JPS59202022A - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JPS59202022A
JPS59202022A JP7684883A JP7684883A JPS59202022A JP S59202022 A JPS59202022 A JP S59202022A JP 7684883 A JP7684883 A JP 7684883A JP 7684883 A JP7684883 A JP 7684883A JP S59202022 A JPS59202022 A JP S59202022A
Authority
JP
Japan
Prior art keywords
light
receiving element
slit plate
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7684883A
Other languages
Japanese (ja)
Inventor
Shugo Endo
遠藤 修吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7684883A priority Critical patent/JPS59202022A/en
Publication of JPS59202022A publication Critical patent/JPS59202022A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To improve the S/N ratio by installing No.1 and No.2 low pass filter performing the low pass filtering respectively of outputs of No.1 and No.2 synchronous rectifying circuits and preventing mutual interference between No.1 luminous element and light-receiving element as well as No. 2 luminous element and light-receiving element. CONSTITUTION:Pulse generators 10, 11 generate pulse signals of mutually different frequencies, allowing pulse lighting of No.1, No.2 luminous elements 6, 7. Luminous quantity passing through a slit by rotation of rotary slitted plate 1 becomes outputs of No.1, No.2 of light-receiving elements 4, 5 and they are subjected to a synchronous rectification by synchronization with the pulse signals respectively. Outputs of synchronous rectifying circuits 16, 17 are delivered to each low pass filters 18, 19 as outputs and for instance, even if light of No.2 luminous element 7 is incident to a light receiving element 4, an output increment (noise) of light-receiving element 4 by an incident light from a luminous element 7 can be eliminated.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は変位および方向全光学的に検出するリニア式
およびロータリ式などのオプチカルエンコーダに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to optical encoders such as linear and rotary types that detect displacement and direction entirely optically.

〔背景技術〕[Background technology]

従来のロータリ式のオプチカルエンコーダは、第1図に
示すように、同一半径の周上に等間隔に多数個のスリッ
ト1aを有する回転スリット板1を、回転を検出すべき
回転軸2に軸結合し、第1および第2のスリン)3a、
31)を有する固定スリット板3ケ、第1および第2の
スリ ノド3a 。
As shown in Fig. 1, a conventional rotary optical encoder consists of a rotary slit plate 1 having a large number of slits 1a arranged at equal intervals on a circumference of the same radius, and coupled to a rotating shaft 2 whose rotation is to be detected. and the first and second surin) 3a,
31), three fixed slit plates, first and second slit plates 3a.

3bがスリット1aの移動軌跡上に位i6°するように
、回転スリット板1に対向配置し、第1の受光素子4を
固定スリット板3の第1のスリブ)3aに向かうように
配置するとともに第2の受光素子5を固定スリット板3
の第2のスリット3bに向かうように配置し、第1およ
び第2の発光素子6゜7を回転スリット板1および固定
スリット板3を介して第1および第2の受光素子4.5
にそれぞれ対向するように配置している。そして、第1
および第2の受光素子4.5の出力が信号処理回路8.
9によりそれぞれ増幅および波形整形されてパルス化さ
れるようになっている。なお、固定スリット板3の第1
および第2のスリット3a 、3bは、信号処理回路8
.9の出力パルスの位相が互いに90度ずれるように位
置決めしている。
The first light-receiving element 4 is arranged facing the rotating slit plate 1 so that the first light-receiving element 4 faces the first slit 3a of the fixed slit plate 3, and The slit plate 3 fixes the second light receiving element 5
The first and second light emitting elements 6.7 are connected to the first and second light receiving elements 4.5 through the rotating slit plate 1 and fixed slit plate 3.
They are placed so that they are facing each other. And the first
The output of the second light receiving element 4.5 is transmitted to the signal processing circuit 8.
9, the signals are respectively amplified and waveform-shaped and made into pulses. Note that the first part of the fixed slit plate 3
and the second slits 3a and 3b are the signal processing circuit 8
.. They are positioned so that the phases of the output pulses No. 9 are shifted by 90 degrees from each other.

