JPS59202073A - Diagnosis of insulation deterioration of power cable - Google Patents

Diagnosis of insulation deterioration of power cable

Info

Publication number
JPS59202073A
JPS59202073A JP58076882A JP7688283A JPS59202073A JP S59202073 A JPS59202073 A JP S59202073A JP 58076882 A JP58076882 A JP 58076882A JP 7688283 A JP7688283 A JP 7688283A JP S59202073 A JPS59202073 A JP S59202073A
Authority
JP
Japan
Prior art keywords
voltage
cable
leakage current
superimposed
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58076882A
Other languages
Japanese (ja)
Other versions
JPH038710B2 (en
Inventor
Makoto Shibata
誠 柴田
Satoru Yamamoto
哲 山本
Teruo Yoshimoto
吉本 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58076882A priority Critical patent/JPS59202073A/en
Publication of JPS59202073A publication Critical patent/JPS59202073A/en
Publication of JPH038710B2 publication Critical patent/JPH038710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To make it possible to more accurately judge the insulation deterioration of a power cable, by superposing DC voltage and AC voltage to a cable to be measured to measure a DC leak current. CONSTITUTION:AC voltage of an AC power source 7 is superposed to DC voltage generated from a DC power source 8 and the superposed voltage is applied to a CV cable 3 to be measured from a cable conductor side through a protective resistor 6 while a DC leak current is measured through the earthing wire taken out from the metal shield layer of the cable 3 by a measuring part 5.

Description

【発明の詳細な説明】 本発明は、電カケープル、主に架橋ポリエチレン絶縁?
■J、カケ−プル(CVケーブル)の絶縁劣化診断法に
関するものである。
[Detailed Description of the Invention] The present invention provides electric cables mainly insulated by cross-linked polyethylene.
■J, Concerning a method for diagnosing insulation deterioration of cables (CV cables).

従来、停止線路あるいは線路より撤去したケーブルの絶
縁劣化診断を行なう際には、ケーブルの導体側から負極
性の直流高電圧を印加し、当該ケーブルに流れる直流漏
洩電流の絶対値、時間特性の変化から、劣化状況を判定
していた。
Conventionally, when diagnosing insulation deterioration of a stopped track or a cable that has been removed from a track, a negative DC high voltage is applied from the conductor side of the cable, and changes in the absolute value and temporal characteristics of the DC leakage current flowing through the cable are measured. The state of deterioration was determined based on this.

一方’I CVケーブルの絶縁劣化は主として水トリー
劣化によるものである。この水トリーはケーブルの内部
半導電層から発生する内導水トリー  を外部半導電層
から発生する外導水トリーに分けられる。
On the other hand, insulation deterioration of 'I CV cables is mainly due to water tree deterioration. This water tree can be divided into an inner water tree generated from the cable's inner semiconducting layer and an outer water tree generated from the outer semiconductive layer.

本発明者らは水トリーに関する現象を研究している過程
で次のことを発見した。すなわち、内導水トリーの発生
した強制劣化ケーブルに導体側から正極性の直流電圧を
印加した場合、当該ケーブルに流れる直流漏洩電流値は
水トリーの発生していない正常ケーブルと大差ないが、
負極性の直流電圧を印加すると正常ケーブルと差異がみ
られること、寸だ外導水トリーの発生した強制劣化ケー
ブルの場合、内導水トリーの発生したケーブルと全く逆
の特性があることである。
The present inventors discovered the following in the course of researching phenomena related to water trees. In other words, when a positive DC voltage is applied from the conductor side to a forcibly deteriorated cable in which an internal water tree has occurred, the value of the DC leakage current flowing through the cable is not much different from that of a normal cable without a water tree;
When a negative polarity DC voltage is applied, a difference is seen from a normal cable, and in the case of a forcedly deteriorated cable with external water guiding trees, the characteristics are completely opposite to those of cables with internal water guiding trees.

