JPS59200734A - Manufacture of cermet with high hardness and toughness - Google Patents

Manufacture of cermet with high hardness and toughness

Info

Publication number
JPS59200734A
JPS59200734A JP58075335A JP7533583A JPS59200734A JP S59200734 A JPS59200734 A JP S59200734A JP 58075335 A JP58075335 A JP 58075335A JP 7533583 A JP7533583 A JP 7533583A JP S59200734 A JPS59200734 A JP S59200734A
Authority
JP
Japan
Prior art keywords
powder
cermet
cutting
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58075335A
Other languages
Japanese (ja)
Other versions
JPS6245292B2 (en
Inventor
Kenichi Nishigaki
賢一 西垣
Katsuaki Asa
安佐 克章
Hironori Yoshimura
吉村 寛範
Naohisa Ito
直久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58075335A priority Critical patent/JPS59200734A/en
Publication of JPS59200734A publication Critical patent/JPS59200734A/en
Publication of JPS6245292B2 publication Critical patent/JPS6245292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture cermet with high hardness and toughness by subjecting a green compact having a specified composition consisting of powder of composite metallic carbonitride of Ti and W, MgO powder and W powder to primary sintering and secondary sintering under specified conditions. CONSTITUTION:The composition of a powdered mixture is composed of 10- 65wt% powder of composite metallic carbonitride of Ti and W as a dispersed phase forming component, 0.5-10wt% MgO powder and the balance W powder as a binding phase forming component. The powdered mixture is compact, and the resulting green compact is subjected to primary sintering at 1,600-1,800 deg.C in vacuum or an atmosphere of N2 or other inert gas to form a sintered body having 0.01-1wt% residual MgO content and 95-99% relative density. The sintered body is subjected to secondary sintering at a high temp. such as 1,600- 1,800 deg.C under a high static pressure such as 1,000-2,000kg/cm<2> to increase the relative density to 100%.

Description

【発明の詳細な説明】 この発明は、高硬度および高靭性を有し、さらにすぐれ
た耐摩耗性、耐塑性変形性、および耐衝撃性を有し、し
だがって、これらの特性が要求される高速切削や、高送
シ切削および深切り込み切削などの重切削に用いられる
切削工具として、さらに熱間圧延ロール、熱間線引ロー
ル、熱間圧縮ダイス、熱間鍛造ダイス、および熱間押出
しパンチなどの比較的長時間高温にさらされる熱間加工
用工具として使用した場合にすぐれた性能を発揮する高
硬度高靭性ザーメットの製造法に関するものである。
[Detailed Description of the Invention] The present invention has high hardness and high toughness, as well as excellent wear resistance, plastic deformation resistance, and impact resistance, and therefore meets the requirements of these properties. Cutting tools used for heavy cutting such as high-speed cutting, high-feed cutting, and deep-cut cutting, as well as hot rolling rolls, hot drawing rolls, hot compression dies, hot forging dies, and hot-rolling dies. The present invention relates to a method for producing a high hardness and high toughness cermet that exhibits excellent performance when used as a hot working tool such as an extrusion punch that is exposed to high temperatures for a relatively long period of time.

近年、加工能率向上のために高速切削化や高速シ切削化
が検討されているが、切削速度を高くしたシ、送り量を
多くしたシすると、切削工具の刃先温廂が上昇し、刃先
が摩耗−より1は、むしろ高温に起因する塑性変形によ
って使用寿命に至る場合が多い。
In recent years, high-speed cutting and high-speed machining have been considered to improve machining efficiency, but increasing the cutting speed or feed rate increases the temperature of the cutting tool's cutting edge, causing the cutting edge to deteriorate. In the case of wear, the service life often ends due to plastic deformation caused by high temperatures.

しかしながら、現在実用に供されている分散相が主とし
て炭化タングステン(以下WCで示す)や炭化チタン(
以下TiCで示す)で構盛され、一方結合相が主として
鉄族金属で構成されているWCC超超硬合金TiC基サ
ーメットは、刃先温度が10.00℃を越えると急激に
軟化するようになるために、これらのwe基超超硬合金
TiC基サーメットは勿論のこと、これらの表面に硬質
被覆層を形成したものにおいても、その使用条件は刃先
温度が1.000℃を若干上廻る程度に制限されている
However, the dispersed phases currently in practical use are mainly tungsten carbide (hereinafter referred to as WC) and titanium carbide (
The WCC cemented carbide TiC-based cermet, which is composed of TiC (hereinafter referred to as TiC) and whose binder phase is mainly composed of iron group metals, suddenly softens when the cutting edge temperature exceeds 10.00°C. Therefore, not only these WE-based cemented carbide TiC-based cermets, but also those with a hard coating layer formed on their surfaces, must be used under conditions such that the cutting edge temperature slightly exceeds 1.000°C. Limited.

