JPS59199021A - Controlling method of wet lime-gypsum desulfurization plant - Google Patents

Controlling method of wet lime-gypsum desulfurization plant

Info

Publication number
JPS59199021A
JPS59199021A JP58073377A JP7337783A JPS59199021A JP S59199021 A JPS59199021 A JP S59199021A JP 58073377 A JP58073377 A JP 58073377A JP 7337783 A JP7337783 A JP 7337783A JP S59199021 A JPS59199021 A JP S59199021A
Authority
JP
Japan
Prior art keywords
load
simulation model
desulfurization
rate
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58073377A
Other languages
Japanese (ja)
Other versions
JPH0445205B2 (en
Inventor
Kengo Hamanaka
浜中 健吾
Susumu Kono
進 河野
Katsuyuki Morinaga
森永 勝行
Yutaka Nonogaki
野々垣 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58073377A priority Critical patent/JPS59199021A/en
Priority to GB08409135A priority patent/GB2138793B/en
Priority to US06/604,362 priority patent/US4582692A/en
Priority to DE19843415594 priority patent/DE3415594A1/en
Publication of JPS59199021A publication Critical patent/JPS59199021A/en
Publication of JPH0445205B2 publication Critical patent/JPH0445205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To reduce the consumption of chemicals and the electric power for driving a pump by setting the pH of an absorbing liquid and the number of working pumps with a simulation model in accordance with the load of a waste gas, and controlling the supply rate of the absorbing liquid and the number of the working pumps. CONSTITUTION:A pump 8 and a pH regulator 12 are controlled by setting the optimum number of working pumps and the optimum pH for the operation in accordance with the change in the load of a waste gas. The pH of an absorbing liquid in a vessel 6 and the desulfurization efficiency are calculated from the flow rate G of the waste gas, the SO2 concn. at the inlet SI, the circulation rate of the absorbing liquid L, and the supply of a neutralization agent F1 by means of the first on-line, real-time simulation model 21, inputted to a comparing means 23 and are compared with the desulfurization efficiency etaD, which is calculated from the detected values SID and SOD of the SO2 concns. in the waste gas at the inlet and the outlet, and the measured pH value pHD. The deviation is outputted to a reaction constant adjusting means 25. The adjusted signal is fed back to the first simulation model 21, and is also inputted to the second simulation model 22 to adjust the reaction constant of the model.

Description

【発明の詳細な説明】 本発明は、湿式石灰石貴注排煙脱硫プラントのS02吸
収装置において、大幅かつ急激な負荷変化への追従性が
優れた湿式石灰石骨法脱硫プラントの制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a wet limestone bone method desulfurization plant that has excellent ability to follow large and sudden changes in load in an S02 absorption device for a wet limestone flue gas desulfurization plant.

一般にS02吸収装置は、第1図に示すように構成され
、次のようにして脱硫する。排ガス1がダクト2から吸
収塔3中に入ると、ここで循環する吸収液4と接触する
。排ガス中のs02は(1)式の吸収反応によシ液中K
 H2So3’r生成し、流下する。
Generally, an S02 absorption device is constructed as shown in FIG. 1, and desulfurization is carried out in the following manner. When the exhaust gas 1 enters the absorption tower 3 from the duct 2, it comes into contact with the circulating absorption liquid 4. s02 in the exhaust gas is converted to K in the liquid by the absorption reaction of equation (1).
H2So3'r is generated and flows down.

S02+H20→H2SO3・・曲間・曲(1)この後
排ガスは排出ライン5を通って煙突から排出される。
S02+H20→H2SO3...Song interval/Song (1) After this, the exhaust gas passes through the exhaust line 5 and is discharged from the chimney.

一方、H2S03t−生成した液は、塔底部から槽6に
流下する。槽6には供給ライン7がら中和剤(炭酸カル
シウム、その他水酸カルシウム等アルカリ性物質)が供
給されておシ、この中和剤がこの液を中和し、CaSO
3を生成する。中和された液はポンプ8にょシ循環ライ
ン9を通って吸収塔3に供給される。なお循環液の一部
は取出され、後工程においてCa5Os t CaSO
4’2H20(石膏)に酸化される。
On the other hand, the H2S03t-produced liquid flows down into tank 6 from the bottom of the column. A neutralizing agent (calcium carbonate, other alkaline substances such as calcium hydroxide) is supplied to the tank 6 through a supply line 7, and this neutralizing agent neutralizes this liquid and converts it into CaSO.
Generate 3. The neutralized liquid is supplied to the absorption tower 3 through a pump 8 and a circulation line 9. Note that a part of the circulating fluid is taken out and converted into Ca5Os t CaSO in the subsequent process.
Oxidized to 4'2H20 (gypsum).