さらにもう1つの大きな発見は、」二連した正・負両極
性の直流電圧を印加して直流漏洩′限流を測定する際、
直流電圧に交流電圧を重畳して直流漏洩電流を測定する
と、前述の特性が極めて顕著にあられれることである。
Another major discovery was that when measuring the DC leakage current limit by applying two continuous DC voltages of both positive and negative polarities,
When direct current leakage current is measured by superimposing an alternating current voltage on a direct current voltage, the above-mentioned characteristics are extremely apparent.

これらのことは、単一極性の直流電圧だけを印加するの
みでは、ケーブルの劣化判定が正確にできないことを示
している。
These facts indicate that it is not possible to accurately determine cable deterioration by applying only a single-polarity DC voltage.

本発明の目的は、前記した従来技術の欠点を解消し、?
J′]、カケ−プルの絶縁劣化をより正確に判定できる
方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art.
J'], an object of the present invention is to provide a method that can more accurately determine the insulation deterioration of a cable.

すなわち、本発明の要旨、lri、測定対象とする電カ
ケープルに正極性及び負極性の直流電圧を印加して当該
ケーブルに流れる直流漏洩電流を測定する際に、交流電
圧を重畳することにある。
That is, the gist of the present invention is to superimpose an alternating current voltage when applying positive and negative direct current voltages to a power cable to be measured and measuring the direct current leakage current flowing through the cable.

丑ず、最初に正及び負極性の直流電圧に加え、交流電圧
を重畳させる理由について、実験事実をもとに説明する
First, the reason for superimposing AC voltage in addition to positive and negative DC voltages will be explained based on experimental facts.

実験に用いたケーブルは、6Kl’400+y講Cvケ
ーブルで、正常ケーブル、内導水トリーの発生した強制
劣化ケーブル2本及び外導水l・す〜の発生した強:1
ill劣化ケ一ブル2本の5種である。
The cables used in the experiment were 6Kl'400+y class Cv cables, including a normal cable, two forcedly deteriorated cables with internal water conduction trees, and a strong cable with external water conduction l・su~.
There are 5 types with 2 ill deteriorated cables.

これら5種のケーブルに正及び負極性の直流電圧を印加
し、寸たは正及び負極性の直流電圧を印加し、さらに交
流電圧を重畳し、当該各ケーブルに流れる直流漏洩電流
をF波器を通して測定した。
By applying positive and negative polarity DC voltages to these five types of cables, or applying positive and negative polarity DC voltages, and then superimposing AC voltage, the DC leakage current flowing through each cable is measured using an F-wave detector. Measured through.

第1図は、正常−ケーブルの場合の直流漏洩電流の時間
特性である。なお、図中(11)は正極性1白流電圧の
み印加の場合の特性曲線、(12)は負極性直流電圧の
み印加の場合の特性曲線、、  (13)は正極性直流
電圧に交流電圧E1を重畳させて印加した場合の特性曲
線、(14)は負極性直流電圧に交流電圧E+を重畳さ
せて印加した場合の特性曲線、(15)は正極性直流電
圧に交流電圧E2を重畳させて印加した場合の特性曲線
、(16)は負極性直流電圧に交流電圧E2を重畳させ
て印加した場合の特性曲線である。(但し、El<E2
)  図から明らかなように、直流電圧のみを印加した
場合、直流電圧に交流電圧を重畳して印加した場合とも
に直流漏洩電流は正及び負において同様な傾向を示し7
た。
FIG. 1 shows the time characteristics of DC leakage current in the case of a normal cable. In the figure, (11) is the characteristic curve when only positive polarity 1 white current voltage is applied, (12) is the characteristic curve when only negative polarity DC voltage is applied, and (13) is the characteristic curve when only positive polarity DC voltage and AC voltage are applied. The characteristic curve when E1 is superimposed and applied, (14) is the characteristic curve when AC voltage E+ is applied superimposed on negative polarity DC voltage, and (15) is the characteristic curve when AC voltage E2 is superimposed on positive polarity DC voltage. The characteristic curve (16) is the characteristic curve when the AC voltage E2 is applied superimposed on the negative polarity DC voltage. (However, El<E2
) As is clear from the figure, the DC leakage current shows the same tendency in the positive and negative directions when only DC voltage is applied and when AC voltage is superimposed on DC voltage.
Ta.

