JPS59200370A - Correcting system of picture distortion - Google Patents

Correcting system of picture distortion

Info

Publication number
JPS59200370A
JPS59200370A JP58072895A JP7289583A JPS59200370A JP S59200370 A JPS59200370 A JP S59200370A JP 58072895 A JP58072895 A JP 58072895A JP 7289583 A JP7289583 A JP 7289583A JP S59200370 A JPS59200370 A JP S59200370A
Authority
JP
Japan
Prior art keywords
coordinates
image
pixel
ground surface
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58072895A
Other languages
Japanese (ja)
Other versions
JPH0727552B2 (en
Inventor
Fuminobu Furumura
文伸 古村
Koichi Honma
弘一 本間
Yoichi Seto
洋一 瀬戸
Nobutake Yamagata
山縣 振武
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58072895A priority Critical patent/JPH0727552B2/en
Publication of JPS59200370A publication Critical patent/JPS59200370A/en
Publication of JPH0727552B2 publication Critical patent/JPH0727552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To produce the corrected picture data by using a form model of the ground surface in consideration of the position information and the ups/downs of a sensor and applying an optimum optional interpolation system from the information contained in a memory medium in accordance with the application of the picture data. CONSTITUTION:A distortion calculating device 17 calculates an eye vector sent from a satellite corresponding to the picture element coordinates (l, p) from the position information on a sensor given from outside 18. In addition, a form model of the ground surface is used to calculate the intersecting coordinates (x, y) between the eye vector and the ground surface. The coordinates (x, y) are written to a buffer memory 23. A coordinate adding device 24 reads the intensity of picture element of the coordinates (l, p) out of a magnetic tape 20 for observed picture. This picture element intensity is written to a magnetic tape 25 together with the coordinates (x, y) stored in the memory 23. The above-mentioned processing is carried out in the order of smaller value of coordinates (l, p), e.g., in (1, 1), (1, 2), (2, 2) order.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、人工衛星、航空機等に搭載されたセンサが地
表を撮影した画像中に含まれる形状歪の補正方式、特に
、地表の起伏に起因する形状歪の高精度補正に好適な方
式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for correcting shape distortions included in images of the earth's surface taken by sensors mounted on artificial satellites, aircraft, etc. The present invention relates to a method suitable for highly accurate correction of shape distortion.

〔発明の背景〕[Background of the invention]

上記形状歪の補正は従来次のように行なわれている。例
えば、文献R0J3ernstein、 ”])igi
tal■mage processing of Ea
rth QbservationSensor 1)a
ta”、IBM Journal  of Re5ea
rch。
Correction of the shape distortion described above is conventionally performed as follows. For example, the document R0J3ernstein, ``])igi
tal image processing of Ea
rth QbservationSensor 1)a
ta”, IBM Journal of Re5ea
rch.

Jan、1976、に述べられているように、概略は次
のとおりである。第1図の1を人工衛星、航空機等に搭
載されたセンサ、2を地表とする。地表2の1点3はセ
ンサ面4上の点5に像を作る。このとき点3と像5の位
置関係は、センサ1の空間における位置、姿勢、センサ
光学系のモデルおよび地表2の形状モデルを用いて幾何
学計算により求められる。いま、センサ面4上の受光信
号をサンブリングして得たものを観測画像と呼ぶ。また
、各サンプルを画素と呼ぶ。第2図(a)は観測画像の
各画素を等間隔格子点(図の黒点)に並べたもので、こ
れを観測画像空間と名づける。この空間の任意の点は座
標(t、p)で指定される。一方、画像の利用解析の目
的に供する所望の画像は、第2図(b)に示すごとく、
所定の地図投影法に従う座標X−Yの上で画素が等間隔
格子点(図の白点)に並んだものである。これを補正画
像と名づける。
Jan, 1976, the outline is as follows. In FIG. 1, 1 is a sensor mounted on an artificial satellite, an aircraft, etc., and 2 is the ground surface. A point 3 on the earth's surface 2 forms an image at a point 5 on the sensor surface 4. At this time, the positional relationship between the point 3 and the image 5 is determined by geometric calculation using the spatial position and orientation of the sensor 1, a model of the sensor optical system, and a shape model of the ground surface 2. Now, what is obtained by sampling the light reception signals on the sensor surface 4 is called an observed image. Further, each sample is called a pixel. In FIG. 2(a), each pixel of the observed image is arranged at equidistant grid points (black dots in the figure), and this is called the observed image space. Any point in this space is specified by coordinates (t,p). On the other hand, the desired image for the purpose of image usage analysis is as shown in Fig. 2(b).
Pixels are arranged at equally spaced grid points (white points in the figure) on coordinates X-Y according to a predetermined map projection method. This is called a corrected image.