また、分散相がTiとWの複合金属炭窒化物(以下、(
Ti、W)CNで示す)で構成され、一方結合相がW−
Mo合金で構成されたサーメットが提案され、このサー
メットを高速切削や重切削に切削工具として用いる試み
もなされているが、この従来サーメットは、焼結性が悪
く、しかも原料粉末として使用される( Ti、 W)
CN粉末におけるC濃度が比較的高いだめに、焼結時に
その一部がW粉末の一部と反応して脆いW2Cを形成し
、とのW2Cの存在によって耐衝撃性の劣ったものとな
ることから、十分満足する切削性能を示さないのが現状
である。
In addition, a composite metal carbonitride (hereinafter referred to as (
Ti, W)CN), while the bonding phase is W-
A cermet composed of Mo alloy has been proposed, and attempts have been made to use this cermet as a cutting tool for high-speed cutting and heavy cutting, but this conventional cermet has poor sinterability and is used as a raw material powder ( Ti, W)
Because the C concentration in the CN powder is relatively high, a part of it reacts with a part of the W powder during sintering to form brittle W2C, resulting in poor impact resistance due to the presence of W2C. Therefore, the current situation is that the cutting performance is not sufficiently satisfactory.

そこで、本発明者等は、上述のような観点から、特にす
ぐれた耐塑性変形性および耐衝撃性、さらに耐摩耗性が
要求される鋼などの高速切削や重切削に切削工具として
使用するのに適した材料を開発すべく研究を行った結果
、 圧粉体の配合組成を、少なくとも分散相形成成分として
(T1.W)CN粉末:10〜650〜65重量%グネ
シウム(以下、MgOで示す)粉末:0.5〜10重量
%を含有し、かつ′結合相形成成分としてW粉末を含有
したものとし、 との圧粉体に、真空、窒素、あるいは不活性ガス雰囲気
中、1600〜1800℃の範囲内の温度で1次焼結を
施すと、この焼結はMg Oの存在によって活性化され
た状態(MgOによる還元並びにMgOの蒸発および飛
散)で行なわれることから、MgOの残留含有量を0.
01〜1重量条の範囲内にことめた状態で、この結果の
焼結体は95〜99チの高い密度比をもつようになり、 ついで、この焼結体に、温度:1600〜1800℃お
よび圧カニ 1000−2000kL/cfflの高温
高圧条件にて静水圧2次焼結を施すと、この結果の焼結
体は、実質的に100%の密度比をもった緻密微細組織
をもったものになり、したがって、この結果得られたサ
ーメットにおいては、特に上記(T1.W)CNによっ
てすぐれた耐摩耗性および耐塑性変形性が、またM、g
OおよびMgOの焼結時における活性化作用によっても
たらされた緻密微細組織、さらにW成分によってすぐれ
た耐衝撃性が確保されるようになり、しかしてこれを高
速切削や重切削などの切削工具として用いた場合にはす
ぐれた切削性能を発揮するという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a cutting tool that can be used as a cutting tool for high-speed cutting and heavy-duty cutting of steel, etc., which requires particularly excellent plastic deformation resistance, impact resistance, and wear resistance. As a result of research to develop materials suitable for ) Powder: Contains 0.5 to 10% by weight, and contains W powder as a binder phase forming component. When primary sintering is performed at a temperature within the range of Reduce the amount to 0.
The resulting sintered body has a high density ratio of 95 to 99 cm when packed within the range of 0.01 to 1 weight. When hydrostatic secondary sintering is performed under high temperature and high pressure conditions of 1000-2000 kL/cffl, the resulting sintered body has a dense microstructure with a density ratio of substantially 100%. Therefore, the resulting cermet has excellent wear resistance and plastic deformation resistance, especially due to the (T1.W)CN, and also has M and g.
The dense microstructure brought about by the activation effect of O and MgO during sintering, and the W component ensure excellent impact resistance. They obtained the knowledge that it exhibits excellent cutting performance when used as a cutting tool.