第2図及び第3図は、内導水トリーの発生した強制劣化
ケーブルの直流漏洩電流の時間特性である。
FIGS. 2 and 3 show the time characteristics of the DC leakage current of a forcedly degraded cable in which an internal water guiding tree has occurred.

なお、図中(17)及び(23)は正極性直流電圧のみ
印加の場合の特性曲線、(18)及び(24)U%、h
性直流電圧のみ印加の場合の特性曲線、(19)及び(
25)は正極性直流電圧に交流電圧E1を重畳させて印
加の場合の特性曲線、(20)及び(26)は負極性直
流電圧に交流電圧E1を重畳させて印加の場合の特性曲
線、(21)及び(27)は正極性直流電圧に交流電圧
E2を重畳させて印加の場合の特性曲線、(22)及び
(28)は負極性直流電圧に交流電圧E2を重畳させて
印加の場合の特性曲線である。
In addition, (17) and (23) in the figure are characteristic curves when only positive polarity DC voltage is applied, (18) and (24) U%, h
The characteristic curves when only the normal DC voltage is applied, (19) and (
25) is the characteristic curve when the AC voltage E1 is superimposed on the positive polarity DC voltage and applied, (20) and (26) are the characteristic curve when the AC voltage E1 is applied and superimposed on the negative polarity DC voltage, ( 21) and (27) are the characteristic curves when applying AC voltage E2 superimposed on positive polarity DC voltage, and (22) and (28) are the characteristic curves when applying AC voltage E2 superimposed on negative polarity DC voltage. It is a characteristic curve.

第2図からは、次のことが言える。正・負両極性の直流
電圧を印加した場合及び正極性直流電圧に交流電圧E1
、E2 (]’2+ < E2 )を重畳して印加した
場合の直流漏洩電流値及びその時間%lnEは、正常ケ
ーブルの場合と大差ないが、負極性直流電圧に交流電圧
F、1、E2を重畳して印加した場合は、正常ケーブル
に比へて大きな直流漏洩電流が流れ、しかもそれは順増
[頃向を示す。
From Figure 2, the following can be said. When applying a DC voltage with both positive and negative polarity, and when applying an AC voltage E1 to the positive DC voltage
, E2 (]'2+ < E2) are applied in a superimposed manner, and the DC leakage current value and its time %lnE are not much different from those of a normal cable. When applied in a superimposed manner, a large DC leakage current flows compared to a normal cable, and it also increases gradually.

才だ、第3図においては、正極性直流電圧のみ印加した
場合及びこれに交流電圧EIXE2 を重畳して印加し
た場合の直流漏洩電流の時間特性は、正常ケーブルの場
合と大差ないが、負極性直流電圧のみを印加した場合は
正極性直流電圧のみを印加した場合に比へて大きな直流
漏洩電流が流れ、さらに交流電圧を重畳して印加すると
、第2図で述へた傾向がさらに増巾された。これら2種
のケーブルの水トリー観察を行なった結果、第2図のケ
ーブルの水トリー発生数及び長さともに第3図のケーブ
ルのそれらよゆ小さかった。
In Figure 3, the time characteristics of the DC leakage current when only the positive polarity DC voltage is applied and when the AC voltage EIXE2 is superimposed and applied are not much different from those of the normal cable, but the negative polarity When only DC voltage is applied, a large DC leakage current flows compared to when only positive polarity DC voltage is applied, and when AC voltage is applied in addition, the tendency described in Figure 2 is further amplified. It was done. As a result of water tree observation of these two types of cables, both the number of water trees generated and the length of the cable shown in FIG. 2 were smaller than those of the cable shown in FIG. 3.

第4図及び第5図は外導水トリーの発生した強制劣化ケ
ーブルの直流漏洩電流の時間特性である。
FIGS. 4 and 5 show the time characteristics of the DC leakage current of the forcedly deteriorated cable in which the external water conduction tree has occurred.

