JPS59200191A - Subcooling preventable latent heat type heat storage tank - Google Patents

Subcooling preventable latent heat type heat storage tank

Info

Publication number
JPS59200191A
JPS59200191A JP58072943A JP7294383A JPS59200191A JP S59200191 A JPS59200191 A JP S59200191A JP 58072943 A JP58072943 A JP 58072943A JP 7294383 A JP7294383 A JP 7294383A JP S59200191 A JPS59200191 A JP S59200191A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
capsule
latent
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58072943A
Other languages
Japanese (ja)
Inventor
Katsuaki Yamagishi
勝明 山岸
Akio Mitani
三谷 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58072943A priority Critical patent/JPS59200191A/en
Publication of JPS59200191A publication Critical patent/JPS59200191A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)

Abstract

PURPOSE:To provide a latent heat type heat storage tank, which does not subcool latent heat type heat storage material such as water, hydrate, or the like or nearly instantaneously start to solidify the material even if subcooled by a method wherein heat storage capsules are made cylindrical and sound wave vibration of 10-50kHz is applied to one end of each capsule so as to produce solidifying neuclei there in order to solidify the whole interir of the capsule. CONSTITUTION:A plurality of cylindrical heat storage capsules 13 are housed in a cylindrical heat storage container 15 by arranging in the same direction as the center line of the container 15 at proper intervals. Latent heat type heat storage material 17 is sealed in the heat storage capsule 13. A plurality of supersonic vibrating elements 11 are mounted in the lower end of a latent heat type heat storage tank 16 in order to be vibrated by means of a supersonic oscillator 12. When supersonic wave is irradiated from the lower end of the latent heat type heat storage tank 16 at a moment that the latent heat type heat storage material 17 starts to subcool, solidifying nuclei 18 are produced at the lower part of each heat storage capsule 13 and serve as centers from which solid phase begin to grow, resulting in enabling to nearly instantenously and uniformly solidify all the heat storage capsules 13 in the tank 16.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は潜熱蓄熱剤が過冷却現象を起こすごとく、熱エ
ネルギーを蓄えられ、この熱エネルギーを空気調和等に
使用する潜熱蓄熱槽に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a latent heat storage tank in which thermal energy is stored such that a latent heat storage agent causes a supercooling phenomenon, and this thermal energy is used for air conditioning or the like.

〔従来技術とその問題点〕[Prior art and its problems]

液相から固相への相変化潜熱を利用して熱エネルギーを
蓄え、この熱エネルギーを空気調和等に使用する潜熱蓄
熱槽がある。ところが潜熱蓄熱槽において水および水利
塩等の潜熱蓄熱剤を用いた場合に冷凍機の冷凍能力がそ
の潜熱蓄熱剤の顕熱量に比べて小さくて、冷却する速度
が遅かったりすると、過冷却現象を生じる。もし過冷却
状態から脱出しないなら、潜熱蓄熱は不可能となり、蓄
熱量は極端に減少し、かつ相変化温度における一定熱源
も得られなくなってしまう。あるいは自然凝固温度まで
行って凝固が開始しても、蓄熱損失が犬きく、かつ凝固
に時間がかかつてし甘う。従って、氷や同相の水和塩等
を融解して冷房及び暖房に利用するような空調機器等で
は、過冷却現象は大きな障害となっている。
There is a latent heat storage tank that stores thermal energy using phase change latent heat from a liquid phase to a solid phase and uses this thermal energy for air conditioning and the like. However, when a latent heat storage agent such as water or water salt is used in a latent heat storage tank, if the cooling capacity of the refrigerator is small compared to the amount of sensible heat of the latent heat storage agent and the cooling rate is slow, overcooling may occur. arise. If the supercooled state is not escaped, latent heat storage becomes impossible, the amount of heat storage is extremely reduced, and it becomes impossible to obtain a constant heat source at the phase change temperature. Alternatively, even if the temperature reaches the natural coagulation temperature and coagulation starts, the heat storage loss is significant and the coagulation takes a long time. Therefore, the supercooling phenomenon is a major problem in air conditioning equipment that melts ice, hydrated salts, etc. of the same phase and uses it for cooling and heating.

さて、過冷却は一種の準安定状態であり、従来から結晶
のような微小物を投入したり、急に振った9すると、核
が生成され、相愛化を起こして安定な状態に移ることが
経験的に知られている。しかし、いずれの方法によると
きもその効果は不十分であり、相変化温度で確実に一凝
固できなかった。
Now, supercooling is a kind of metastable state, and conventionally, when microscopic objects such as crystals are introduced or shaken suddenly9, nuclei are generated and mutual love occurs, resulting in a transition to a stable state. known from experience. However, when using either method, the effect was insufficient and solidification could not be achieved reliably at the phase change temperature.