この発明は、上記知見に7もとづいてなされたものであ
って、以下に配合組成(成分組成)および焼結条件を上
記の通りに限定した理由を説明する。
This invention was made based on the above findings, and the reason why the blending composition (component composition) and sintering conditions were limited as described above will be explained below.

(a)   (Ti、w)cN この成分は、主体分散相形成成分であって、サーメット
にすぐれた耐摩耗性と耐塑性変形性を付与する作用をも
つが、その配合量が10重量乃至以下係は重量%を示す
)未満では、サーメットにおけるW素地中にスケルトン
を形成することなく均一に分散してしまって前記作用に
所望の効果が得られず、一方65%を越えて配合させる
と、相対的に素地を形成するW量が減少し、靭性が劣化
するようになることから、その配合量を10〜65チと
定めた。
(a) (Ti, w) cN This component is the main dispersed phase forming component and has the effect of imparting excellent wear resistance and plastic deformation resistance to cermet, but its blending amount is 10% by weight or less. If the amount is less than 65%, it will be uniformly dispersed in the W matrix of the cermet without forming a skeleton, and the desired effect will not be obtained. On the other hand, if it is more than 65%, Since the amount of W that forms the base is relatively reduced and the toughness is deteriorated, the blending amount is determined to be 10 to 65 inches.

(bン  MgO MgO成分は、その大半が焼結時に、(Ti、 W)C
N中のCと反応してサーメット中のCff−を減少させ
ると同時に、焼結性を改善し、もって2次焼結後に実質
的に100%の密度比が得られるようにすると共に、そ
のわずかな量がザーメソト−コに残留して耐衝撃性を著
しく向上させる作用をもつが、その配合量が05%未満
では所望の焼結性改善効果が得られないばかシでなく、
サーメット中に残留するMgOの一量が001%未満に
なってしまって所望の耐衝撃性を確保することができず
、一方10%を越えた配合量にすると、1次焼結温度が
低い場合にはサーメット中のMgO含有量が1%を越え
て高くなってしまい、この結果サゴメットの耐塑性変形
性が低下するようになるばかシでなく、サーメットに巣
が形成され易くなって耐衝撃性も劣化するようになるこ
とから、MgOの配合量を05〜10%とし、サーメッ
ト中に○oi−1%のMgoが残留含有するように定め
だ。
(b) MgO Most of the MgO components are (Ti, W)C during sintering.
Reacts with C in N to reduce Cff- in the cermet, and at the same time improves sinterability, allowing a density ratio of substantially 100% to be obtained after secondary sintering, and a slight reduction in Cff- in the cermet. However, if the amount is less than 0.5%, the desired effect of improving sinterability cannot be obtained.
If the amount of MgO remaining in the cermet is less than 10%, the desired impact resistance cannot be secured, and if the amount exceeds 10%, the primary sintering temperature is low. In this case, the MgO content in the cermet increases to more than 1%, and as a result, the plastic deformation resistance of the sagomet decreases, but it also makes it easier for cavities to form in the cermet, reducing its impact resistance. Since the cermet also deteriorates, the blending amount of MgO is set at 05 to 10%, so that Mgo of ○oi-1% remains in the cermet.

(C)Wおよび不可避不純物 Wは、その一部が分散相に固溶するが、犬、2部分は結
合相として存在して分散相と強固に結合し、サーメット
にすぐれた耐衝撃性を付与する作用をもつものである。
(C) A part of W and unavoidable impurity W is solidly dissolved in the dispersed phase, but the second part exists as a binder phase and is strongly bonded to the dispersed phase, giving the cermet excellent impact resistance. It has the effect of

また、サーメット中に、不可避不純物として、Mo、 
Cr、 Fe 、 Ni 、 Co、、’Re、 Pt
 、およびPdなどのうちの1種または2種以上を含有
しても、それぞれの成分含有量が1%以下にして、全含
有量で2%以下、であればサーメットの特性が何ら損な
われるものではない。
In addition, in cermet, Mo,
Cr, Fe, Ni, Co, 'Re, Pt
, and Pd, etc., but if the content of each component is 1% or less, and the total content is 2% or less, the properties of the cermet will not be impaired in any way. isn't it.