なお、図中(29)及び(35)は正極性直流電圧のみ
印加の場合の特性曲線’、  (30)及び(36)は
負極性直流電圧のみ印加の場合の特性曲線、(31)及
び(37)は正極性直流電圧に交流電圧層を重量させて
印加の場合の特性曲線、(32)及び(38)は負極性
直流電圧に交流電圧E+を重畳させて印加の場合の特性
曲線、(33)及び(39)は正極性直流電圧に交流電
圧E2を重畳させて印加の場合の時計曲線、(34)及
び(40)は負極性直流電圧に交流電圧E2を重畳させ
て印加の場合の特性曲線である。
In the figure, (29) and (35) are the characteristic curves when only positive polarity DC voltage is applied, (30) and (36) are the characteristic curves when only negative polarity DC voltage is applied, and (31) and ( 37) is the characteristic curve when a positive polarity DC voltage is applied with an AC voltage layer as a weight, (32) and (38) are the characteristic curves when an AC voltage E+ is superimposed on a negative polarity DC voltage, and ( 33) and (39) are the clock curves when the AC voltage E2 is superimposed on the positive polarity DC voltage and applied, and (34) and (40) are the clock curves when the AC voltage E2 is applied and superimposed on the negative polarity DC voltage. It is a characteristic curve.

第4図は次のことを示唆している。正・負両極性の直流
電圧のみを印加した場合及び負極性直流iJj、圧に交
流電圧E1、E2 (E+ <E2 )を重畳して印加
した場合の直流漏洩電流値及びその時間特性は、正常ケ
ーブルの場合と大差ないが、正極性直流電圧に交流電圧
E1、]会を重畳して印加すると正常ケーブルに比して
大きな直流漏洩電流が流れ、しかもそれは漸増傾向を示
す。
Figure 4 suggests the following. The DC leakage current value and its time characteristics are normal when only positive and negative polarity DC voltage is applied or when AC voltage E1, E2 (E+ <E2) is applied superimposed on negative polarity DC iJj, voltage. Although it is not much different from the case of a cable, when a positive polarity DC voltage and an AC voltage E1,] are superimposed and applied, a large DC leakage current flows compared to a normal cable, and moreover, it shows a tendency to gradually increase.

−iだ、第5図においては、負極性直流電圧のみを印加
した場合及びこれに交流電圧E1、E2を重畳して印加
した場合直流漏洩電流の時間特性は、正常ケーブルの場
合と大差ないが、正極性直流電圧のみを印加した場合、
負極性直流電圧のみを印加した場合に比へて、大きな直
流漏洩電流が流れ、しかもそれに交流電圧を重畳して印
加すると第4図で述へた傾向がさらに増巾される。
-i, in Figure 5, the time characteristics of the DC leakage current when only the negative polarity DC voltage is applied and when the AC voltages E1 and E2 are applied superimposed on it are not much different from those of the normal cable. , when only positive polarity DC voltage is applied,
A large DC leakage current flows compared to when only a negative polarity DC voltage is applied, and when an AC voltage is superimposed and applied, the tendency described in FIG. 4 is further amplified.

水トリーの観察結果に関しては、前述したと同様第5図
のケーブルの水トリー発生数及び長さともに第4図のケ
ーブルのそれらより大きかった。
Regarding the observation results of water trees, as mentioned above, both the number of water trees generated and the length of the cable shown in FIG. 5 were larger than those of the cable shown in FIG. 4.

以上に述べたことより次のことがいえる。From what has been said above, the following can be said.

(1)負極性の直流電圧をケーブル導体側から印加し、
直流漏洩電流を測定することにより、偶々、ある種のケ
ーブル劣化状態を知ることができる場合があるが、正確
に劣化状態を判定することはできない。
(1) Apply negative polarity DC voltage from the cable conductor side,
By measuring the DC leakage current, it may be possible to know a certain type of cable deterioration state, but it is not possible to accurately determine the deterioration state.