観測画像から補正画像を得るには画素の位置並べかえ、
すなわちリサンプリング処理が必要となる。
To obtain a corrected image from an observed image, rearrange the pixel positions,
In other words, resampling processing is required.

82図(b)の格子9は観測画像の画素格子6を補正画
像空間に投影したものである。問題はこの格子9の格子
点で与えられた画素強度から、補正画像空間の等間隔格
子8の各格子点での画素強度を補間することである。こ
れを形状歪の補正という。
The grid 9 in FIG. 82(b) is a projection of the pixel grid 6 of the observed image onto the corrected image space. The problem is to interpolate the pixel intensity at each grid point of the equidistant grid 8 in the corrected image space from the pixel intensity given at the grid points of the grid 9. This is called shape distortion correction.

このような形状歪の補正を行なうための従来の方法では
通常次のような近似解法が用いられてき之。これには次
の2つの仮定を用いる。
In conventional methods for correcting such shape distortions, the following approximate solution method is usually used. The following two assumptions are used for this.

(1)観測画像の画素格子9は局所的に等間隔とみなせ
る。
(1) The pixel grid 9 of the observed image can be regarded as locally equally spaced.

(11)  観測画像の画素格子9と補正画像の画素格
子8との間の歪は連続で局所的に線形とみなせる。
(11) The distortion between the pixel grid 9 of the observed image and the pixel grid 8 of the corrected image can be regarded as continuous and locally linear.

以上の仮定のもとに補正画像空間の画素位置(X、Y)
を観測画像空間の画素位置(t、p)に写像する歪補正
モデルを作る。次にこのモデルを用いて、補正画像の格
子8上の各画素に対応する観測画像の格子7上の各画素
位置を算出する。
Based on the above assumptions, pixel position (X, Y) in the corrected image space
A distortion correction model is created that maps the image to the pixel position (t, p) in the observed image space. Next, using this model, the position of each pixel on the grid 7 of the observed image corresponding to each pixel on the grid 8 of the corrected image is calculated.

この画素位置は一般に整数格子点、すなわち格子6の黒
点、にならない。そこで格子6の各点の画像強度から格
子7の各点の画像強度を補間する。
This pixel position generally does not become an integer grid point, that is, a black point of grid 6. Therefore, the image intensity at each point on the grid 7 is interpolated from the image intensity at each point on the grid 6.

この際観測点、すなわち格子6の各点、が等間隔にある
とみなしているので、少ない演算量で補間計算ができる
。前述の文献にあるニアレストネイハ法、パイリニア法
、キュービックコンポルージョン法等が適用できる。以
上の歪補正の従来方法のフローは第3図に示すごとくな
る。
At this time, since it is assumed that the observation points, that is, each point of the grid 6, are equally spaced, interpolation calculations can be performed with a small amount of calculation. The nearest Neiha method, pi-linear method, cubic convolution method, etc. described in the above-mentioned literature can be applied. The flow of the conventional method of distortion correction described above is as shown in FIG.