第1図に振動を用いた場合の従来例を示す。電磁石4の
コイル5に交流電源6から電流を流して振動板7を振動
させ、これIc水1を満たした試料容器2を連結して冷
却した実験では、振動によって凍結温度が自然凍結温度
より上昇することが報告されている。しかしながらこの
例では、試料容器2を振動させながら冷却するのである
が、振動の効果が現わ力、て核が生成され、凍結が開始
する甘でに時間がかかるという欠点があった。
FIG. 1 shows a conventional example in which vibration is used. In an experiment in which a current was applied from an AC power supply 6 to the coil 5 of the electromagnet 4 to vibrate the diaphragm 7, and a sample container 2 filled with Ic water 1 was connected and cooled, the freezing temperature rose above the natural freezing temperature due to the vibration. It has been reported that However, in this example, although the sample container 2 is cooled while being vibrated, the disadvantage is that it takes a long time for the vibration to take effect, generate nuclei, and start freezing.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解決するためになされたもので、水
および水利塩等の潜熱蓄熱剤を過冷却することなく、ま
たは過冷却してもほぼ瞬時に凝固全開始できる潜熱蓄熱
槽を提供するものである。
The present invention has been made in order to solve the above-mentioned drawbacks, and provides a latent heat storage tank in which latent heat storage agents such as water and water salts can completely start solidifying almost instantly without supercooling or even if supercooled. It is something.

〔発明の概要〕[Summary of the invention]

本発明では蓄熱カプセル全柱状に(7、このカプセルの
一端に超10〜50KH2の音波振動を加えることによ
り、この部分に凝固の核全作り、カプセル内全体を固ま
らすことができ、前記目的を達成している。
In the present invention, by applying ultrasonic vibrations of 10 to 50 KH2 to one end of the heat storage capsule (7), it is possible to create the entire core of solidification in this part and harden the entire inside of the capsule, thereby achieving the above purpose. Achieved.

〔発明の効果〕〔Effect of the invention〕

1、超音波振動の蔭になるカプセルができず、均一に凝
固させることができる。
1. Capsules are not formed due to ultrasonic vibration, and uniform coagulation can be achieved.

2、カプセルの下端は、ブラインが最初に通過するとこ
ろであるから、ここに超音波を照射することにより凝固
の核をできやすくした。
2. The lower end of the capsule is where brine passes first, so irradiating it with ultrasonic waves facilitates the formation of coagulation nuclei.

3、冷凍能力の小さい冷凍機でも確実に潜熱蓄熱剤全凝
固することができる。
3. Even in a refrigerator with a small refrigerating capacity, the latent heat storage agent can completely solidify completely.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の実施例を示したものである0筒状の蓄
熱容器15内に、蓄熱容15と同軸方向に複数本の柱状
の蓄熱カプセル13を適当な間隔をあけて収納する。蓄
熱カプセル13内には潜熱蓄熱剤17が封入されている
。熱媒体としてのブライン14の温度は潜熱蓄熱材17
の相変化温度より低い温度になっており、潜熱蓄熱槽1
6の下部に設けた入口より流れ込み、上部に設けた出口
より出て行く〇一般にブラインは温度の低い方が密度が
犬きくなるためCのように下方から流し込むこのように
すると蓄熱カプセル13はその下端より冷却されること
になり、この部分が特によく冷える。一方、超音波振動
素子11は潜熱蓄熱槽16の下端に複数個取り付けてあ
り、超音波発振器12によって振動させることができる
。よって、蓄熱カプセル13内の潜熱蓄熱材17が過冷
却を起こしたところで超音波を潜熱蓄熱槽16の下端よ
り照射すれば、蓄熱カプセル13のそれぞれの下部に凝
固の核18が生成し、ここより固相が成長することから
、槽内全体の蓄熱カプセル13をほぼ瞬時にかつ均一に
凝固させることができる。
FIG. 2 shows an embodiment of the present invention. In a cylindrical heat storage container 15, a plurality of columnar heat storage capsules 13 are housed coaxially with the heat storage container 15 at appropriate intervals. A latent heat storage agent 17 is enclosed within the heat storage capsule 13. The temperature of the brine 14 as a heat medium is the same as that of the latent heat storage material 17.
The temperature is lower than the phase change temperature of latent heat storage tank 1.
It flows into the inlet provided at the bottom of 6 and exits from the outlet provided at the top. In general, the density of brine becomes higher when the temperature is lower. It will be cooled from the bottom end, and this part will cool down particularly well. On the other hand, a plurality of ultrasonic vibration elements 11 are attached to the lower end of the latent heat storage tank 16, and can be vibrated by the ultrasonic oscillator 12. Therefore, if ultrasonic waves are irradiated from the lower end of the latent heat storage tank 16 when the latent heat storage material 17 inside the heat storage capsule 13 has supercooled, solidification nuclei 18 will be generated at the bottom of each of the heat storage capsules 13, and from there Since the solid phase grows, the heat storage capsules 13 throughout the tank can be solidified almost instantly and uniformly.