(2)正・負両極性の直流電圧をそれぞれケーブル導体
に印加し、さらにこれに交流電圧を重畳させ、この時ケ
ーブルに流れる直流漏洩電流の絶対値並びに正・負極性
における直流漏洩電流の時間特性の変化を知ることによ
り、正確にケーブルの劣化状況を判定することができる
(2) DC voltages of both positive and negative polarities are applied to the cable conductors, and an AC voltage is superimposed on this. At this time, the absolute value of the DC leakage current flowing through the cable and the time of the DC leakage current in positive and negative polarities. By knowing the changes in characteristics, it is possible to accurately determine the deterioration status of the cable.

(3)  さらに、ケーブルの絶縁劣化が内導水トリー
あるいは外導水l・リ−のいずれに起因するのかを半1
」別することができる。
(3) Furthermore, it is possible to determine whether cable insulation deterioration is caused by the inner water guide tree or the outer water guide tree.
” can be separated.

なお、印加する直流電圧及び交流電圧の大きさに関しで
は次のとおりである。
The magnitudes of the applied DC voltage and AC voltage are as follows.

直流電圧の大きさは、正・負両極性とも、いわゆる一般
に推奨されている値(表1参照)までがよい。その理由
は、正常ケーブルに比して絶縁劣化が進んでいても、使
用継続可能のケーブルが多々あり、この使用継続可能な
ケーブルにむやみに高い電圧を印加するとケーブルを絶
縁破壊させる可能性か強いためである。
The magnitude of the DC voltage is preferably up to the so-called generally recommended values (see Table 1) for both positive and negative polarities. The reason for this is that there are many cables that can continue to be used even if their insulation has deteriorated compared to normal cables, and if an unnecessarily high voltage is applied to these cables that can continue to be used, there is a strong possibility that the cable will break down. It's for a reason.

重量する交流電圧に対しても、使用電圧までが良い。そ
の理由は直流電圧の場合と同様である。
Even for heavy AC voltage, it is good up to the working voltage. The reason is the same as in the case of DC voltage.

表  1 次に、」−記の知見をもとに数多くの6 K’ll後の
強制劣化CVケーブルを用いて実験を行々い第6図、第
7図、第8図、第9図及び第10図に示すような結果を
得た。
Table 1 Next, based on the knowledge described in "-", we conducted experiments using a number of forcedly degraded CV cables after 6 K'll, and the results shown in Figures 6, 7, 8, 9, and The results shown in FIG. 10 were obtained.

第6図d、内導水トリーの発生したケーブル導体に10
〜16000Vの負極性直流電圧を印加し、重畳する交
流電圧の値を変えた場合の直流漏洩電流の測定結果であ
る。まだ、第7図は外導水トリーの発生したケーブル導
体に10〜16000Vの正極性直流電圧を印加し、重
畳する交流電圧の値を変えた場合の直流漏洩電流の測定
結果である。
Figure 6 d, 10 on the cable conductor where the inner water guide tree has occurred.
These are the measurement results of DC leakage current when applying a negative polarity DC voltage of ~16000V and changing the value of the superimposed AC voltage. FIG. 7 shows the measurement results of the DC leakage current when a positive DC voltage of 10 to 16,000 V was applied to the cable conductor where the external water conducting tree occurred and the value of the superimposed AC voltage was changed.

これらの結果より、内・外導水トリーの発生したケーブ
ルの直流漏洩電流は、交流電圧を重畳して印加すること
により直流電圧のみ印加の場合の直流漏洩電流より実に
2〜3桁犬きくなることがわかる。
From these results, the DC leakage current of a cable where an internal/external water conduction tree has occurred is actually 2 to 3 orders of magnitude higher by applying AC voltage in a superimposed manner than the DC leakage current when only DC voltage is applied. I understand.

第8図は、内・外導水トリーが絶縁体に占める体積と、
直流電圧に交流電圧3000Vγ111 Sを重量して
印加した時の直流漏洩電流の絶対値の関係の例を示した
ものである。
Figure 8 shows the volume that the inner and outer water guide trees occupy in the insulator, and
This figure shows an example of the relationship between the absolute value of the DC leakage current when an AC voltage of 3000 Vγ111 S is applied to the DC voltage.