従来方法は前述の(D、 (+Dの仮定にもとづいてい
る。この仮定は地表に急激な起伏の変化がなく、センサ
がほぼ真上から地表を観測している場合には実用上十分
な精度で成立つ。ところがセンサの解像度が高まシ、地
表の起伏による位置ずれ(バクラックス)が無視できな
い場合、地表の起伏を積極的に観測するため斜め上方か
ら地表を観測する場合には、山によって裏側の部分が隠
れる現象が発生する。このような場合には第4図に示す
ごとく補正画像空間内で観測画像の画素格子16が局所
的に不等間隔となり、かつ格子16と補正画像の画素格
子15との間の歪は非線形となる。すなわち前述の(1
)、 (ii)の仮定は成立せず、したがつて観測画像
空間でリサンプリング処理を行なうという従来方式が適
用できないという困難が生ずる。
The conventional method is based on the above-mentioned assumptions (D, (+D). This assumption is accurate enough for practical use when there are no sudden changes in the undulation of the ground surface and the sensor is observing the ground surface from almost directly above. However, if the resolution of the sensor is high and positional deviations due to the undulations of the ground surface (backlux) cannot be ignored, when observing the ground surface diagonally from above in order to actively observe the undulations of the ground surface, it is difficult to In such a case, as shown in FIG. 4, the pixel grid 16 of the observed image becomes locally irregularly spaced in the corrected image space, and the distance between the grid 16 and the corrected image increases. The distortion between the pixel grid 15 and the pixel grid 15 is nonlinear.
), (ii) do not hold, and therefore the conventional method of performing resampling processing in the observed image space is difficult to apply.

これに対し、第5図に示す構成の補正装置を°用いて、
補正画像空間で不等間隔画素から直接リサンプリングす
る方式が考えられる。。
On the other hand, using a correction device having the configuration shown in Fig. 5,
A method of directly resampling from non-uniformly spaced pixels in the corrected image space can be considered. .

第5図において、歪量算出装置17は、外部18から与
えられたセンサの位置、姿勢情報および地表の形状モデ
ルを用いて、センサ系の幾何学計算により観測画像の各
画素すなわち第1図の像5の座標(t、p)に対応する
地表2の点3の座標を算出し、さらにこれから所定の地
図投影に従う補正画像上の座標(x、y)を算出する。
In FIG. 5, the distortion amount calculation device 17 calculates each pixel of the observed image, that is, the shape of the image shown in FIG. The coordinates of a point 3 on the ground surface 2 corresponding to the coordinates (t, p) of the image 5 are calculated, and from this the coordinates (x, y) on the corrected image according to a predetermined map projection are calculated.

この計算は画素座標(t、p)の値の小さい順、例えば
 (l 、 1 ン 、   (1,2)、  ・・・
 (1,N ン 、  (2。
This calculation is performed in ascending order of the pixel coordinates (t, p), for example (l, 1, (1, 2), ...
(1,N, (2.

1)、(2,2)・・・と行ない、結果はバッファメモ
リ19にたくわえられる。ここでNは観測画像の1ライ
ン上の画素数とする。
1), (2, 2), etc., and the results are stored in the buffer memory 19. Here, N is the number of pixels on one line of the observed image.

リサンプリング装置21は、観測画像の各画素の強度を
順次磁気テープ20から読み込む。そののちこの画素強
度と上記バッファメモリ19にたくわえた各画素の補正
画像上の座標(x+・y)から、所定の不等間隔データ
の補間式に従い補正画像上の所定の等間隔の画素位置(
Xo + Yo )における画像強度を算出する。この
計算を画素座標(xt3 + yo )の値の小さい順
、例えば(l、1>、(1,2)、・・・、(1,N’
 )、(2,1)。
The resampling device 21 sequentially reads the intensity of each pixel of the observed image from the magnetic tape 20. Thereafter, from this pixel intensity and the coordinates (x+・y) of each pixel on the corrected image stored in the buffer memory 19, predetermined equally spaced pixel positions (
Calculate the image intensity at (Xo + Yo). This calculation is performed in descending order of the value of pixel coordinates (xt3 + yo), for example (l, 1>, (1, 2), ..., (1, N')
), (2,1).

(2,2)・・・と行ない結果を磁気テープ22に書き
出す。こうして補正画像が磁気テープの形で得られる。
(2, 2) . . . and write the results on the magnetic tape 22. A corrected image is thus obtained in the form of a magnetic tape.