具体例として第2図において、蓄熱容器15内を通流す
る熱媒体は、例えばイ佇変化温度が一13℃のエチレン
グリコール26係のブライン14である。このブライン
14は、図示してない冷凍機により常時0℃以下の設定
温度に冷却している。
As a specific example, in FIG. 2, the heat medium flowing through the heat storage container 15 is, for example, the brine 14 of ethylene glycol 26 having a temperature change of 113°C. This brine 14 is constantly cooled to a set temperature of 0° C. or lower by a refrigerator (not shown).

以上、説明1−た過冷却防止装置を用いて過冷却防止法
について具体的に説明する。
Hereinafter, the supercooling prevention method will be specifically explained using the supercooling prevention device described in Explanation 1.

具体例1 蓄熱容器15に収納されたエチレングリコール25係の
ブライン14は、図示してない冷凍機を駆動し、−6℃
の一定温度に冷却されたブライン14を供給する。この
温度に冷却されたブライン14中に蓄熱材]7として+
25℃の温度の水道を密封した蓄熱カプセル13を沈め
て固定し冷却した。水道水の凝固点は約0℃であり、水
道水の凍結移行状況を肉 で観察すると共に、水温の変
化を熱電対24で測定した。その結果を第3図の実線を
もって示した。すなわち、第3図からも明らかなように
ブライン14中に沈めた蓄熱カプセル13中の蓄熱材1
7は冷却開始6分経過後、水温は凝固点0℃を切ったが
、凍結せずに過冷却状態に入っていった。更に冷却を約
12分経過後水温は約−6℃に達して冷却開始後1時間
経過したが逐に凍結する1でには到らなかった。以上の
試験を10回繰り返し行なったが、全ての試販において
凍結は認められなかった。
Specific example 1 The brine 14 containing ethylene glycol 25 stored in the heat storage container 15 is heated to -6°C by driving a refrigerator (not shown).
Brine 14 cooled to a constant temperature is supplied. Heat storage material in the brine 14 cooled to this temperature]7 as +
The heat storage capsule 13 sealed with water at a temperature of 25° C. was submerged and fixed, and cooled. The freezing point of tap water is approximately 0°C, and the freeze transition status of tap water was observed with meat, and changes in water temperature were measured with a thermocouple 24. The results are shown by the solid line in FIG. That is, as is clear from FIG. 3, the heat storage material 1 in the heat storage capsule 13 submerged in the brine 14
In case No. 7, 6 minutes after the start of cooling, the water temperature fell below the freezing point of 0°C, but it entered a supercooled state without freezing. After about 12 minutes of further cooling, the water temperature reached about -6°C, and although 1 hour had passed since the start of cooling, it did not reach level 1, where it gradually froze. The above test was repeated 10 times, but no freezing was observed in all trial sales.

そこで、本発明者等は、蓄熱材17の水温が凝固点O′
Cになる直前に超音波振動子11に超音波発振器12か
ら電力を供給し、蓄熱カプセル13に向って超音波全照
射した。この結果I′f、第4図に示すよ′)に水道水
は0℃の付近で瞬時に凍結を開始し、過冷却現象は防止
された。この試験はlO回繰り返し行なったが全て同じ
結果が得られ再現性が得られた。図において、破線はブ
ライン温度である。下表は容器に対して供給した超音波
の試験条件の具体例を示す結果である。ここでホーン先
端19aから容器壕での距離20mmとした。
Therefore, the present inventors have determined that the temperature of the water in the heat storage material 17 is O'
Immediately before reaching C, power was supplied from the ultrasonic oscillator 12 to the ultrasonic transducer 11, and the entire heat storage capsule 13 was irradiated with ultrasonic waves. As a result, as shown in Fig. 4, the tap water instantly started freezing at around 0°C, and the supercooling phenomenon was prevented. This test was repeated 10 times, but the same results were obtained and reproducibility was obtained. In the figure, the dashed line is the brine temperature. The table below shows the results showing specific examples of the ultrasonic test conditions applied to the container. Here, the distance from the horn tip 19a to the container trench was 20 mm.