この結果より、水トリーが絶縁体に占める体積が大きく
なるにつれて直流漏洩電流値が大きくなることがわかる
This result shows that the DC leakage current value increases as the volume occupied by the water tree in the insulator increases.

第9図は、水斗す一の最大長と水トリーが絶縁体に占め
る体積の関係を示したものであり、水1・リーが絶縁体
に占める体積が大きいほど、出現する最大水トリー長は
大きい。
Figure 9 shows the relationship between the maximum length of the water tree and the volume that the water tree occupies in the insulator.The larger the volume that the water tree occupies in the insulator, the longer the maximum water tree that appears is big.

第10図は、水トリーが絶縁体に占める体積とそれらケ
ーブルの交流破壊電圧値の関係を示したものであり、水
トリーが絶縁体に占める体積の増加とともに交流破壊電
圧値が低下することがわかる。
Figure 10 shows the relationship between the volume occupied by the water tree in the insulator and the AC breakdown voltage value of those cables, and shows that the AC breakdown voltage value decreases as the volume occupied by the water tree in the insulator increases. Recognize.

第6図、第7図、第8図、第9図及び第10図の結果よ
り、CVケーブルの絶縁劣化診断を行なう際、正及び負
極性電圧を印加し、さらに交流電圧を重畳して直流漏洩
電流を測定することにより、橙めて正確な絶縁診断を行
なえることができるといえる。なお、第6図、第7図及
び第10図の中の(イ)、(ロ)及び(ハ)で示す線は
、6に′v級ケーブルの常規大地電圧(3゜8KVγm
 s )を示す線である。
From the results shown in Figures 6, 7, 8, 9, and 10, when diagnosing insulation deterioration of CV cables, positive and negative polarity voltages are applied, and AC voltage is superimposed and DC voltage is applied. It can be said that by measuring the leakage current, it is possible to perform a more accurate insulation diagnosis. Note that the lines indicated by (a), (b), and (c) in Figures 6, 7, and 10 indicate the normal ground voltage (3°8KVγm
s ).

第11図及び第12図に直流電圧に交流電圧を重畳して
印加した場合の直流漏洩電流の測定例を示す。
FIGS. 11 and 12 show examples of measurement of DC leakage current when applying an AC voltage superimposed on a DC voltage.

直流電源(直流電圧発生装置)8により発生させた直流
電圧に交流電源(交流電圧発生装置)7一ブル導体側か
らこの電圧を測定対象とするcVケーブル3に印加し、
当該ケーブル3の金属遮へい層(図示せず。)から取り
出した接地線4全通して直流漏洩電流測定部5で直流漏
洩電流を測定する。この直流漏洩電流測定部5は、E波
器増巾器、ピークホールド回路、直流電流計等がらなり
、直流漏洩電流を測定するものである。
Applying this voltage to the DC voltage generated by the DC power source (DC voltage generator) 8 from the bull conductor side of the AC power source (AC voltage generator) 7 to the cV cable 3 to be measured,
The grounding wire 4 taken out from the metal shielding layer (not shown) of the cable 3 is completely passed through, and the DC leakage current is measured by the DC leakage current measuring section 5. This DC leakage current measuring section 5 is made up of an E-wave amplifier, a peak hold circuit, a DC ammeter, etc., and measures DC leakage current.

直流漏洩電流測定部5は、上述した測定器の他にデータ
演算処理部、記録部、出力部を有している。なお、1は
ケーブル端末部、2はガード、aはブロッキングコイル
、1oは結合コンデンサである。
The DC leakage current measurement section 5 includes a data calculation processing section, a recording section, and an output section in addition to the above-mentioned measuring device. Note that 1 is a cable terminal, 2 is a guard, a is a blocking coil, and 1o is a coupling capacitor.