つぎに、動作について説明する。発光素子6゜7は潜時
連続して点灯している。回転軸2が回転すると、それに
応じて回転スリット板1が回転する。この際回転スリッ
ト板1のスリットIRと固定スリット板3の第1のスリ
ット3aとが重なったときに第1の発光素子6から第1
の受光素子4へ到達する光量が最大となり、スリブ)I
Rが左右どちらへ移動しても光量が減少し、スリブ)l
aが第1のスリットaaQ間に位置したときに光量が最
小となる。したがって、第1の受光素子4の出力は回転
スリット板3が一定角度(スリットピッチ)回転する毎
に第2図(A)に示すように変化することになる。第2
の受光素子5についても同様で、その出力は第2図(B
)に示すように変化する。
Next, the operation will be explained. The light emitting element 6.7 is lit continuously for a latency period. When the rotating shaft 2 rotates, the rotating slit plate 1 rotates accordingly. At this time, when the slit IR of the rotating slit plate 1 and the first slit 3a of the fixed slit plate 3 overlap, the first light emitting element 6 to
The amount of light reaching the light-receiving element 4 of
The amount of light decreases when R moves to the left or right, and the slide)
When a is located between the first slits aaQ, the amount of light becomes the minimum. Therefore, the output of the first light receiving element 4 changes as shown in FIG. 2(A) every time the rotating slit plate 3 rotates by a certain angle (slit pitch). Second
The same goes for the light receiving element 5, and its output is shown in Figure 2 (B
).

この第2の受光素子5の出力は、回転スリット板1が正
方向に回転しているときは第1の受光素子4の出力より
位相が90度遅れ、回転スリット板1が逆方向に回転し
ているときは逆に位相が90度進むことになる。
The output of this second light receiving element 5 is delayed in phase by 90 degrees from the output of the first light receiving element 4 when the rotating slit plate 1 is rotating in the forward direction, and when the rotating slit plate 1 is rotating in the opposite direction. On the contrary, the phase will advance by 90 degrees.

上記第1および第2の受光素子4,5の出力を信号処理
回路8,9で増幅および波形整形すれば、それぞれ第2
図(C) 、 (D)に示すようにパルス化される。第
2図tc) 、 CD)のパルスの個数は回転スリット
板1の回転角度に比例し、第2図C1、(rl)のパル
スの位相差(+90度または一90度)は回転スリット
板1の回転方向を示すことになる。
If the outputs of the first and second light-receiving elements 4 and 5 are amplified and waveform-shaped by the signal processing circuits 8 and 9, the second
It is pulsed as shown in Figures (C) and (D). The number of pulses in Fig. 2 tc) and CD) is proportional to the rotation angle of the rotating slit plate 1, and the phase difference (+90 degrees or -90 degrees) of the pulses in Fig. 2 C1 and (rl) is proportional to the rotation angle of the rotating slit plate 1. This indicates the direction of rotation.

しかし、このような従来のオプチカルエンコーダは、装
置全体を小型化するにつれて第1の発光素子6および第
1の受光素子4と第2の発光素子7および第2の受光素
子5との間で相互干渉が発生し、すなわち、第1の発光
素子6から第・2の受光素子5へ到達する光量および第
2の発光素子7から第1の受光素子4へ到達する光量が
増加し、信号対雑音比(S/N比)を低下させていた。
However, in such a conventional optical encoder, as the entire device is miniaturized, the first light emitting element 6 and the first light receiving element 4 and the second light emitting element 7 and the second light receiving element 5 are not mutually connected. Interference occurs, that is, the amount of light reaching from the first light emitting element 6 to the second light receiving element 5 and the amount of light reaching the first light receiving element 4 from the second light emitting element 7 increase, and the signal-to-noise The ratio (S/N ratio) was lowered.

〔発明の目的〕[Purpose of the invention]

この発明は相互干渉を除去してSA比を高めることがで
きるオプチカルエンコーダを提供することを目的とする
An object of the present invention is to provide an optical encoder that can eliminate mutual interference and increase the SA ratio.

〔発明の開示〕[Disclosure of the invention]

この発明のオプチカルエンコーダは、等間隔に多数個の
可動スリットを有する可動スリット板と、この可動スリ
ット板と対向配置し前記可動スリ。
The optical encoder of the present invention includes a movable slit plate having a large number of movable slits at equal intervals, and a movable slit arranged opposite to the movable slit plate.