ここでN′は補正画像の1ライン上の画素数とする。Here, N' is the number of pixels on one line of the corrected image.

さて、ここでリサンプリングの方式は、等間隔データに
対するニアレストネイバ法、パイリニア法、キューピッ
クコンポルージョン法、!41方式が多数適用可能であ
る。画像データの利用解析の目的、用途によって固有の
りサンプリング方式を用いる必要が生ずる場合がある。
Now, here the resampling methods are the nearest neighbor method, pi-linear method, cupic convolution method for equally spaced data, etc. A large number of 41 methods are applicable. Depending on the purpose and application of image data usage analysis, it may be necessary to use a unique sampling method.

このとき第5図の構成ではりサンプリング装置21のプ
ログラムあるいはハードウェアの一部をその都度変更す
る必要が生ずる難点がある。
At this time, the configuration shown in FIG. 5 has the disadvantage that it is necessary to change part of the program or hardware of the beam sampling device 21 each time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、地表の起伏のために画素が不等間隔と
なった観測画像の形状歪を高速かつ精密に補正し、画素
が等間隔な補正画像を得る際、画像データの利用目的に
応じて異なる画素データ補開式を適用するのに好適な画
像歪の補正方式を提供することにある。
The purpose of the present invention is to quickly and precisely correct the shape distortion of observed images in which pixels are unevenly spaced due to the undulations of the earth's surface, and to obtain corrected images with evenly spaced pixels. An object of the present invention is to provide an image distortion correction method suitable for applying different pixel data correction formulas depending on the situation.

〔発明の概要〕[Summary of the invention]

この目的を達成するため本発明では、センサの位置、姿
勢情報および起伏を考慮した地表の形状モデルを用いて
観測画像の各画素に対応する地表点の位置座標を精密に
求める手段を設け、観測画像の各画素の画像強度データ
に上記位置座標を付加したものを磁気テープ等の記憶媒
体に記録出力することに特徴がある。利用者はこの記憶
媒体中の情報から、画像データの用途に応じて最適な任
意の補間方式を適用し、補正済画像データを作成するこ
とができる。
In order to achieve this objective, the present invention provides means for precisely determining the position coordinates of a point on the ground corresponding to each pixel of an observation image using a shape model of the ground surface that takes into account the position and orientation information of the sensor and the ups and downs. A feature of this method is that the image intensity data of each pixel of the image added with the above-mentioned position coordinates is recorded and output on a storage medium such as a magnetic tape. From the information in this storage medium, the user can create corrected image data by applying any interpolation method that is most suitable for the purpose of the image data.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図を用いて詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

第6図は本発明による画像歪の補正装置の一実施例の全
体構成図である。第7図は第6図の装置の動作の一例を
示すフローチャートである。
FIG. 6 is an overall configuration diagram of an embodiment of an image distortion correction device according to the present invention. FIG. 7 is a flowchart showing an example of the operation of the apparatus shown in FIG.

17は第5図におけると同一の歪量算出装置である。こ
の装置は外部18から与えられたセンサの位置、姿勢情
報によシ、画素座標(7,p)に対応する衛星からの視
線ベクトルを算出し、また地表の形状モデルを用いて視
線ベクトルと地表の交点座標(x、y)を算出し、これ
をバッファメモリ23に書き込む。座標付加装置24は
観測画像磁気テープ20から座標(7,p)の画素強度
を読み込み、これにバッファメモリ23にだくわえられ
た座標(x、y)を付加して磁気テープ25に書き込む
。以上の処理を座標(t、p)の値の小さい順、例えば
(1,1)、(1,2)、・・・。
17 is the same distortion amount calculation device as in FIG. This device calculates the line-of-sight vector from the satellite corresponding to the pixel coordinates (7, p) based on the position and attitude information of the sensor given from the outside 18, and also calculates the line-of-sight vector and the ground surface using the shape model of the ground surface. The intersection coordinates (x, y) are calculated and written into the buffer memory 23. The coordinate adding device 24 reads the pixel intensity at the coordinates (7, p) from the observation image magnetic tape 20, adds the coordinates (x, y) stored in the buffer memory 23 to this, and writes it onto the magnetic tape 25. The above processing is performed in ascending order of the values of coordinates (t, p), for example (1, 1), (1, 2), . . .