(d)  1次焼結温度 1次焼結温度が1600℃未満では、MgOによる還元
、並びにこれの゛蒸発および飛散が不十分であって、所
望の焼結性改善作用を発揮させることができず、この結
果1次焼結後の焼結体の密度比は95%未満となってし
まい、2次焼結において実質的に100%の密度比をも
った緻密な焼結体を得ることができず、一方180’0
℃を越えて高くすると、焼結体の結晶粒成長が著しくな
って強度低下なき−だすようになることから、1次焼結
温度を1600〜180o℃と定めだ。
(d) Primary sintering temperature If the primary sintering temperature is less than 1600°C, reduction by MgO, evaporation and scattering of MgO are insufficient, and the desired sinterability improvement effect cannot be exerted. As a result, the density ratio of the sintered body after the primary sintering is less than 95%, making it impossible to obtain a dense sintered body with a density ratio of substantially 100% in the secondary sintering. Unable to do so, 180'0
The primary sintering temperature is set at 1,600 to 180 degrees Celsius because if the temperature exceeds 1,600 degrees Celsius, the crystal grains of the sintered body will grow significantly and the strength will not decrease.

(e)2次焼結条件 焼結温度が1600℃未満にして、焼結圧力が10 o
 o kg/cri未満では、実質的に100%の密度
比をもった焼結体を成形することができず、一方焼結温
度が1800℃を越えると、1次焼結の場合と同様に結
晶粒の成′長が著しくなって強度低下をきたすようにな
シ、また2 00 okg/cIItを越えた焼結圧力
は実用的でないことから、それぞれ焼結温度を1”60
0〜1800℃、焼結圧力な1000〜2000 kg
/cntと定めた。
(e) Secondary sintering conditions The sintering temperature is less than 1600°C and the sintering pressure is 10°C.
If the sintering temperature is less than 1,800°C, a sintered body with a density ratio of substantially 100% cannot be formed. The sintering temperature was set at 1"60 to prevent grain growth from becoming significant and reduce strength, and since it is impractical to use a sintering pressure exceeding 200 kg/cIIt.
0~1800℃, sintering pressure 1000~2000 kg
/cnt.

つぎに、この発明の方法を実施例によシ具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

実施例 原料粉末として、平均粒径:15μmを有する完全固溶
体の(Tio、s5・Wo、15)(COグONo、3
0)粉末(括弧内の数値は原子比を示す)、同04μm
のMg○粉末、同1.2μmのTiN粉末、同1.5μ
mのZrC粉末、同0.8 p mのTaC粉末、同0
.8/1mのW粉末、および同0.6μmのMo粉末を
用意し、これら原料粉末をそれぞれ第1表に示される配
合組成に配合し、ボールミルにて72時時間式粉砕混合
し、乾燥した後、i 5 +<g /mytの圧力にて
プレス成形して圧粉体とし、ついでこの圧粉体を、それ
ぞれ第1表に示される条件で1次焼結し、引続いて同じ
く第1表に示される条件にてA、rガス圧下で静圧下2
次焼結を行なうことによって本発明法1〜19および比
較法1〜9をそれぞれ実施しだ。
As the example raw material powder, a complete solid solution (Tio, s5・Wo, 15) (COgON No. 3) having an average particle size of 15 μm was used.
0) Powder (numbers in parentheses indicate atomic ratio), 04μm
Mg○ powder, 1.2 μm TiN powder, 1.5 μm
m ZrC powder, 0.8 p m TaC powder, 0.8 p m
.. Prepare W powder of 8/1 m and Mo powder of 0.6 μm, blend these raw powders to the composition shown in Table 1, grind and mix in a ball mill for 72 hours, and dry. , i 5 +<g /myt to form a green compact, and then this green compact was first sintered under the conditions shown in Table 1, and then the green compact was sintered under the conditions shown in Table 1. Under the conditions shown in A, r gas pressure and static pressure 2
Methods 1 to 19 of the present invention and comparative methods 1 to 9 were carried out by performing subsequent sintering.

ついで、上記本発明法1〜19および比較法1〜9によ
って得られたサーメットについて、MgO含有量、密度
比、ロックウェル硬さくAスケール)。
Next, regarding the cermets obtained by the above-mentioned methods 1 to 19 of the present invention and comparative methods 1 to 9, the MgO content, density ratio, and Rockwell hardness A scale).

