determined by the molten steel head, and the gas that passes through the porous bricks and exits to the molten steel gradually increases in size and creates buoyancy that overcomes the surface tension. Since the bubbles are generated when the bubbles finally leave the porous brick and start floating into the molten steel, it is difficult to reduce the diameter of the bubbles below a certain level (usually about a few cranes in diameter).

本発明はこの気泡径を制御する方法を提供しようとする
ものであり、溶融金属を収容する容器の下部から多孔性
体を通してガスを吹込み、該熔融金属中に気泡を発生さ
せる方法において、該容器中の熔融金属に変動する電磁
力を発生させて該多孔性体の表面に作用する見掛は圧を
変動させ、該多孔性体の表面より浮上する気泡の径を所
望値に制御することを特徴とするものである。以下図面
を参照しながらこれを詳細に説明する。
The present invention aims to provide a method for controlling the bubble diameter, and includes a method of blowing gas through a porous body from the lower part of a container containing molten metal to generate bubbles in the molten metal. generating a varying electromagnetic force in molten metal in a container to vary the apparent pressure acting on the surface of the porous body, and controlling the diameter of bubbles floating from the surface of the porous body to a desired value; It is characterized by: This will be explained in detail below with reference to the drawings.

第1図は本発明の実施例を示し、10は取鍋などの容器
で、内部に溶鋼12を収容し、底部には多孔性煉瓦14
を備える。16はこの多孔性煉瓦に不活性ガスGを供給
するパイプである。圧力を加えてガスGをパイプ16に
供給すれば多孔性煉瓦14から多数の気泡18が溶鋼1
2内に発生する。20.22は一対の磁界発生装置で、
本例では永久磁石であり、前者はN極、後者はS極で、
溶鋼12中にN極からS極へ向う磁界を作る。24.2
6は電極で、交流電源28に接続され、溶鋼12中に一
方の電極から他方の電極へまたこの逆へ電流を流す。
FIG. 1 shows an embodiment of the present invention, in which 10 is a container such as a ladle, which contains molten steel 12, and a porous brick 14 at the bottom.
Equipped with 16 is a pipe that supplies inert gas G to this porous brick. When gas G is supplied to the pipe 16 under pressure, a large number of bubbles 18 are generated from the porous brick 14 into the molten steel 1.
Occurs within 2. 20.22 is a pair of magnetic field generators,
In this example, they are permanent magnets, the former being the north pole and the latter being the south pole.
A magnetic field is created in the molten steel 12 from the north pole to the south pole. 24.2
Reference numeral 6 denotes an electrode, which is connected to an AC power source 28 and allows current to flow through the molten steel 12 from one electrode to the other electrode and vice versa.

このような磁界発生手段および電流供給手段を設けると
溶鋼に電磁力が発生する。即ち磁界の磁束密度をB、電
流をI、電磁力をFとすればF−BXIであり (これ
らはいずれもベクトルで、×はベクトルの外積)、磁界
発生装置は永久磁石なのでBは一定、電流■は交流なの
で方向は正、逆に変ると、電磁力Fは図示のように交互
に上方または下方を向く。電磁力Fが上方を向くとき多
孔性煉瓦14の表面における溶鋼ヘッドは見掛は上手に
なり、電磁力Fが下方を向くとき多孔性煉瓦14の表面
における溶鋼ヘッドは見掛は上人になる。第2図はこれ
を示すグラフで、横軸には時間、縦軸には見掛は圧をと
っである。溶鋼圧がこのように変動すると、該圧力が大
なるとき多孔性煉瓦14の表面からの気泡浮上は抑えら
れ、該圧力が小なるとき気泡浮上は促進される。つまり
気泡は圧力が下ったとき浮上するようになるから、交流
電源28の周波数及び電流振幅などを変えることにより
気泡径の制御ができる。
When such magnetic field generation means and current supply means are provided, electromagnetic force is generated in the molten steel. In other words, if the magnetic flux density of the magnetic field is B, the current is I, and the electromagnetic force is F, then F-BXI (all of these are vectors, and x is the cross product of vectors), and since the magnetic field generator is a permanent magnet, B is constant. Since the current ■ is alternating current, when the direction changes from positive to reverse, the electromagnetic force F alternately points upward or downward as shown. When the electromagnetic force F is directed upward, the appearance of the molten steel head on the surface of the porous brick 14 is good, and when the electromagnetic force F is directed downward, the appearance of the molten steel head on the surface of the porous brick 14 is superior. . Figure 2 is a graph showing this, with time on the horizontal axis and apparent pressure on the vertical axis. When the molten steel pressure fluctuates in this manner, when the pressure increases, bubble floating from the surface of the porous brick 14 is suppressed, and when the pressure decreases, bubble floating is promoted. In other words, since the bubbles float when the pressure decreases, the bubble diameter can be controlled by changing the frequency and current amplitude of the AC power source 28.