(1,N)、(2,1>、(2,2)・・・と行なう。(1, N), (2, 1>, (2, 2), etc.).

得られた磁気テープ25の内容は座標付き観測画像であ
る。記録形式は第7図(a)に示すようにすればよい。
The contents of the obtained magnetic tape 25 are observation images with coordinates. The recording format may be as shown in FIG. 7(a).

各画素に対応する画素デ〜り26を座標(z、p)の値
の順に並べる。各画素データは第7図(b)のごとく、
セ/すの感光周波数帯域(バンド)毎の観測強度のうし
ろに座標x、yを付加したものである。
The pixel data 26 corresponding to each pixel are arranged in the order of the coordinate (z, p) values. Each pixel data is as shown in Figure 7(b).
The coordinates x and y are added to the back of the observed intensity for each photosensitive frequency band (band).

この実施例で作られた座標付き観測画像に対して、リサ
ンプリング装置21において、画像データの利用者がそ
の目的、用途に応じて最適なりサンプリング方式を適用
し、磁気テープ25に貯えられた座標値(x、y)を用
いて歪補正を行なうことが可能である。
In the resampling device 21, the user of the image data applies an optimal sampling method according to the purpose and use of the observation image with coordinates created in this embodiment, and the coordinates stored on the magnetic tape 25 are extracted. It is possible to perform distortion correction using the values (x, y).

ここで用いるリサンプリング方式の例について説明して
おく。第4図の格子15の上で画素強度を求めたい点の
座標を(Xo r Yo  )とする。この点の周囲に
ある、格子16上の第iの点の座標を()H,)’t)
とし、その点での観測画像の強度をzIとする。(i=
l、・・・、M)Mは4ないし16程度でよい。このと
きりサンプリングの問題は、(Xl * )’l + 
”l  ) (””1 r ”’r M)から(Xo 
+ )’o )点での強度zOを推定することである。
An example of the resampling method used here will be explained. Let the coordinates of a point on the grid 15 in FIG. 4 for which the pixel intensity is to be determined be (Xor Yo). The coordinates of the i-th point on the grid 16 around this point are ()H,)'t)
Let the intensity of the observed image at that point be zI. (i=
l, . . . , M) M may be about 4 to 16. In this case, the problem of threshold sampling is (Xl *)'l +
”l ) (””1 r ”’r M) to (Xo
+ )'o ) is to estimate the intensity zO at the point.

これには多くの方法が可能であるがここでは一例を示す
Although many methods are possible for this, one example will be shown here.

いま(x、y)点での強度2をx、yの3次関数で近似
する。
Now, the intensity 2 at the point (x, y) is approximated by a cubic function of x, y.

z=alX3+a2x2y十a3Xy2+a4y3+a
5X2+a6Xy十a7y2+agX+asy+ato
           (1)(Xo r Yo 1点
のまわシに15点の観測画像画素(Xl h Y+  
)(’=L・・・、15)を選定する。このときこれら
各画素において(1)式が成立つとすれば、間代の未知
係数a1 + a2 *・・・。
z=alX3+a2x2y tena3Xy2+a4y3+a
5X2+a6Xy tena7y2+agX+asy+ato
(1) (Xor Yo 15 observation image pixels in one point (Xl h Y+
)('=L..., 15). At this time, if equation (1) holds true for each pixel, the clonic unknown coefficient a1 + a2 *...

(2) こうして得た係数a11a2+・・・t aloを用い
て、(Xo * ’In )における所要の強度zoを
(3)式によシ得ることができる。
(2) Using the coefficients a11a2+...t alo thus obtained, the required intensity zo in (Xo*'In) can be obtained by equation (3).

zO°aIXo+82XoYo+aaXoYo十84Y
o+asX。
zO°aIXo+82XoYo+aaXoYo 184Y
o+asX.