トの移動軌跡上に第1の固定スリットとこの第1の固定
スリットに対して電気的に一定位相ずれた位置に配置し
た第2の固定スリットとを有する固定スリット板と、前
記第1の固定スリットの位置で前記可動スリット板およ
び固定スリット板を介して対向する第1の発光素子およ
び第1の受光素子と、前記第2の固定スリットの位置で
前記可動スリット板および固定スリット板を介して対向
する第2の発光素子および第2の受光素子と、前記第1
の発光素子をパルス点灯させる第1のパルス点灯駆動回
路と、前記第2の発光素子をパルス点灯させる第2のパ
ルス点灯駆動回路と、前記第1の受光素子の出力を前記
第1の発光素子のパルス点灯と同期して同期整流する第
1の同期整流回路と、前記第2の受光素子の出力を前記
第2の発光素子のパルス点灯と同期して同期整流する第
2の同期整流回路と、前記第1および第2の同期整流回
路の出力をそれぞれ低域p波する第1および第2のロー
パスフィルタとを備える構成にしたことを特徴とする。
a fixed slit plate having a first fixed slit and a second fixed slit disposed at a position electrically shifted from a certain phase with respect to the first fixed slit on a movement locus of the first fixed slit; A first light-emitting element and a first light-receiving element that face each other through the movable slit plate and the fixed slit plate at the position of the slit, and a first light-emitting element and a first light-receiving element that face each other through the movable slit plate and the fixed slit plate at the position of the second fixed slit. a second light emitting element and a second light receiving element facing each other;
a first pulse lighting drive circuit that lights the light emitting element in pulses; a second pulse lighting drive circuit that pulses the second light emitting element; and a second pulse lighting drive circuit that lights the second light emitting element in pulses; a first synchronous rectifier circuit that synchronously rectifies the output of the second light receiving element in synchronization with the pulse lighting of the second light emitting element; The present invention is characterized in that it is configured to include first and second low-pass filters that convert the outputs of the first and second synchronous rectification circuits into low-frequency p-waves, respectively.

このように構成したことにより、第1の発光素子および
第1の受光素子と第2の発光素子および第2の受光素子
との間の相互干渉を防止することカテキ、5z4J比を
高めることができる。
With this configuration, it is possible to prevent mutual interference between the first light emitting element and the first light receiving element and the second light emitting element and the second light receiving element, and to increase the 5z4J ratio. .

この発明の一実施例を第3図ないし第5図に基づいて説
明する。第3図において、符号1〜7を付したものは、
第1図のものと同一構成である。
An embodiment of the present invention will be described based on FIGS. 3 to 5. In FIG. 3, the numbers 1 to 7 are as follows:
It has the same configuration as the one in FIG.

10および11はそれぞれ相異なる周波数のパルス信号
を発生するパルス発生器であり、各パルス信号の周波数
は回転スリット板1の回転による光の断続の周波数より
高くしている。12および13はそれぞれパルス発生器
10.11のパルス信号に基づいて第1および第2の発
光素子6.7をそれぞれパルス点灯させる駆動回路、1
4および15は第1および第2の受光素子4.5の出力
を増幅する増幅回路、16は増幅回路14の出力をパル
ス発生器10から出力されるパルス信号に同期して同期
整流する同期整流回路、17は増幅回路15の出力をパ
ルス発生器11がら出力されるパルス信号に同期して同
期整流する同期整流回路、18および19は同期整流回
路16.17の出力をそれぞれ低域沖波するローパスフ
ィルタ、2oおよび21はローパスフィルタ18.19
の出方をそれぞれパルス化する波形整形回路、22およ
び23はそれぞれ出力端子である。
10 and 11 are pulse generators that generate pulse signals of different frequencies, and the frequency of each pulse signal is set higher than the frequency of intermittent light generated by the rotation of the rotary slit plate 1. Reference numerals 12 and 13 indicate drive circuits 1 for lighting the first and second light emitting elements 6.7 in pulses based on pulse signals from the pulse generator 10.11, respectively;
4 and 15 are amplifier circuits that amplify the outputs of the first and second light receiving elements 4.5, and 16 is a synchronous rectifier that synchronously rectifies the output of the amplifier circuit 14 in synchronization with the pulse signal output from the pulse generator 10. 17 is a synchronous rectifier circuit that synchronously rectifies the output of the amplifier circuit 15 in synchronization with the pulse signal output from the pulse generator 11; 18 and 19 are low-pass circuits that synchronously rectify the output of the synchronous rectifier circuits 16 and 17, respectively; Filters, 2o and 21 are low pass filters 18.19
The waveform shaping circuits 22 and 23 are respectively output terminals for pulsing the output of the waveforms.