このS02吸収装置における従来の制御方法は、次のよ
うにしておこなっている。PH検出器1ノで循環する吸
収液の声値を検出し、調節計12に入力する。調節計1
2では塔頂に至る吸収液の声値が一定になるべく信号を
加算器13に入力する。
The conventional control method for this S02 absorption device is performed as follows. The pH value of the circulating absorption liquid is detected by the PH detector 1 and inputted to the controller 12. Controller 1
In step 2, a signal is input to the adder 13 so that the voice value of the absorption liquid reaching the top of the column is constant.

一方負荷検出器14で系内に入るSO2量(例えば排ガ
ス流量と入口S02濃度との積)つまり脱硫プラントの
負荷(以後脱硫負荷という〕全検出し、加算器13に入
力する。加算器13では調節計12からの信号と負荷検
出器14からの信号とを加算し、流量調節計17に設定
値信号として入力する。また供給ライン7の流量を流量
検出器16で検出し、流量調節計17に入力する。流量
調節計12は、これら信号にもとづいて調節弁18を制
御する。
On the other hand, the load detector 14 detects the total amount of SO2 entering the system (for example, the product of the exhaust gas flow rate and the inlet S02 concentration), that is, the load of the desulfurization plant (hereinafter referred to as desulfurization load), and inputs it to the adder 13. The signal from the controller 12 and the signal from the load detector 14 are added together and inputted to the flow rate controller 17 as a set value signal.Furthermore, the flow rate of the supply line 7 is detected by the flow rate detector 16, The flow rate controller 12 controls the control valve 18 based on these signals.

即ち従来の制御方法は、調節計12からの出力でフィー
ドバック効果を持たせ、負荷検出器14からの出力でフ
ィードフォワード効果を持たせ、吸収802量と当量の
中和剤を供給しようとするもので、系に入るS02と当
量の中和剤を供給すると常に同じ脱硫率でSO2を吸収
できるという考えを基礎においている。この考え方は、
脱硫負荷が上昇するとき、その上昇速度よシ系内での中
和反応速度が速いか少なくとも同等の場合に成立する。
That is, in the conventional control method, the output from the controller 12 has a feedback effect, the output from the load detector 14 has a feedforward effect, and an amount of neutralizing agent equivalent to the amount of absorption 802 is supplied. This is based on the idea that if a neutralizing agent is supplied in an amount equivalent to the amount of S02 entering the system, SO2 can always be absorbed at the same desulfurization rate. This idea is
When the desulfurization load increases, this is true if the rate of increase is faster than the rate of neutralization reaction in the system, or at least the same.

しかるに脱硫性能は、液中のH2SO3濃度と声によシ
異なシ、H2SO3濃度が低く、−が高い程、S02の
吸収性が高い。
However, the desulfurization performance depends on the H2SO3 concentration in the liquid; the lower the H2SO3 concentration and the higher the -, the higher the S02 absorption.

0)式の吸収反応の反応速度は、(2)式で表わされる
The reaction rate of the absorption reaction of equation 0) is expressed by equation (2).

γ=に−A・(cc、 −CL )      ・・・
・・・・・・・・・・・・(2)γ:吸収反応速度 A:ガスと液の接触面積 CG:ガス中のSO2濃度 CL:液中(2) H2S0.濃度 に:S02吸収総括物質移動系数 この(2)式で、中和剤を供給してP)′Iを一定にす
る制御法を説明する。第一にガス中のso2’i吸収す
ると、液中のH2SO3濃度が上昇するので液中のH2
SO3濃度CLが高くなシ、吸収反応速度・rが小さく
なる。故にH2SO3を中和して液中のH2SO3濃度
CLヲ低く保つ必要がある。第二に、移動系数には、P
Hの関数であるため、H2SO3濃度が高くなって−が
低くならないよう中和する必要がある。
γ = −A・(cc, −CL)...
・・・・・・・・・・・・(2) γ: Absorption reaction rate A: Contact area between gas and liquid CG: SO2 concentration in gas CL: In liquid (2) H2S0. Concentration: S02 Absorption Overall Mass Transfer System Number A control method to keep P)'I constant by supplying a neutralizing agent will be explained using this equation (2). First, when so2'i in the gas is absorbed, the H2SO3 concentration in the liquid increases, so H2'i in the liquid increases.
The higher the SO3 concentration CL, the lower the absorption reaction rate/r. Therefore, it is necessary to neutralize H2SO3 and keep the H2SO3 concentration CL in the liquid low. Second, the moving system has P
Since it is a function of H, it is necessary to neutralize it so that the H2SO3 concentration does not become high and - become low.