第11図及び第12図の直流漏洩電流測定部5は、高圧
例に設置し、光ファイバにより信号を伝送して測定する
方法も考えられる。
It is also conceivable that the DC leakage current measuring section 5 in FIGS. 11 and 12 be installed at a high voltage, and the measurement may be performed by transmitting a signal through an optical fiber.

以上の通りであるから、本発明によれば電カケープルの
正確な絶縁診断が可能となり、電カケ〜プルの破壊事故
を、延いては停電事故を未然に防ぐことができる。従っ
て、停電事故にょる電力需委家ならびに電力供給家の損
害を大巾に低減できる。
As described above, according to the present invention, it is possible to accurately diagnose the insulation of a power cable, and it is possible to prevent damage to power cables and pulls, and by extension, power outage accidents. Therefore, it is possible to greatly reduce the damage to the electric power demand collector and the electric power supplier due to a power outage accident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正・負両極性の直流電圧のみを印加した場合及
びこれに交流電圧を重畳し2て印加した時の正常CVケ
ーブルの直流漏洩電流の時間特性図、第2図、第3図は
正・負両極性の直流電圧のみを印加した場合及、びこれ
に交流電圧を重畳して印加した時の内導水トリーが発生
したCVケーブルの直流漏洩電流の時間特性図、第4図
、第5図は正・負両極性の直流電圧のみを印加した場合
及びこれに交流電圧を重畳して印加した時の外導水トリ
ーが発生したC Vケーブルの直流漏洩電流の時間特性
図、第6図は内導水トリーの発生したCVケーブルに負
極性直流電圧を印加し、重畳する交流電圧を変えた時の
直流漏洩電流の特性図、第7図16士外導水1. IJ
−の発生したC■ケーブルに正極性直流′電圧を印加し
、重畳する交流電圧を変えた時の直流漏洩電流の特性図
、第8図は内・外導水1・流電圧を重畳して印加した時
の直流漏洩電流の絶対値の関係の特性図、第9図は水ト
リーの最大長と水トリーが絶縁体に占める体積の関係図
、第10図は水トリーが絶縁体に占める体積とケーブル
の交流破壊電圧値の関係図、第11図及び第12図はそ
れぞれ本発明の詳細な説明図、すなわち正・負極性直流
電圧に交流電圧を重畳して、この時流れる直流漏洩電流
を測定する回路の示す図である。 (1:ケーブル端末部) (2°ガード) (3ケーブル) (4:接地線) (5:直流漏洩電流測定部) (6゛保護抵抗) (7:交流電圧発生装置) (8:直流電圧発生装置) (9゛ブロツキングコイル) 免9図 OSo              100A<  l
−リーカ\゛ 絶λ振イ本1−ムめるイ本8f  t′
t、>猟10口
Figure 1 is a time characteristic diagram of the DC leakage current of a normal CV cable when only a DC voltage of both positive and negative polarities is applied and when an AC voltage is superimposed and applied. Figures 2 and 3 Figures 4 and 5 are time characteristic diagrams of DC leakage current in CV cables in which internal water conduction trees occur when only positive and negative polarity DC voltages are applied and when AC voltage is superimposed and applied. The figure shows the time characteristics of the DC leakage current of a C V cable in which an external water tree has occurred when only positive and negative polarity DC voltage is applied and when an AC voltage is superimposed on it. Characteristic diagram of DC leakage current when a negative polarity DC voltage is applied to the CV cable where the inner water conduction tree occurs and the superimposed AC voltage is changed, Fig. 7 16 External water conduction 1. I.J.
Characteristic diagram of DC leakage current when positive polarity DC' voltage is applied to the C cable where - occurs and the superimposed AC voltage is changed. Figure 9 shows the relationship between the maximum length of the water tree and the volume that the water tree occupies in the insulator, and Figure 10 shows the relationship between the volume that the water tree occupies in the insulator and the relationship between the absolute value of the DC leakage current when The relationship diagram of the AC breakdown voltage value of the cable, Figures 11 and 12 are detailed explanatory diagrams of the present invention, that is, the AC voltage is superimposed on the positive and negative polarity DC voltage, and the DC leakage current flowing at this time is measured. FIG. (1: Cable terminal part) (2° guard) (3 cables) (4: Grounding wire) (5: DC leakage current measuring part) (6゛protective resistor) (7: AC voltage generator) (8: DC voltage Generator) (9゛Blocking Coil) Figure 9 OSo 100A < l
- Leeka \゛ Zettai Lambda Book 1 - Mumeru Book 8f t'
t, > 10 hunting bites