4図および第5図に基づいて説明する。パルス発生器l
O力)ら第4図(A)に示すような一定振幅のパルス信
号が発生し、駆動回路12が上記パルス信号に基づいて
第1の発光素子6を一定光量でパルス点灯させる。一方
、回転スリット板1の回転により回転スリット板1およ
び固定スリット板3を通過する光量は第4図CB)のよ
うに変化する。その結果、第1の受光素子4の出力は第
4図(C) K示すように第4図A)の波形を第4図(
B)の波形を振幅変調した波形となる。この第1の受光
素子4の出力を増幅回路14により増幅して第4図(D
)の波形としたのち、同期整流回路16で第4図(A)
のパルス信号と同期した同期整流を行うと、第4図の)
の波形が得られ、この波形をローパスフィルタ18に通
すと第4図CF)のようになり、第4図の)の光量変化
が電気信号として再現できる。この第4図旧の信号を波
形整形回路20に刀1えて波形整形を行えば、第4図(
G)に示すように回転スリット板10回転角度に比例し
た個数のパルスが出力端子22より得られることになる
This will be explained based on FIGS. 4 and 5. pulse generator l
A pulse signal with a constant amplitude as shown in FIG. 4(A) is generated from the pulse generator 12, and the drive circuit 12 pulse-lights the first light emitting element 6 with a constant light amount based on the pulse signal. On the other hand, as the rotating slit plate 1 rotates, the amount of light passing through the rotating slit plate 1 and the fixed slit plate 3 changes as shown in FIG. 4 CB). As a result, the output of the first light-receiving element 4 changes from the waveform of FIG. 4A) to the waveform of FIG.
The waveform is obtained by amplitude modulating the waveform of B). The output of the first light-receiving element 4 is amplified by the amplifier circuit 14, as shown in FIG.
), the synchronous rectifier circuit 16 generates the waveform shown in Fig. 4 (A).
When synchronous rectification is performed in synchronization with the pulse signal of Fig. 4)
A waveform is obtained, and when this waveform is passed through the low-pass filter 18, it becomes as shown in FIG. 4 (CF), and the change in light amount shown in FIG. 4) can be reproduced as an electrical signal. If the old signal shown in Fig. 4 is subjected to waveform shaping using the waveform shaping circuit 20, the signal shown in Fig. 4 (
As shown in G), the number of pulses proportional to the rotation angle of the rotary slit plate 10 is obtained from the output terminal 22.

なお、相互干渉により、第2の発光素子7の光が第1の
受光素子4に入射して第2の受光素子4の出力波形が第
5図(Δ)のようになった場合にも、これを増幅(−で
第5図(B)の波形を得、さらに同期整流を行えば#r
G 5図(C)の波形となり、これを低域F波すれば第
5図(r))のようになり、第2の発光素子7からの入
射光による第1の受光素子4の出力変動分(雑音)は除
去できることになる。これは、第2の発光素子7の点灯
周期が第1の発光素子6の点灯周期とけ異なり、同期整
流を行ったとき((雑音成分は相殺されるためである。
Note that even when the light from the second light emitting element 7 enters the first light receiving element 4 due to mutual interference and the output waveform of the second light receiving element 4 becomes as shown in FIG. 5 (Δ), If this is amplified (-) to obtain the waveform shown in Figure 5 (B), and further synchronous rectification is performed, #r
G The waveform becomes as shown in Figure 5 (C), and if this is converted into a low-frequency F wave, it becomes as shown in Figure 5 (r)), and the output fluctuation of the first light receiving element 4 due to the incident light from the second light emitting element 7 (noise) can be removed. This is because the lighting period of the second light emitting element 7 is different from the lighting period of the first light emitting element 6, and when synchronous rectification is performed ((noise components are canceled out).

パルス発生器11.駆動回路13゜第2の発光素子7.
第2の受光素子5.増幅回路15.同期整流回路17.
ローパスフィルタ19およヒ波形整形回路21の動作け
、パルス点灯周波数が異なるだけで他は上記説明と同様
であるので、波形図および詳細な説明は省略する。ただ
し、波形整形回路21から出力されるパルスは、固定ス
リット板3の第1および第2のスリット3g 、3bの
位置関係から、従来例と同様に、回転スリット板1が正
回転のときは第4図(G)のパルスより90度位相が遅
れ、回転スリット板1が逆回転のときは90度位相が進
む。
Pulse generator 11. Drive circuit 13° second light emitting element 7.
Second light receiving element 5. Amplification circuit 15. Synchronous rectifier circuit 17.
Since the operations of the low-pass filter 19 and the waveform shaping circuit 21 are the same as those described above except for the pulse lighting frequency, the waveform diagram and detailed explanation will be omitted. However, due to the positional relationship between the first and second slits 3g and 3b of the fixed slit plate 3, the pulses output from the waveform shaping circuit 21 are the same as in the conventional example when the rotating slit plate 1 rotates in the forward direction. The phase is delayed by 90 degrees from the pulse in FIG. 4 (G), and the phase is advanced by 90 degrees when the rotating slit plate 1 is rotating in the opposite direction.