しかし中和反応速度は非常に小さいため、負荷の上昇速
度が大きいときには負荷に当量の中和剤を供給してもp
i(を所定の値に保つことはできない。−が低下すると
脱硫性能が低下するので、中和反応速度を大きくする必
要がある。
However, since the neutralization reaction rate is very slow, when the rate of increase in load is high, even if an equivalent amount of neutralizing agent is supplied to the load, p
It is not possible to maintain i( at a predetermined value. If - decreases, the desulfurization performance decreases, so it is necessary to increase the neutralization reaction rate.

なお脱硫性能は、一般に(3)式の脱硫率ηで表わされ
る。
Note that the desulfurization performance is generally expressed by the desulfurization rate η of equation (3).

ただし CG□ニゲラント入ロガス中のSO2濃度CGoニブラ
ント出ロガス中のSO□濃度−男声は、H2SO5濃度
を高くすると下がシ、未反応のCaCo 3が多く存在
すると即ち液中のCa C05濃度が高いと、上がる。
However, the SO2 concentration in the log gas entering the CG nigerant SO□ concentration in the log gas exiting the CGo nibrant - Male voice is lower when the H2SO5 concentration is increased, and when there is a large amount of unreacted CaCo 3, that is, the Ca C05 concentration in the liquid is high. And it goes up.

以上のことから急激な負荷上昇に追従できるようにする
には、次のような方法が考えられる。
Based on the above, the following methods can be considered in order to be able to follow sudden increases in load.

常時つまυいかなる負荷量のときにも高いp)Iで運転
して未反応CaCO5が系内に多く貯留している状態と
し、負荷上昇に対して余裕を持たせる方法。あるいは低
負荷の間に高pHで運転する方法。
A method of constantly operating at a high p)I at any load to ensure that a large amount of unreacted CaCO5 is stored in the system to provide some margin against increases in load. or operating at high pH during low loads.

しかし、これらの方法は、極めて不経済である。即ち、
槽6中のCaCO3濃度が高いと、その濃度でライン/
2から系外に排出している。このため低負荷時の反応速
度γが小さくてよいときに未反応Ca Co 5を多く
保持していると、原料(中和剤)を多く供給しなければ
ならない。更にCa 005分が吸収塔3内で中和反応
に使用されずライン/りから系外に排出すると、後工程
で硫酸で中和しなければならない。
However, these methods are extremely uneconomical. That is,
If the CaCO3 concentration in tank 6 is high, the line/
2 is discharged from the system. Therefore, if a large amount of unreacted Ca Co 5 is retained when the reaction rate γ at low load may be small, a large amount of raw material (neutralizing agent) must be supplied. Furthermore, if Ca 005 is not used for the neutralization reaction in the absorption tower 3 and is discharged from the system through the line, it must be neutralized with sulfuric acid in a subsequent step.

以上の如くこれらの方法では、未使用のCaC03が多
くなるのみでなく、これを中和処理する硫酸も多くなる
。なお、この方法では、低負荷時にプロセスに余裕があ
るため、脱硫性能が不必要に高くなる。
As described above, these methods not only increase the amount of unused CaC03, but also increase the amount of sulfuric acid used to neutralize it. In addition, in this method, since there is a margin in the process at low load, the desulfurization performance becomes unnecessarily high.

以上の理由から中和剤及び硫酸の消費量を少くして運転
するには、低負荷のとき低−(で高負荷のとき高PHで
運転すればよいといえる。
For the above reasons, in order to reduce the consumption of neutralizer and sulfuric acid, it is sufficient to operate at a low pH when the load is low and at a high pH when the load is high.

この運転を行うための制御法には、−調節計12の一般
定値全負荷の関数とする方法がある。
One of the control methods for performing this operation is to make it a function of the general fixed value full load of the controller 12.

この場合いかなる負荷においても目標脱硫率となるよう
に予め計算しておく。目標脱硫率を得るための負荷に対
する〆(設定値の関数関係は、プラント毎に異なるが、
はぼ第2図のようになる。
In this case, calculations are made in advance so that the target desulfurization rate is achieved under any load. 〆 for the load to obtain the target desulfurization rate (the functional relationship of the set value differs from plant to plant, but
It will look like Figure 2.

この制御法は、中和剤及び硫酸の消費量を最小にするに
は非常によいが、高速負荷変化への追従という面では実
用的ではない。
Although this control method is very good for minimizing the consumption of neutralizer and sulfuric acid, it is not practical in terms of following rapid load changes.

即ちpH’l第2図のように広範囲に変化させるには、
系内のCa Co 3濃度tpH変化に対応して変化さ
せる必要がある。−の変化幅を1.0(例えば4.7か
ら5.7までの変化幅)とするにはCaC03濃度を約
10倍変化させなければならない。負荷が25%から1
00係まで平均5%/分の速度で変化したとき、この間
の時間は15分である。
In other words, in order to change pH'l over a wide range as shown in Figure 2,
It is necessary to change the Ca Co 3 concentration in the system in response to changes in tpH. In order to set the range of change in - to 1.0 (for example, the range of change from 4.7 to 5.7), the CaC03 concentration must be changed about 10 times. load is 25% to 1
When changing at an average speed of 5%/minute to the 00th section, the time during this time is 15 minutes.