Claims (1)

【特許請求の範囲】[Claims] 1′6+lj定対象とする電カケープルに負極性直流電
圧印加のみならず正接性直流電圧をも印加し、さらにこ
れら直流電圧に交流電圧を重畳させて、当該ケーブルに
流れる直流漏洩電流を測定し、その絶対値、時間特性及
び電圧特性からケーブルの絶縁劣化状態を判定すること
を特徴とする電カケープルの絶縁劣化診断法。
1'6+lj constant Apply not only a negative DC voltage but also a positive DC voltage to the target power cable, further superimpose an AC voltage on these DC voltages, and measure the DC leakage current flowing through the cable, A method for diagnosing insulation deterioration of electric cables, characterized by determining the state of insulation deterioration of the cable from its absolute value, time characteristics, and voltage characteristics.
JP58076882A 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable Granted JPS59202073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076882A JPS59202073A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076882A JPS59202073A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Publications (2)

Publication Number Publication Date
JPS59202073A true JPS59202073A (en) 1984-11-15
JPH038710B2 JPH038710B2 (en) 1991-02-06

Family

ID=13618003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076882A Granted JPS59202073A (en) 1983-04-30 1983-04-30 Diagnosis of insulation deterioration of power cable

Country Status (1)

Country Link
JP (1) JPS59202073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291868A (en) * 1985-10-17 1987-04-27 Hitachi Cable Ltd Diagnostic method for insulating deterioration of electric equipment
EP0437214A2 (en) * 1990-01-09 1991-07-17 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of an electric apparatus
US5276401A (en) * 1990-01-09 1994-01-04 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of an electric apparatus
KR20220170577A (en) * 2021-06-23 2022-12-30 한국전력공사 Apparatus for diagnosing insulation performance of power cable and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291868A (en) * 1985-10-17 1987-04-27 Hitachi Cable Ltd Diagnostic method for insulating deterioration of electric equipment
JPH0554913B2 (en) * 1985-10-17 1993-08-13 Hitachi Cable
EP0437214A2 (en) * 1990-01-09 1991-07-17 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of an electric apparatus
US5276401A (en) * 1990-01-09 1994-01-04 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of an electric apparatus
KR20220170577A (en) * 2021-06-23 2022-12-30 한국전력공사 Apparatus for diagnosing insulation performance of power cable and method thereof

Also Published As

Publication number Publication date
JPH038710B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
CN110954471B (en) Electrochemical corrosion off-line detection and evaluation method for water-blocking buffer layer of high-voltage power cable
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JPH03206976A (en) Diagnosis of insulation
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
EP3185025A1 (en) Electrical fault location method
JPS59202077A (en) Diagnosis of insulation deterioration of power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP3317391B2 (en) Method and apparatus for diagnosing insulation deterioration of a live power cable
JPH063390A (en) Diagnostic method for deterioration of cable
JPS59202075A (en) Diagnosis of insulation deterioration of power cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires
JPH0378588B2 (en)
JPS59202074A (en) Diagnosis of insulation deterioration of power cable
JPH0425504B2 (en)
JPS63281073A (en) Detecting method for water tree current of cv cable
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JPS608465B2 (en) Cable insulation resistance monitoring method
JPS60216276A (en) Diagnosis of insulating deterioration of power cable
JPS63281074A (en) Detecting method for water tree current of cv cable
JPH0546906B2 (en)
JPH0351775A (en) Method for detecting water tree deterioration of power cable
JP2001305174A (en) Method for measuring direct-current leak current of high-voltage insulated equipment
Phelps et al. A new method for the routine testing of alternating-current high-voltage paper-insulated cable