表−1 上記表において、夫々の結果は◎は過冷却状態の蓄熱材
が瞬時で凍結を開始し100%の凝固を達成したもので
あり、○は100%凝固はするが、若干時間の時間遅れ
を要し凍結を開始するもので、△は効果が現わないもの
がたまに見られるもの、Xは効果はあるがあてにならな
いものを示す。
Table 1 In the above table, the respective results are: ◎ means that the heat storage material in a supercooled state starts freezing instantly and achieves 100% solidification, and ○ means that 100% solidification is achieved, but it takes some time. It requires a delay to start freezing; △ indicates that the effect does not appear occasionally, and X indicates that it is effective but is unreliable.

尚、上記試験において、蓄熱カプセル13中に水道水の
かわりに純水を封入して行なつfC,が、そ結果につい
ては全く同様の傾向を示した0具体例2 次に、蓄熱材17として、凝固点が32.2℃のCat
t26H20からなる水和塩をポリエチレン容器からな
る蓄熱カプセル13に密封した0エチレングリコール水
溶液のブライン14は、+22℃に保った0このブライ
ン14中に上記蓄熱材17を密封した蓄熱カプセル13
を沈めて冷却したが、第2図で説明したのと同様な過冷
却現象が発生1〜た0そこで、具体例1と同様にカプセ
ル13に超音波を照射した0カプセル13から超音波振
動子11までの距離は具体例1と同様であり、20mm
とし、その試験結果を表−2に示す。
In addition, in the above test, fC, which was conducted by sealing pure water instead of tap water in the heat storage capsule 13, showed exactly the same tendency as the results.Specific Example 2 Next, as the heat storage material 17, , Cat with a freezing point of 32.2°C
A brine 14 of an aqueous ethylene glycol solution containing a hydrated salt of T26H20 sealed in a heat storage capsule 13 made of a polyethylene container is kept at +22°C.
However, a supercooling phenomenon similar to that described in FIG. The distance to No. 11 is the same as in Example 1, and is 20 mm.
The test results are shown in Table 2.

表 −2の(つづき) ○、△、×の評価は第1表と同じ評定である。Table-2 (continued) The evaluations of ○, △, and × are the same as those in Table 1.

具体例3 次に、具体例1で使用した蓄熱材17を封入したカプセ
ル13を過冷却した後にこのカプセル13に超音波を供
給した。カプセル13内の水道水は超音波供給とほぼ同
時にカプセル13内の水温が0℃に上昇し凍結した。そ
の結果を第5図および第6図に示す。すなわち、第5図
は蓄熱材17が=4℃筐で過冷却した時点で超音波を供
給した場合を示し、第6図は夫々−6℃まで過冷却させ
て、超音波を供給した場合の特性を示している。何れの
場合も蓄熱材17は、超音波と同時に温度が0℃に上昇
し、瞬時に凍結を開始した。
Specific Example 3 Next, the capsule 13 containing the heat storage material 17 used in Specific Example 1 was supercooled, and then ultrasonic waves were supplied to the capsule 13. The temperature of the tap water in the capsule 13 rose to 0° C. almost at the same time as the ultrasonic wave was supplied, and the tap water froze. The results are shown in FIGS. 5 and 6. That is, Fig. 5 shows the case where ultrasonic waves are supplied when the heat storage material 17 is supercooled to =4°C in the housing, and Fig. 6 shows the case where ultrasonic waves are supplied after supercooling the heat storage material 17 to -6°C. It shows the characteristics. In either case, the temperature of the heat storage material 17 rose to 0° C. at the same time as the ultrasonic wave, and started freezing instantly.