一方槽6内のCaCO3量(槽内液容量X CaCO3
濃度)は、負荷100%時のCaCO3供給量の約10
倍変化度である。換言すれば槽6内のCaCO3は供給
量に対して10時間分滞溜している。
On the other hand, the amount of CaCO3 in tank 6 (liquid capacity in tank x CaCO3
concentration) is approximately 10% of the CaCO3 supply amount at 100% load.
This is the fold change. In other words, CaCO3 in the tank 6 remains for 10 hours relative to the supplied amount.

従って、例えば15分間の間にこのように多量のCaC
O5’e 10倍にするには、この15分間にCaCO
3に膨大に供給しなければならない。このためこの方法
は供給設備の面から実用的方法とはいえず、負荷変化へ
の追従が困難である。
Therefore, for example, in a 15 minute period, such a large amount of CaC
To increase O5'e 10 times, add CaCO during these 15 minutes.
3 must be supplied in large quantities. Therefore, this method cannot be said to be a practical method from the viewpoint of supply equipment, and it is difficult to follow changes in load.

このことから本発明者らは、別の操作を付加してPHの
変化幅を小さくすることを考えた。
Based on this, the inventors considered adding another operation to reduce the range of pH change.

即ち(2)式に戻って考えると、負荷が変化した場合、
これに対応して気液接触面積Aを変化させればよい。こ
の気液接触面積Aは、充填層における吸収反応速度の一
要因であシ、流れている液の流量に影響され、下式で示
される。
In other words, going back to equation (2), if the load changes,
The gas-liquid contact area A may be changed accordingly. This gas-liquid contact area A is a factor in the absorption reaction rate in the packed bed, is influenced by the flow rate of the flowing liquid, and is expressed by the following formula.

A = (L/S )” ただし、L:吸収塔を流下する液すなわちライン9を流
れている循環液の流 量(m’/Hr) S:断面積 α:実験的に決まる糸数で、0.3〜 1以下の数。
A = (L/S)" where L: flow rate (m'/Hr) of the liquid flowing down the absorption tower, that is, the circulating liquid flowing through line 9; S: cross-sectional area α: the number of threads determined experimentally, 0. 3 to 1 or less.

従って気液接触面積Aを負荷に対応して変化させれば、
前述のようにPHを変化させる必要がなく、負荷への追
従が容易となる。
Therefore, if the gas-liquid contact area A is changed according to the load,
There is no need to change the PH as described above, making it easier to follow the load.

しかし脱硫装置の場合、気液接触面積Aを負荷に対して
連続して対応させるには、次の問題がある。
However, in the case of a desulfurization device, there are the following problems in making the gas-liquid contact area A correspond continuously to the load.

第1に循環液はスラリである。このため液自体に含まれ
ている固形分及び塔内での反応で発生する固形分が壁及
び充填物へ付着する場合、これを循環液自体で洗い流す
必要がある。従って循環液量りを極端に少量とすること
はできず、最小限は100%負荷時のおよそ1/3であ
ることが判った≦これは、αが1よシ小さいため、例え
ばα−0,7としたとき循環液量りを1/3にしても気
液接触面積Aは45%以下にはならないことを意味して
いる。
First, the circulating fluid is a slurry. Therefore, if the solid content contained in the liquid itself or the solid content generated by the reaction within the column adheres to the walls and packing, it is necessary to wash it away with the circulating liquid itself. Therefore, it was found that the amount of circulating fluid cannot be made extremely small, and the minimum is approximately 1/3 of the 100% load. This is because α is smaller than 1, so for example α-0, 7 means that even if the amount of circulating liquid is reduced to 1/3, the gas-liquid contact area A will not become less than 45%.

第2に循環液はスラリで摩耗が激しいため、循環流量を
弁で調整することは不可能である。
Second, since the circulating fluid is slurry and is subject to severe wear, it is impossible to adjust the circulating flow rate with a valve.

以上の理由から気液接触面積Aを変化させるには、循環
液流量りを循環液ポンプの稼動台数で変化させるのが得
策である。
For the above reasons, in order to change the gas-liquid contact area A, it is advisable to change the circulating fluid flow rate by changing the number of operating circulating fluid pumps.