溶鋼圧の変動幅は磁界の強さ及び又は電流の強さにより
調整でき、必要なら負圧にすることもできる。B=0.
8T、I =10A/cJのとき電磁力Fは重力にはν
゛等しいから、多孔性煉瓦14の表面にはO〜2Gの範
囲で変動する溶鋼圧が加わる。
The fluctuation range of the molten steel pressure can be adjusted by the strength of the magnetic field and/or the strength of the current, and if necessary, a negative pressure can be applied. B=0.
When 8T, I = 10A/cJ, the electromagnetic force F is ν for gravity
Since they are equal, a molten steel pressure varying in the range of 0 to 2G is applied to the surface of the porous brick 14.

煉瓦14は適宜の多孔性体に変えてよいが溶鋼に用いる
場合は勿論耐火性体である必要がある。
The bricks 14 may be made of any suitable porous material, but if used for molten steel, it is of course necessary to be a refractory material.

また溶鋼の場合は容器底部荷重は相当に大きくなるから
機械的強度に留意する必要があり、容器底全面から発泡
させる場合は多孔性体14を複数個分散配置する。磁界
は交流磁界としてもよいが、溶鋼中に渦電流を発生させ
て磁気遮蔽効果を生じるから周波数を余り高くすること
はできない。
In addition, in the case of molten steel, the load at the bottom of the container is considerably large, so it is necessary to pay attention to mechanical strength, and when foaming is carried out from the entire bottom of the container, a plurality of porous bodies 14 are distributed and arranged. The magnetic field may be an alternating magnetic field, but the frequency cannot be made too high because it generates eddy currents in the molten steel and produces a magnetic shielding effect.

次に本発明方法による吹き込み気泡の微細化の実例を挙
げる。底の一部が多孔性煉瓦よりなる容器内を熔融状態
の鉛・すず系合金で満たし、底部の多孔性煉瓦を通じ熔
融金属中に窒素ガスを吹き込んだところ、窒素ガスは5
〜10mm直径の気泡となり浮上することが観察された
。この状態で多孔性煉瓦表面上の磁界ベクトル方向がお
おむね水平方向で、その強さが1.2Tであるような直
流磁界を電磁石装置により発生させかつ同時に溶融金属
中に、周波数が50H2で磁界および気泡浮上方向のい
づれにも直交し、その密度が5 A / cJ程度の交
流電流を通じたところ、浮上する窒素ガスの気泡径は2
〜4■になった。
Next, an example of the miniaturization of blown bubbles by the method of the present invention will be given. A container with a part of the bottom made of porous bricks was filled with molten lead-tin alloy, and nitrogen gas was blown into the molten metal through the porous bricks at the bottom.
Bubbles with a diameter of ~10 mm were observed to float. In this state, an electromagnetic device generates a DC magnetic field whose magnetic field vector direction on the surface of the porous brick is approximately horizontal and whose strength is 1.2T, and at the same time, a magnetic field is generated in the molten metal at a frequency of 50H2. When an alternating current with a density of about 5 A/cJ is passed perpendicular to both bubble floating directions, the bubble diameter of the floating nitrogen gas is 2.
It became ~4■.