本発明者等は具体例1から3まで超音波供給と同時に凍
結することの原因について検討したが、その動作が瞬時
動作であるためその原理の解明は難しい。しかるに推測
するに蓄熱材には蓄熱材17中に供給された超音波によ
り、キャビテーションが発生し、このキャビテーション
により蓄熱材18の液中に気泡が発生し、この気泡が瞬
時的につぶれてし1つ。そして気泡がつぶれるときに発
生する衝撃波が蓄熱材中を伝搬するときに結晶核が発生
し、この核が成長して凍結していくものと思われる。し
たがってこの気泡がつぶれるときに発生する衝撃力が所
屋の大きさを持つことにより、瞬喫絶に蓼結し、核が形
成されるものと推測される。
The present inventors have investigated the cause of freezing at the same time as ultrasonic wave supply in Specific Examples 1 to 3, but it is difficult to elucidate the principle because the operation is instantaneous. However, it is presumed that cavitation occurs in the heat storage material due to the ultrasonic waves supplied into the heat storage material 17, and this cavitation causes bubbles to be generated in the liquid of the heat storage material 18, and these bubbles are instantly collapsed. One. It is thought that crystal nuclei are generated when the shock waves generated when the bubbles collapse propagate through the heat storage material, and these nuclei grow and freeze. Therefore, it is presumed that the impact force generated when the bubble collapses is so large that it instantly collapses and forms a nucleus.

本発明者等が第1表および第2表に示すように蓄熱材に
供給する周波数およびその電力をパラメータとして試験
を行なったのは上述した瞬時的な植生Jf!l:索の推
測から、キャビテーション発生要素は液体の種類とその
温度およびその液体に供給される周波数とその電力であ
り前者の要素を固定すれば、必要な衝撃力を得るには、
その供給周波数および電力によるものと考えその値の上
限ならびに下限を調査した。この表が示しているものは
、第5図および第6図を含めて考え合せれば瞬時で凍結
を開始でき、またその凍結開始温度全自由に制御出来る
技術が達成されたことを意味し、その効果は極めて犬な
るものがある。
The present inventors conducted a test using the frequency and power supplied to the heat storage material as parameters as shown in Tables 1 and 2. The above-mentioned instantaneous vegetation Jf! l: From the inference made by Naoki, the factors that cause cavitation are the type of liquid, its temperature, the frequency and power supplied to the liquid, and if the former factors are fixed, then in order to obtain the necessary impact force,
We considered that it depends on the supply frequency and power, and investigated the upper and lower limits of its value. What this table shows, when considered together with Figures 5 and 6, means that a technology has been achieved that allows instant freezing and allows full control of the freezing start temperature. The effect is extremely impressive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の過冷却防止装置を示す概略構成図、第
2図は、本発明に係る過冷却防止装置の一実施例を示す
概略構成断面図、第3図乃至第6図は、第2図による装
置により蓄熱材を冷却した時の蓄熱材の経時的な変化変
化を示す特性図である。 1:水、2:試料容器、3ニドライアイス、4:電磁石
、5:コイル、6:交流電源、7:振動板、8:冷却用
銅板、9:熱電対、10:断熱材、11:超音波振動素
子、12:超音波発振器、13:蓄熱カプセル、14ニ
ブライン、15:蓄熱容器、16:潜熱蓄熱槽、17:
潜熱蓄熱剤、18:凝固の核 代理人 弁理士 則近憲佑 (ほか1名)第  1  
図 第2図 第8図 卦。
FIG. 1 is a schematic configuration diagram showing a conventional supercooling prevention device, FIG. 2 is a schematic configuration sectional view showing an embodiment of the supercooling prevention device according to the present invention, and FIGS. 3 to 6 are: FIG. 3 is a characteristic diagram showing changes in the heat storage material over time when the heat storage material is cooled by the apparatus shown in FIG. 2; 1: Water, 2: Sample container, 3 Dry ice, 4: Electromagnet, 5: Coil, 6: AC power supply, 7: Vibration plate, 8: Copper plate for cooling, 9: Thermocouple, 10: Heat insulating material, 11: Ultrasonic vibration element, 12: Ultrasonic oscillator, 13: Heat storage capsule, 14 Nib line, 15: Heat storage container, 16: Latent heat storage tank, 17:
Latent heat storage agent, 18: Core agent of solidification Patent attorney Kensuke Norichika (and 1 other person) No. 1
Figure 2 Figure 8 Hexagram.