ポンプを数多く備えてこれをオン/オフすれば気液接触
面積Aは、かなシ負荷に連続して対応できる。しかし、
ポンプ及びその関係に要する価格は、ポンプの容量に比
例するのではなく、1台に対する固定価格要素もめシ台
数を増加することは経済的ではない。これに対しポンプ
台数が少ないと循環液流量りの変化は非常に離散的とな
る。
By providing a large number of pumps and turning them on and off, the gas-liquid contact area A can continuously respond to a constant load. but,
The price required for pumps and related pumps is not proportional to the capacity of the pump, and the fixed price factor for each pump makes it uneconomical to increase the number of pumps. On the other hand, if the number of pumps is small, changes in the circulating fluid flow rate will be very discrete.

本発明は、これらの知見にもとづいてなされ ′たもの
で、稼動ポンプ台数と…との組合せで制御することによ
シ、経済的にかつ負荷変化への追従性を向上させること
ができる制御方法を得んとするものである。
The present invention has been made based on these findings, and provides a control method that is economical and can improve followability to load changes by controlling the number of operating pumps in combination with... The aim is to obtain the following.

すなわち本発明は、湿式石灰石貴注脱硫プラントの吸収
塔に流入する排ガスの負荷量に対応してシミュレーショ
ンモデルにより吸収塔を循環する吸収液の最適−値及び
吸収液循環用ポンプの最適稼動台数を設定し、これら設
定値にもとづいて吸収液の供給流量及び稼動ポンプ台数
全制御する際に、第1及び第2のシミュレーションモデ
ルk fa ’/’j 、fa 1のシミュレーション
モデルで排ガス流量、入口S02濃度、吸収液循環流量
及び吸収液の中和剤供給量から−及び脱硫率全計算し、
これら計算値と操業中におけるpti及び脱硫率の検出
値とを比較し、その偏差にもとづいて第1及び第2シミ
ユレーシヨンモデル内で設定した反応定数を修正するこ
とを特徴とする。
That is, the present invention uses a simulation model to determine the optimum value of the absorption liquid to be circulated through the absorption tower and the optimum number of operating pumps for absorption liquid circulation, in accordance with the load amount of exhaust gas flowing into the absorption tower of a wet limestone injection desulfurization plant. When controlling the absorption liquid supply flow rate and the number of operating pumps based on these set values, the exhaust gas flow rate and inlet S02 are controlled by the first and second simulation models k fa '/'j and fa 1 simulation model. Calculate the total desulfurization rate and concentration from the absorption liquid circulation flow rate and absorption liquid neutralizing agent supply amount,
The method is characterized in that these calculated values are compared with the detected values of PTI and desulfurization rate during operation, and the reaction constants set in the first and second simulation models are corrected based on the deviation.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

本発明は、第3図に示す如き関数をコンピュータの内に
記憶しておき、こめコンピュータに負荷量を入力し、負
荷量の変動に応じて最適稼動ポンプ台数と最適運転PH
とを設定し、それぞれの設定信号をポンプ8のオン・オ
フ信号及び−調節計12の…設定値信号として出力して
制御する。ここで最適とは、目標の脱硫率を得る最低の
PHs最低のポンプ台数である。また図中Mは、ポ/f
の最小必要数を示す。なお、第3図は一例であって、負
荷量と最適稼動ポンプ台数及び最適運転−との具体的関
係は排ガス量、入口S02濃度、排ガスや供給水中に含
1れる穏種の不純物等によ#)fランド毎に異なる。
The present invention stores a function as shown in FIG.
and control by outputting the respective setting signals as an on/off signal for the pump 8 and a setting value signal for the controller 12. Optimum here means the lowest PH and the lowest number of pumps that provide the target desulfurization rate. In addition, M in the figure represents po/f.
Indicates the minimum required number of Note that Figure 3 is an example, and the specific relationship between the load amount, the optimal number of operating pumps, and the optimal operation depends on the exhaust gas amount, inlet S02 concentration, mild impurities contained in the exhaust gas and supply water, etc. #) Different for each f land.

この方法によればポンプ8の稼動台数を変えて吸収液4
の循環流量全制御するので、変動すべきpl(の範囲が
狭くなシ負荷追従が容易となる。
According to this method, by changing the number of operating pumps 8, the absorption liquid 4
Since the circulation flow rate of PL is fully controlled, the range of PL to be varied is narrow, making it easy to follow the load.

又P)■設定値の制御をおこなっているのでポンプ80
台数も少なくてよい。
Also, P)■ Since the set value is controlled, the pump 80
The number of units may also be small.