十aaXoYo +avYo+asXo +a9yo 
+”io    (3)もちろん、これ以外の補間式を
、画像データの用途に応じて適用できる。
10aaXoYo +avYo+asXo +a9yo
+”io (3) Of course, other interpolation formulas can be applied depending on the purpose of the image data.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、地表の起伏の影響
で各画素が不等間隔となった観測画像に対して、歪量の
算出と不等間隔画素の補間を行なうことによシ精密な歪
補正を行なうことが可能となる。また座標付き観測画像
データを作ることができるので、画像利用者の目的に応
じた解析に役立つという効果がある。
As described above, according to the present invention, it is possible to obtain precise images by calculating the amount of distortion and interpolating the pixels at uneven intervals for an observed image in which each pixel is unevenly spaced due to the effect of the undulations of the earth's surface. This makes it possible to perform accurate distortion correction. Furthermore, since observation image data with coordinates can be created, it is useful for analysis according to the purpose of the image user.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセンサによる地表の観測を示す図、第2図は観
測画像と補正画像の関係を示す図、第3図は歪補正処理
の従来方式のフローを示す図、第4図は不等間隔画素を
示す図、第5図は従来の画像歪補正装置の構成図、第6
図は本発明による画像歪補正装置の他の実施例の全体構
成図、第7図は第6図の動作の一例を示すフローチャー
ト、第8図は第6図の座標付き観測画像データの記録形
式の一例を示す図である。 1・・・センサ、2・・・地表、3・・・地表点、4・
・・センサ面、5・・・センサ面上の像、6・・・観測
画像の画素格子、8・・・補正画像の画素格子、17・
・・歪量算出装置、19・・・バッファメモリ、20・
・・観測画像磁気テープ、21・・・リサンプリング装
置、22・・・補正画像磁気テープ、23・・・バッフ
ァメモリ、24・・・座標付加装置、25・・・座標付
き観測画像磁気チー第一 1  図 ¥  2  図 (良)           (リ ーP   )  ノl        「r第 3 図 と /−9第4 図 第  5  図 鱈 2 図 第 7  図
Figure 1 is a diagram showing the observation of the ground surface by a sensor, Figure 2 is a diagram showing the relationship between observed images and corrected images, Figure 3 is a diagram showing the flow of the conventional method of distortion correction processing, and Figure 4 is a diagram showing the unevenness Figure 5 is a diagram showing the interval pixels, and Figure 5 is a configuration diagram of a conventional image distortion correction device.
7 is a flowchart showing an example of the operation of FIG. 6, and FIG. 8 is a recording format of observation image data with coordinates shown in FIG. 6. It is a figure showing an example. 1... Sensor, 2... Ground surface, 3... Ground point, 4...
...Sensor surface, 5... Image on sensor surface, 6... Pixel grid of observed image, 8... Pixel grid of corrected image, 17.
...Distortion amount calculation device, 19...Buffer memory, 20.
... Observation image magnetic tape, 21 ... Resampling device, 22 ... Correction image magnetic tape, 23 ... Buffer memory, 24 ... Coordinate adding device, 25 ... Observation image magnetic tape with coordinates 1 Figure¥ 2 Figure (Good) (Lee P) Nol ``r Figure 3 and/-9 Figure 4 Figure 5 Cod 2 Figure Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、地表の点に対応する像を空間に配置したセンサの面
上に形成するシステムにおいて、センサによる観測画像
の各画素に対応する対象物の位置座標を算出する手段と
、観測画像の各画素の画像強度データと該画素に対応す
る対象物の位置座標とを合わせ記録する記憶媒体とを備
えたことを特徴とする画像歪の補正方式。
1. In a system that forms images corresponding to points on the earth's surface on the surface of a sensor arranged in space, means for calculating the position coordinates of an object corresponding to each pixel of an observed image by the sensor, and each pixel of the observed image 1. A method for correcting image distortion, comprising: a storage medium for combining and recording image intensity data of a pixel and position coordinates of an object corresponding to the pixel.
JP58072895A 1983-04-27 1983-04-27 Image distortion correction method Expired - Lifetime JPH0727552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072895A JPH0727552B2 (en) 1983-04-27 1983-04-27 Image distortion correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072895A JPH0727552B2 (en) 1983-04-27 1983-04-27 Image distortion correction method