および抗折力を測定すると共に、これよりS N P4
33の形状をもった切削チップを切出し、被削材’、 
S 1jCM −8(硬さHB240)。
and transverse rupture strength, and from this S N P4
A cutting tip with the shape of 33 is cut out, and the workpiece material',
S 1jCM-8 (hardness HB240).

切削速度: 150 m/mm、 。Cutting speed: 150 m/mm.

送り: 0.45 TUn/ rev、 。Feed: 0.45 TUn/rev.

切込み:2朋。Depth of cut: 2.

切削時間:10m1lL。Cutting time: 10ml1L.

の条件での高速連続切削試験、並びに、被削材、’ S
N CM −8(硬さHB270)。
High-speed continuous cutting test under the conditions of
NCM-8 (hardness HB270).

切削速度二loom/弧。Cutting speed 2 room/arc.

送1) : 0.45 myn/ rev、 。Transmission 1): 0.45 myn/rev.

切込み:3+u+。Depth of cut: 3+u+.

切削時間:3+nlIn、。Cutting time: 3+nlIn.

の条件での断続切削試験を行ない、上記高速連続切削試
験では、切刃の逃げ面摩耗幅とすくい面摩耗深さを測定
し、また上記断続切削試験では、10個の試験切刃のう
ち、その刃先に欠損が発生した切刃数を測定し、これら
の測定結果を第2表に示した。また、第2表には、比較
の目的で、ISOのP ]、 OグレードのWCC超超
硬合金製切削チップ以下従来切削チップ1という)、お
よびTiC−10%Mo’−15%N1の組成を有する
TiC基サーメット製切削チップ(以下従来切削チップ
2という)の同一条件での切削試験結果も示した。
An interrupted cutting test was conducted under the following conditions, and in the high-speed continuous cutting test, the flank wear width and rake face wear depth of the cutting edge were measured, and in the interrupted cutting test, among the 10 test cutting edges, The number of cutting edges in which chipping occurred was measured, and the measurement results are shown in Table 2. Table 2 also shows, for comparison purposes, the compositions of ISO P], O grade WCC cemented carbide cutting tip (hereinafter referred to as conventional cutting tip 1), and TiC-10%Mo'-15%N1. The results of a cutting test under the same conditions of a TiC-based cermet cutting tip (hereinafter referred to as conventional cutting tip 2) having the following are also shown.

第2表に示される結果から、本発明法1〜19によって
製造されたサーメットは、い・ずれも高硬度と高靭性を
有し、かつ切削試験では従来切削チップ1.2に比して
著しくすぐれた耐摩耗性および耐衝撃性を示すのに対し
て、比較法1〜9に見られるように、配合組成および製
造条件のうちのいずれかの条件(第1表に※印を付した
も、の)でもこの発明の範囲から外れると、前記特性の
うち少なくともいずれかの特性が劣ったものになること
が明らかである。
From the results shown in Table 2, the cermets manufactured by methods 1 to 19 of the present invention all have high hardness and high toughness, and in the cutting test, they are significantly higher than the conventional cutting tip 1.2. While it shows excellent abrasion resistance and impact resistance, as seen in Comparative Methods 1 to 9, some of the compounding compositions and manufacturing conditions (those marked with * in Table 1) However, it is clear that if the method departs from the scope of the present invention, at least one of the above-mentioned characteristics will be inferior.

上述のように、この発明の方法によれば、高靭性と高硬
度を有し、さらに耐摩耗性、耐塑性変形性、および耐衝
撃性にすぐれたサーメットを製造することができ、した
がって、このサーメットを、これらの特性が要求される
鋼の高速切削や重切削などに切削工具として用いた場合
にはすぐれた性能を発揮し、さらに熱間圧延ロール、熱
間線引ロール、熱間圧縮ダイス、熱間鍛造ダイス、およ
び熱間押出しパンチなどの比較的長時間高温にさらされ
る熱間加工工具として用いた場合にもすぐれた性能を長
期に亘って発揮するなど工業上有用な効果がもたらされ
るのである。
As described above, according to the method of the present invention, it is possible to produce a cermet that has high toughness and hardness, and also has excellent wear resistance, plastic deformation resistance, and impact resistance. Cermet exhibits excellent performance when used as cutting tools for high-speed cutting and heavy cutting of steel that require these properties, and is also used in hot rolling rolls, hot drawing rolls, and hot compression dies. , hot forging dies, hot extrusion punches, and other hot processing tools that are exposed to high temperatures for a relatively long period of time, it provides industrially useful effects such as excellent performance over a long period of time. It is.