しかして第3図の特性は、予じめシミュレーション等に
よシ作成しておくが、予想されたグランド特性により運
転できる保証はなく、又以下に述べる理由によシ特性が
日々変化する。即ち、排ガス中に含まれる(すなわちボ
イラ燃料中に存在した)極微量のハロゲンやMn等の金
属及び原料中和剤中の同様の不純物で、これらが各種反
応の触媒的役割を果している。また中和剤であるC a
 COsは、前工程で固体(粉体)を水と混合して吸収
塔に供給しているが、原料ロットによシ粒径や硬さくす
なわち吸収塔に入って゛からの溶解の容易さ)が異なる
Although the characteristics shown in FIG. 3 are created in advance by simulation or the like, there is no guarantee that operation will be possible according to the predicted ground characteristics, and the characteristics change day by day for the reasons described below. That is, trace amounts of metals such as halogen and Mn contained in the exhaust gas (that is, present in the boiler fuel) and similar impurities in the raw material neutralizing agent play a catalytic role in various reactions. Also, C a which is a neutralizing agent
COs is supplied to the absorption tower by mixing solid (powder) with water in the previous process, but the particle size and hardness (i.e., ease of dissolution after entering the absorption tower) vary depending on the raw material lot. different.

従って、これらに起因してプロセスの特性が日々微妙に
変化する。この特性の変化幅は大きくないが、本発明の
目的が省エネルギ、省資源であるため目標に対して高精
度でなければならない。
Therefore, the characteristics of the process change slightly day by day due to these factors. Although the range of change in this characteristic is not large, since the purpose of the present invention is to save energy and resources, it must be highly accurate with respect to the target.

本発明は、第1及び第2のシミーレーションモデルを用
いて第4図に示す方法で修正を行っテイル。第1のシミ
ーレーションモデル21は、オンラインリアルタイムシ
ミュレーションモデルで、第2シミユレーシヨンモデル
22は第3図の特性を作成するときに用いたオフライン
シミュレーシ、ンモデルである。まず第1のシミーレー
ションモデル21′ニ、排ガス流t G % 人口S0
2濃度SI%吸収液の循環流ML及び吸収液の中和剤供
給量F□の検出信号を入力する。そして第1のシミュレ
ーションモデル21は、これら入力信号にもとづいて槽
6内の吸収液の田(すなわち循環する吸収液の塔頂での
…)及び脱硫率を算出し、比較手段23に入力する。
The present invention uses the first and second simulation models to correct the tail using the method shown in FIG. The first simulation model 21 is an online real-time simulation model, and the second simulation model 22 is an offline simulation model used when creating the characteristics shown in FIG. First, the first simulation model 21'D, exhaust gas flow t G % population S0
Detection signals of the circulating flow ML of the 2-concentration SI% absorption liquid and the neutralizing agent supply amount F□ of the absorption liquid are input. Based on these input signals, the first simulation model 21 calculates the field of the absorbent in the tank 6 (that is, at the top of the circulating absorbent) and the desulfurization rate, and inputs the calculated values to the comparison means 23.

一方排ガス入口のSO2濃度SXDと排ガス出口のSO
2濃度S。Dとを検出して脱硫率演算器24に出力する
。この演算器24は脱硫率ηDK−計算して比較手段2
3に出力する。又PHの検出値p九を比較手段23に出
力する。
On the other hand, the SO2 concentration SXD at the exhaust gas inlet and the SO2 concentration at the exhaust gas outlet
2 concentration S. D is detected and output to the desulfurization rate calculator 24. This calculator 24 calculates the desulfurization rate ηDK and compares it with the comparison means 2.
Output to 3. Further, the detected value p9 of PH is outputted to the comparison means 23.

この比較手段23では、第1のシミュレーションモデル
21で計算された一値及び脱硫率と、実測された声検出
値へと脱硫率η。とを比較し、その偏差を反応定数修正
手段25に出力する。
This comparison means 23 converts the value and desulfurization rate calculated by the first simulation model 21 and the desulfurization rate η into the actually measured voice detection value. and outputs the deviation to the reaction constant correction means 25.

修正手段25は、この偏差にもとづいてシミーレーショ
ンモデルに含まれている反応定数を修正するもので、修
正信号を第1のシミュレーションモデル21にフィード
バックしている。この修正は偏差がなくなるように常に
おこなわれている。修正項目は、プロセスへの影響力が
強い中和反応速度定数と酸化反応速度定数が主なもので
ある。ここで酸化反応とは、吸収されて生成する亜硫酸
イオンが硫酸イオンに酸化される反応である。この反応
は、(2)式に示す液中のH2SO4濃度CLヲ増加さ
せ脱硫性能に大きな影響を与える。
The correction means 25 corrects the reaction constant included in the simulation model based on this deviation, and feeds back a correction signal to the first simulation model 21. This correction is constantly being carried out to eliminate deviations. The main items to be corrected are the neutralization reaction rate constant and oxidation reaction rate constant, which have a strong influence on the process. The oxidation reaction here is a reaction in which sulfite ions produced by absorption are oxidized to sulfate ions. This reaction increases the H2SO4 concentration CL in the liquid as shown in equation (2), and has a large effect on the desulfurization performance.