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱剤を封入した柱状の蓄熱カプセルと、この蓄熱
カプセルを複数本はぼ平行に適当な間隔をあけて設置し
た内部を熱媒体が通流する蓄熱容゛器と、この蓄熱容器
の前記蓄熱カプセルの下端に対向した壁面に取り付けた
超音波振動素子に1この振動素子に接続された超音波発
振器とから成ることを特徴とする過冷却を防止できる潜
熱蓄熱槽。
A column-shaped heat storage capsule enclosing a latent heat storage agent, a heat storage container in which a heat medium flows through the inside of which a plurality of the heat storage capsules are installed approximately parallel to each other at appropriate intervals, and the heat storage container of the heat storage container. A latent heat storage tank capable of preventing supercooling, characterized by comprising an ultrasonic vibrating element attached to a wall facing the lower end of a capsule, and an ultrasonic oscillator connected to the vibrating element.
JP58072943A 1983-04-27 1983-04-27 Subcooling preventable latent heat type heat storage tank Pending JPS59200191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072943A JPS59200191A (en) 1983-04-27 1983-04-27 Subcooling preventable latent heat type heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072943A JPS59200191A (en) 1983-04-27 1983-04-27 Subcooling preventable latent heat type heat storage tank

Publications (1)

Publication Number Publication Date
JPS59200191A true JPS59200191A (en) 1984-11-13

Family

ID=13503961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072943A Pending JPS59200191A (en) 1983-04-27 1983-04-27 Subcooling preventable latent heat type heat storage tank

Country Status (1)

Country Link
JP (1) JPS59200191A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228822A (en) * 1986-03-31 1987-10-07 Toshiba Corp Space heating apparatus
US4928493A (en) * 1987-02-06 1990-05-29 Reaction Thermal Systems, Inc. Ice building, chilled water system and method
US5072596A (en) * 1987-02-06 1991-12-17 Reaction Thermal Systems, Inc. Ice building chilled water system and method
JP2002228377A (en) * 2001-02-06 2002-08-14 Nax Co Ltd Heat storage apparatus and heat storage method
JP2018105511A (en) * 2016-12-22 2018-07-05 パナソニック株式会社 Heat storage device
CN112050676A (en) * 2020-09-14 2020-12-08 西安交通大学 Phase change energy storage strengthening device with built-in ultrasonic generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228822A (en) * 1986-03-31 1987-10-07 Toshiba Corp Space heating apparatus
US4928493A (en) * 1987-02-06 1990-05-29 Reaction Thermal Systems, Inc. Ice building, chilled water system and method
US5072596A (en) * 1987-02-06 1991-12-17 Reaction Thermal Systems, Inc. Ice building chilled water system and method
WO1990009554A1 (en) * 1989-02-14 1990-08-23 Reaction Thermal Systems, Inc. Ice building, chilled water system and method
JP2002228377A (en) * 2001-02-06 2002-08-14 Nax Co Ltd Heat storage apparatus and heat storage method
JP2018105511A (en) * 2016-12-22 2018-07-05 パナソニック株式会社 Heat storage device
CN112050676A (en) * 2020-09-14 2020-12-08 西安交通大学 Phase change energy storage strengthening device with built-in ultrasonic generator
CN112050676B (en) * 2020-09-14 2022-02-18 西安交通大学 Phase change energy storage strengthening device with built-in ultrasonic generator

Similar Documents

Publication Publication Date Title
US1318740A (en) Reginald a
JPS59200191A (en) Subcooling preventable latent heat type heat storage tank
EP1208338A1 (en) Methods and apparatus for producing phase change ice particulate saline slurries
JPS63267870A (en) Method of operating refrigerator
Stocking et al. Secondary nucleation of ice in sugar solutions and fruit juices
EP0062897A1 (en) Heat storage material
KR101174975B1 (en) Apparatus for making ice slurry and dynamic ice storage cooling system using the same
JP6094411B2 (en) Thermal storage device and thermal storage control method
JP3472796B2 (en) Heat storage tank, heat storage device, and heat storage and heat recovery method
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JP3076847B1 (en) Heat storage tank, heat storage device, and heat storage and heat recovery method
JP3472795B2 (en) Thermal storage tank, thermal storage device, and thermal storage and heat recovery method
JPS61145274A (en) Cold storage agent
KR20050103750A (en) Apparatus and method for making transparent ice equipped with supersonic generating device
JP3448653B2 (en) Method and apparatus for coagulating low subcooled liquid and method and system for circulating frozen liquid
JPS62500466A (en) Cold energy storage device
Hino et al. Method of forming clathrate ice
JP2002228377A (en) Heat storage apparatus and heat storage method
US1385075A (en) Method of preventing crystallization of a melted mass of crystals
Kennedy Formation of ice in frozen foods and its control by physical stimuli
JP3440150B2 (en) Ice thermal storage system and device using magnetic fluid
USRE11406E (en) Charles e
JP2006098000A (en) Method of eliminating ice nucleus for ice making device by supercooling of brine, and ice making device using the method
JPH0215598B2 (en)
US4381245A (en) Supercooling inhibitor and process for preparing the same