出願人  三菱金属株式会社Applicant: Mitsubishi Metals Corporation

Claims (1)

【特許請求の範囲】 少なくとも分散相形成成分と゛してのTiとWの複合金
属炭窒化物粉末:lO〜65重量係と酸乃至グネシウム
粉末 05〜10重量饅とを含有し、かつ結合相形成成
分としてのW粉末を含有する配合組成をもった混合粉末
より成形した圧粉体を、真空、窒素、あるいは不活性ガ
ス雰囲気中、1600〜1800℃の範囲内の温度で1
次焼結して残留酸化マグネシウム含有量 001−1重
乃至にして、密度比:95〜99%を有する焼結体とし
、 ついで、この焼結体に、温度: 1600−1800℃
および圧カニ 1000〜2000 kg/iの高温−
高圧条件にて静圧下2次焼結を施して実質的に100%
の密度比をもった緻密微細組織の焼結体とすることを特
徴とする高硬度高靭性ザーメットの製造法。
[Claims] Contains at least a composite metal carbonitride powder of Ti and W as a dispersed phase forming component: 1O~65% by weight and an acid to magnesium powder 05~10% by weight, and forms a binder phase. A green compact formed from a mixed powder having a composition containing W powder as a component is heated in a vacuum, nitrogen, or inert gas atmosphere at a temperature within the range of 1600 to 1800°C.
Next, it is sintered to obtain a sintered body having a residual magnesium oxide content of 001-1% and a density ratio of 95 to 99%, and then this sintered body is heated at a temperature of 1600 to 1800°C.
and pressure crabs at high temperatures of 1000 to 2000 kg/i.
Substantially 100% by secondary sintering under static pressure under high pressure conditions.
A method for producing cermet with high hardness and high toughness, characterized by producing a sintered body with a dense microstructure having a density ratio of .
JP58075335A 1983-04-28 1983-04-28 Manufacture of cermet with high hardness and toughness Granted JPS59200734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075335A JPS59200734A (en) 1983-04-28 1983-04-28 Manufacture of cermet with high hardness and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075335A JPS59200734A (en) 1983-04-28 1983-04-28 Manufacture of cermet with high hardness and toughness

Publications (2)

Publication Number Publication Date
JPS59200734A true JPS59200734A (en) 1984-11-14
JPS6245292B2 JPS6245292B2 (en) 1987-09-25

Family

ID=13573277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075335A Granted JPS59200734A (en) 1983-04-28 1983-04-28 Manufacture of cermet with high hardness and toughness

Country Status (1)

Country Link
JP (1) JPS59200734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096071A (en) * 2003-09-24 2005-04-14 Sandvik Ab Cutting tool insert and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096071A (en) * 2003-09-24 2005-04-14 Sandvik Ab Cutting tool insert and its manufacturing method
JP4713119B2 (en) * 2003-09-24 2011-06-29 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cutting tool insert and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6245292B2 (en) 1987-09-25

Similar Documents

Publication Publication Date Title
KR890004490B1 (en) Tungsten cermet
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
JP2710934B2 (en) Cermet alloy
JPS6256943B2 (en)
JPS59200734A (en) Manufacture of cermet with high hardness and toughness
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JPS6256944B2 (en)
JPS59123738A (en) Tungsten-base cermet
JPS6245293B2 (en)
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JPH0450373B2 (en)
JPS6067638A (en) Cermet for cutting tool and hot processing tool
JPS6141979B2 (en)
JPS6146542B2 (en)
JP3118857B2 (en) High-strength tungsten carbide-based cemented carbide cutting tool and method of manufacturing the same
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPH08253836A (en) Wear resistant tungsten carbide-base cemented carbide having excellent toughness
JPS6117899B2 (en)
JP2666338B2 (en) Tungsten carbide based cemented carbide end mill
JP2000073136A (en) Production of cutting tool made of titanium base multiple metallic carbonitride cermet excellent in chipping resistance
JPH05171337A (en) Cutting tool made of ti type carbonitroborate-base cermet excellent in oxidation resistance
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS58181844A (en) Sintered material for cutting tool and anti-wear tool excellent in high temperature characteristics
JPH0517298B2 (en)
JPS59123737A (en) Tungsten-base cermet