一方反応定数修正手段25からの修正出力は、第2のシ
ミュレーションモデル22にも入力され、このシミュレ
ーションモデルの反応定数が自動的に修正される。
On the other hand, the modified output from the reaction constant modifying means 25 is also input to the second simulation model 22, and the reaction constant of this simulation model is automatically modified.

従って本発明によれば、いかなる説破負荷量に対しても
最適なpi(とポンプ稼動台数とで常に脱硫率を所定の
値に保持でき、中和剤、硫酸の使用量を少なくして省資
源、省エネルギーを図ることができる。またこの方法に
よれば、ポンプの駆動電力もほぼ負荷に対応しておシ、
省エネルギ効果を有するなど顕著な効果を奏する。
Therefore, according to the present invention, the desulfurization rate can always be maintained at a predetermined value with the optimal pi (and the number of pumps in operation) for any breakdown load, and the amount of neutralizing agent and sulfuric acid used can be reduced to save resources. In addition, according to this method, the driving power of the pump can be adjusted almost to the load.
It has remarkable effects such as energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の湿式石灰石管法脱硫プラントの制御方法
の説明図、第2図は負荷量と設定pH値(pHs)との
関係を示す特性図、第3図は本発明に係る湿式石灰石管
法脱硫プラントの制御方法における負荷量と最適ポンプ
台数及び設定m値との関係の一例を示す特性図、第4図
は第3図の特性を修正するロジックを示すブロック図で
ある。 1・・・排ガス、2・・・ダクノト、3・・・吸収塔、
4・・・吸収液、5・・・排出ライン、6・・・槽、7
・・・供給ライン、8・・・ポンプ、9・・・循環ライ
ン、1ノ・・・PH検出器、12・・・調節計、13・
・・加算器、14・・・負荷検出器、1を川流量検出器
、17・・・流量調節計、18・・・調節弁、21・・
・第1のシミュレーションモデル、22・・・第2のシ
ミュレーションモデル、23・・・比較手段、24・・
・脱硫率演算器、25・・・反応定数修正手段。 第1図 1図 ( −負舌デ
Fig. 1 is an explanatory diagram of the control method of a conventional wet limestone tube desulfurization plant, Fig. 2 is a characteristic diagram showing the relationship between the load amount and the set pH value (pHs), and Fig. 3 is a diagram of the wet limestone desulfurization plant according to the present invention. FIG. 4 is a characteristic diagram showing an example of the relationship between the load amount, the optimum number of pumps, and the set m value in a control method for a pipe desulfurization plant, and FIG. 4 is a block diagram showing the logic for modifying the characteristics shown in FIG. 3. 1... Exhaust gas, 2... Dakunoto, 3... Absorption tower,
4... Absorption liquid, 5... Discharge line, 6... Tank, 7
... Supply line, 8... Pump, 9... Circulation line, 1... PH detector, 12... Controller, 13...
...Adder, 14...Load detector, 1 is river flow rate detector, 17...Flow rate controller, 18...Control valve, 21...
- First simulation model, 22... Second simulation model, 23... Comparison means, 24...
- Desulfurization rate calculator, 25... reaction constant correction means. Figure 1 Figure 1 (-negative tongue de

Claims (1)

【特許請求の範囲】[Claims] 湿式石灰石骨法脱硫プラントの吸収塔に流入する排ガス
の負荷量に対応してシミュレーションモデルによシ吸収
塔を循環する吸収液の最適PH値及び吸収液循環用ポン
プの最適稼動台数を設定し、これら設定値にもとづいて
吸収液の供給流量及び稼動ポンプ台数を制御する際に、
第1及び第2のシミュレーションモデルを設ケ、第1の
シミュレーションモデルで排ガス流量、入口S02濃度
、吸収液循環流量及び吸収液の中和剤供給量からPI′
I及び脱硫率を計算し、これ少計算値と操業中における
戸及び脱硫率の検出値とを比較し、その偏差にもとづい
て第1及び第2のシミュレーションモデル内で設定した
反応定数を修正することを特徴とする湿式石灰石骨法脱
硫プラントの制御方法。
Based on the load of exhaust gas flowing into the absorption tower of a wet limestone bone desulfurization plant, we set the optimal pH value of the absorption liquid circulating in the absorption tower and the optimal number of operating pumps for absorption liquid circulation using a simulation model, and When controlling the supply flow rate of absorption liquid and the number of operating pumps based on set values,
A first and a second simulation model are set up, and the first simulation model calculates PI' from the exhaust gas flow rate, inlet S02 concentration, absorption liquid circulation flow rate, and absorption liquid neutralizing agent supply amount.
Calculate I and the desulfurization rate, compare these calculated values with the values detected during operation and the desulfurization rate, and correct the reaction constants set in the first and second simulation models based on the deviation. A method for controlling a wet limestone bone desulfurization plant, characterized by:
JP58073377A 1983-04-26 1983-04-26 Controlling method of wet lime-gypsum desulfurization plant Granted JPS59199021A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58073377A JPS59199021A (en) 1983-04-26 1983-04-26 Controlling method of wet lime-gypsum desulfurization plant
GB08409135A GB2138793B (en) 1983-04-26 1984-04-09 Method of control for a wet lime-gypsum process desulfurization plant
US06/604,362 US4582692A (en) 1983-04-26 1984-04-26 Method of control for a wet lime-gypsum process desulfurization plant
DE19843415594 DE3415594A1 (en) 1983-04-26 1984-04-26 CONTROL OF THE WETWEAR IN A LIME-GASPINE DESULFURATION PLANT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073377A JPS59199021A (en) 1983-04-26 1983-04-26 Controlling method of wet lime-gypsum desulfurization plant