Publications (2)

Publication Number Publication Date
JPS59200370A true JPS59200370A (en) 1984-11-13
JPH0727552B2 JPH0727552B2 (en) 1995-03-29

Family

ID=13502539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072895A Expired - Lifetime JPH0727552B2 (en) 1983-04-27 1983-04-27 Image distortion correction method

Country Status (1)

Country Link
JP (1) JPH0727552B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108378A (en) * 1985-11-07 1987-05-19 Hitachi Ltd Image correction system
JPS63247875A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Sensor picture processing system
KR100419483B1 (en) * 2001-12-26 2004-02-21 한국전자통신연구원 method and recorded media for sensor modeling of satellite imagery
JP2013097782A (en) * 2011-11-01 2013-05-20 Shijin Kogyo Sakushinkai Image warp method and computer program product of the same
CN112519789A (en) * 2019-09-17 2021-03-19 Aptiv技术有限公司 Method and system for determining activity of vehicle occupant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115262A (en) * 1977-03-18 1978-10-07 Toshiba Corp Geometrical strain corrector of picture image
JPS5784058U (en) * 1980-11-04 1982-05-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115262A (en) * 1977-03-18 1978-10-07 Toshiba Corp Geometrical strain corrector of picture image
JPS5784058U (en) * 1980-11-04 1982-05-24

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108378A (en) * 1985-11-07 1987-05-19 Hitachi Ltd Image correction system
JPS63247875A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Sensor picture processing system
KR100419483B1 (en) * 2001-12-26 2004-02-21 한국전자통신연구원 method and recorded media for sensor modeling of satellite imagery
JP2013097782A (en) * 2011-11-01 2013-05-20 Shijin Kogyo Sakushinkai Image warp method and computer program product of the same
CN112519789A (en) * 2019-09-17 2021-03-19 Aptiv技术有限公司 Method and system for determining activity of vehicle occupant

Also Published As

Publication number Publication date
JPH0727552B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
KR100425751B1 (en) Software correction of image distortion in digital cameras
US9280810B2 (en) Method and system for correcting a distorted input image
EP1531322A2 (en) Map display apparatus
US6810153B2 (en) Method for orthocorrecting satellite-acquired image
US20020082800A1 (en) Method of composing three-dimensional multi-viewpoints data
JP3466661B2 (en) Image processing apparatus and method
CA1220543A (en) Image correction processing method
WO2004029878A1 (en) Imaging and measurement system
JPS59200370A (en) Correcting system of picture distortion
JPH11161819A (en) Image processor, its method and recording medium recording image processing program
US20080019612A1 (en) Image scaling device
JPS61136177A (en) Apparatus for use in calculation of image data
US6522337B1 (en) Image processing apparatus, image processing method, and recording medium
JPH08251400A (en) Digital image interpolation circuit provided with plurality of interpolation kernels
US7280108B2 (en) Bicubic surface rendering
JP4756567B2 (en) Image correction method for projection display device
JP2006025448A (en) Apparatus and method for generating key signal, image compositing device, and recording medium
JP2000187726A (en) Data interpolation method and its device and storage medium
Bernstein Results of precision processing (scene correction) of ERTS-1 images using digital image processing techniques
JPS6280768A (en) Stereoscopic image processing system
JP3249956B2 (en) Interpolation method
JP5504142B2 (en) Image processing apparatus, image processing method, and image processing program
CN115755052A (en) Method and system for estimating in-orbit effective baseline of interferometric synthetic aperture radar
JP2616836B2 (en) Image synthesis processing device
JP2998577B2 (en) Projection image creation device