以上説明したように本発明によれば比較的簡単な手段に
より溶鋼つまり溶融金属中に作る気泡の径を調整するこ
とができ、甚だ有効である。
As explained above, according to the present invention, the diameter of the bubbles formed in molten steel, that is, molten metal, can be adjusted by relatively simple means, and is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図、第2図は見かけ
圧の変動を説明する図である。 図面で、10は容器、12は溶融金属、14は多孔性体
、Gはガス、18は気泡、20,22゜24.26は電
磁力発生手段である。 出 願 人   新日本!!!鐵株式会社代理人弁理士
  青  柳    稔 第1区 第2図 Bう間
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a diagram explaining changes in apparent pressure. In the drawing, 10 is a container, 12 is a molten metal, 14 is a porous body, G is a gas, 18 is a bubble, and 20, 22° 24.26 is an electromagnetic force generating means. Applicant: New Japan! ! ! Tetsuko Co., Ltd. Representative Patent Attorney Minoru Aoyagi District 1, Figure 2 B Uma

Claims (1)

【特許請求の範囲】[Claims] 溶融金属を収容する容器の下部から多孔性体を通してガ
スを吹込み、該溶融金属中に気泡を発生させる方法にお
いて、該容器中の熔融金属に変動する電磁力を発生させ
て該多孔性体の表面に作用する見掛は圧を変動させ、該
多孔性体の表面より浮上する気泡の径を所望値に制御す
ることを特徴とする気泡発生方法。
A method of blowing gas through a porous body from the lower part of a container containing molten metal to generate air bubbles in the molten metal. A method for generating bubbles, characterized in that the diameter of bubbles floating from the surface of the porous body is controlled to a desired value by varying the apparent pressure acting on the surface.
JP7646783A 1983-04-30 1983-04-30 Foam generating method Granted JPS59202138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7646783A JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7646783A JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Publications (2)

Publication Number Publication Date
JPS59202138A true JPS59202138A (en) 1984-11-15
JPH0330456B2 JPH0330456B2 (en) 1991-04-30

Family

ID=13605967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7646783A Granted JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Country Status (1)

Country Link
JP (1) JPS59202138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261141B2 (en) * 2002-02-22 2007-08-28 Hideo Nakajima Metal porous body manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609895B2 (en) * 2012-01-12 2014-10-22 新日鐵住金株式会社 How to generate bubbles in molten steel
JP6492554B2 (en) * 2014-11-07 2019-04-03 株式会社豊田自動織機 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261141B2 (en) * 2002-02-22 2007-08-28 Hideo Nakajima Metal porous body manufacturing method

Also Published As

Publication number Publication date
JPH0330456B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
US3547622A (en) D.c. powered plasma arc method and apparatus for refining molten metal
JP6798575B2 (en) Desulfurization method of molten metal
JPS59202138A (en) Foam generating method
Kawakami et al. Electrode reactions in DC electroslag remelting of steel rod
Furui et al. Fabrication of small aluminum ingot by electromagnetic casting
US7448431B2 (en) Method of continuous steel casting
JPH06128660A (en) Method for producing bubble in molten metal
KR101526454B1 (en) Apparatus and method for electromagnetic stirring
JP2576304Y2 (en) Apparatus for heating molten steel in ladle by DC arc
JPH06172880A (en) Method for generating bubbles in molten metal
Garnier The Clifford Paterson Lecture, 1992 Magentohydrodynamics in material processing
ES2106501T5 (en) CONTINUOUS FOUNDATION OF METALS AND ITS ALLOYS.
JPH05185182A (en) Method for developing bubbles in molten metal
CN112593045A (en) High-temperature alloy smelting slagging process for intermediate frequency furnace
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JPH05306418A (en) Method for producing gas bubbles in molten metal
US5974075A (en) Method of Magnetically-controllable, electroslag melting of titanium and titanium-based alloys and apparatus for carrying out same
JPH07238327A (en) Vacuum electroslag remelting furnace
JPH01150450A (en) Method and device for treating non-solidifying section of casting strand
JP4143062B2 (en) Method for melting surface layer of metal material
CN205152302U (en) Use electroslag equipment of electrochemistry deoxidation
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
SU865945A1 (en) Method of producing porous material
US6349107B1 (en) Method of magnetically-controllable, electroslag melting of titanium and titanium-based alloys, and apparatus for carrying out same
KR970007154B1 (en) Back flow method of molten metal with vaccum degasification device