このように構成した結果、相互干渉による雑音が除去さ
れ、装置を小型化してもS/N比を十分高いものとでき
る。
As a result of this configuration, noise due to mutual interference is removed, and even if the device is downsized, the S/N ratio can be made sufficiently high.

なお、上記実施例は、ロータリ式のオプチカルエンコー
ダについて説明したが、リニア式のものについても同様
にこの発明を適用で姦る。また、対となった発光素子お
よび受光素子はスリット板に対する位置が逆でもよい。
Although the above embodiments have been described with respect to a rotary type optical encoder, the present invention can also be applied to a linear type optical encoder. Furthermore, the paired light-emitting element and light-receiving element may be placed in opposite positions with respect to the slit plate.

さらに、98に例はパルス発光の周波数を変えているが
、位相を変えるようにしてもよい。
Furthermore, although the example shown in 98 changes the frequency of pulsed light emission, the phase may also be changed.

〔発明の効果〕〔Effect of the invention〕

この発明のオプチカルエンコーダによれば、相互干渉に
よる雑音が除去され、装置を小型化してもS/N比を十
分高くできる。
According to the optical encoder of the present invention, noise due to mutual interference is removed, and the S/N ratio can be made sufficiently high even when the device is miniaturized.

つぎに、開示技術について説明する。このオプチカルエ
ンコーダは、第3図のものと同一の目的を達成するもの
であり、第1図と同様の構成において、第1の発光素子
6として、例えばGaAsを素材に用いた近赤外発光ダ
イオードを用い、第2の発光素子7として、例えばGA
Pを素材に用いた緑色発光ダイオードを用い、第Jの受
を素子4の受j(、1ffiに可視カットフィルタを1
寸設するとともに第2の受光素子5の受承面に赤外カッ
トフィルタを1寸設したものである。
Next, the disclosed technology will be explained. This optical encoder achieves the same purpose as the one shown in FIG. 3, and has the same configuration as that shown in FIG. For example, GA is used as the second light emitting element 7.
A green light-emitting diode using P as the material is used, and the Jth receiver is connected to the receiver j of element 4 (, 1ffi with 1 visible cut filter).
In addition, an infrared cut filter is provided on the receiving surface of the second light receiving element 5.

このように構成すれば、第1の発光素子6から第2の受
光素子5へ入射しようとする近赤外光は赤外カットフィ
ルタにより遍〃テされ、また、第2の発光素子7から第
1の受光素子4へ入射しようとする緑色光は可視カット
フィルタにより遮断されることになり、相互干渉は防止
され、装置を小型化してもS2へ比を十分高くできる。
With this configuration, the near-infrared light that is about to enter the second light-receiving element 5 from the first light-emitting element 6 is distributed by the infrared cut filter, and the near-infrared light that is about to enter the second light-receiving element 5 from the second light-emitting element 7 is distributed. The green light that is about to enter the first light-receiving element 4 is blocked by the visible cut filter, so mutual interference is prevented, and even if the device is miniaturized, the ratio to S2 can be made sufficiently high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のオグチカルエンコーダの構収図、第2図
(A)〜(I))はその各部の波形図、第3図はこの発
明の一実施例のブロック図、第4図(A)〜C)および
第5図(A)〜(D)はその各部の波形図である。 1・・回転スリット板、IR・・・スリット、3・・・
固定スリット板、3g、3b・・・スリット、4.5・
・・受光素子、6,7・・・発光素子、10.11・・
・パルス発生器、12.13・・駆動回路、14.15
・・・増幅回路、16.17・・同期整流回路、18.
19・・・ローパスフィルタ、20.21・・・波形整
形回路1:2− 吐土−・ ・ ;i;4  jl ;:、  5  。
Fig. 1 is a composition diagram of a conventional optical encoder, Fig. 2 (A) to (I)) are waveform diagrams of each part thereof, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 ( A) to C) and FIGS. 5A to 5D are waveform diagrams of each part thereof. 1...Rotating slit plate, IR...slit, 3...
Fixed slit plate, 3g, 3b...slit, 4.5.
... Light receiving element, 6,7... Light emitting element, 10.11...
・Pulse generator, 12.13...Drive circuit, 14.15
...Amplification circuit, 16.17...Synchronous rectification circuit, 18.
19...Low pass filter, 20.21...Waveform shaping circuit 1:2- soil-...;i;4 jl;:, 5.

Claims (1)

【特許請求の範囲】[Claims] 等間隔に多数個の可動スリットを有する可動スリット板
と、この可動スリット板と対向配置し前記可動スリット
の移動軌跡上に第1の固定スリットとこの第1の固定ス
リットに対して電気的に一定位相ずれた位置に配置した
第2の固定スリットとを有′する固定スリット板と、前
記第1の固定スリットの位置で前記可動スリット板およ
び固定スリット板を介して対向する第1の発光素子およ
び第1の受光素子と、前記第2の固定スリットの位置で
前記可動スリット板および固定スリット板を介して対向
する第2の発光素子および第2の受光米子と、前記第1
の発光素子をパルス点灯させる第1のパルス点灯駆動回
路と、前記第2の発光素子をパルス点灯させる第2のパ
ルス点灯駆動回路と、前記第1の受光素子の出力を前記
@1の発光素子のパルス点灯と同期して同期整流する第
1の同期整流回路と、前記第2の受光素子の出力を前記
第2の発光素子のパルス点灯と同期して同期整流する第
2の同期整流回路と、前記第1および第2の同期整流回
路の出力をそれぞれ低域F波する第1および第2のロー
パスフィルタとを備えたオプチカルエンコーダ。
a movable slit plate having a large number of movable slits at equal intervals; a first fixed slit arranged opposite to the movable slit plate; and a first fixed slit that is electrically constant with respect to the first fixed slit. a fixed slit plate having a second fixed slit disposed at a phase-shifted position; a first light emitting element that faces the movable slit plate and the fixed slit plate at the position of the first fixed slit; a first light receiving element, a second light emitting element and a second light receiving element facing each other through the movable slit plate and the fixed slit plate at the position of the second fixed slit;
a first pulse lighting drive circuit that pulse-lights the light emitting element of @1; a second pulse lighting drive circuit that pulses the second light emitting element; and a second pulse lighting drive circuit that pulses the light emitting element of @1; a first synchronous rectifier circuit that synchronously rectifies the output of the second light receiving element in synchronization with the pulse lighting of the second light emitting element; , first and second low-pass filters that convert the outputs of the first and second synchronous rectification circuits into low-frequency F waves, respectively.
JP7684883A 1983-04-30 1983-04-30 Optical encoder Pending JPS59202022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7684883A JPS59202022A (en) 1983-04-30 1983-04-30 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7684883A JPS59202022A (en) 1983-04-30 1983-04-30 Optical encoder

Publications (1)

Publication Number Publication Date
JPS59202022A true JPS59202022A (en) 1984-11-15

Family

ID=13617074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7684883A Pending JPS59202022A (en) 1983-04-30 1983-04-30 Optical encoder

Country Status (1)

Country Link
JP (1) JPS59202022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195309A (en) * 1985-02-26 1986-08-29 Seikosha Co Ltd Photoelectric converting device
JPS61195310A (en) * 1985-02-26 1986-08-29 Seikosha Co Ltd Photoelectric converting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195309A (en) * 1985-02-26 1986-08-29 Seikosha Co Ltd Photoelectric converting device
JPS61195310A (en) * 1985-02-26 1986-08-29 Seikosha Co Ltd Photoelectric converting device

Similar Documents

Publication Publication Date Title
JPH044973Y2 (en)
GB1502161A (en) Machine-tool displacement measuring
JPS59202022A (en) Optical encoder
JPS6073418A (en) Displacement transducer
JPS58167916A (en) Pulse encoder
JPS56133607A (en) Rotation-angle detector
JPS6076612A (en) Optical rotary encoder
JPS6259879A (en) Photoelectric signal processing circuit
JPH0339736Y2 (en)
JPH0296615A (en) Rotary-angle detecting apparatus
JPH01182721A (en) Incremental type encoder
US3532894A (en) Optical tracker having overlapping reticles on parallel axes
JPH0439603B2 (en)
JPS63317720A (en) Optical encoder
JPS59221622A (en) Code wheel of encoder
JPH04331319A (en) Encoder
JPS59138921A (en) Displacement transducer
SU572742A1 (en) Photoelectric autocollimator
SE8702415D0 (en) PROCEDURE TO PREVENT THE DETECTION OF A FORM
JPS61147380A (en) Picture inputting device
JPS641602Y2 (en)
JPS56124017A (en) Light detector
JPS5886414A (en) Sine wave encoder
JPS6388708U (en)
JPS60171462A (en) Optical speed detector