Publications (2)

Publication Number Publication Date
JPS59199021A true JPS59199021A (en) 1984-11-12
JPH0445205B2 JPH0445205B2 (en) 1992-07-24

Family

ID=13516428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073377A Granted JPS59199021A (en) 1983-04-26 1983-04-26 Controlling method of wet lime-gypsum desulfurization plant

Country Status (1)

Country Link
JP (1) JPS59199021A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
JPS6339613A (en) * 1986-08-05 1988-02-20 Babcock Hitachi Kk Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
JPS63229126A (en) * 1987-03-19 1988-09-26 Babcock Hitachi Kk Control method for wet exhaust gas desulfurizer
JPH02180616A (en) * 1988-12-29 1990-07-13 Ishikawajima Harima Heavy Ind Co Ltd Control of waste gas desulfurization apparatus
WO2019172088A1 (en) 2018-03-06 2019-09-12 三菱日立パワーシステムズ株式会社 Operation support system and operation support method for desulfurization equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102002A (en) * 1979-01-31 1980-08-04 Mitsubishi Electric Corp Operation instruction control unit for a plurality of units

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102002A (en) * 1979-01-31 1980-08-04 Mitsubishi Electric Corp Operation instruction control unit for a plurality of units

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
EP0246758A2 (en) * 1986-04-23 1987-11-25 Babcock-Hitachi Kabushiki Kaisha Method for controlling wetprocess flue gas desulfurization
JPS6339613A (en) * 1986-08-05 1988-02-20 Babcock Hitachi Kk Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
JPS63229126A (en) * 1987-03-19 1988-09-26 Babcock Hitachi Kk Control method for wet exhaust gas desulfurizer
JPH02180616A (en) * 1988-12-29 1990-07-13 Ishikawajima Harima Heavy Ind Co Ltd Control of waste gas desulfurization apparatus
WO2019172088A1 (en) 2018-03-06 2019-09-12 三菱日立パワーシステムズ株式会社 Operation support system and operation support method for desulfurization equipment

Also Published As

Publication number Publication date
JPH0445205B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
US4836991A (en) Method for controlling wet-process flue gas desulfurization
EP0815923B1 (en) Method for controlling oxidation in flue gas desulfurization
CN106731635A (en) The method and control system of control fume desulfurizing agent supply
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
CN107648988B (en) Device and method for adjusting desulfurization slurry supply flow through double loops
JPS59199021A (en) Controlling method of wet lime-gypsum desulfurization plant
CN110935303B (en) Wet ammonia absorption method for removing SO (SO) applied to comprehensive energy2And NOxIs coupled control method of (a)
GB2138793A (en) Method of control for a wet lime-gypsum process desulfurization plant
JPS60110321A (en) Control of exhaust gas desulfurizing plant
CN115608125A (en) Method and system for monitoring, regulating and controlling desulfurization wastewater discharge on line through chloride ions
JPS59169523A (en) Control of wet waste gas desulfurization apparatus
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
JP2738750B2 (en) Control method of exhaust gas desulfurization equipment
JPS59199020A (en) Controlling method of wet lime-gypsum desulfurization plant
CN211462651U (en) Spray scattering tower
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JPS63229126A (en) Control method for wet exhaust gas desulfurizer
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPS5932924A (en) Controlling method of desulfurizing ratio in waste gas desulfurizing apparatus applied with wet lime method
JPS61433A (en) Waste gas desulfurization
JPS60110320A (en) Control of exhaust gas desulfurizing plant
JPH02180618A (en) Control of waste gas desulfurization apparatus
JPH09290133A (en) Method for preventing corrosion of flue gas treatment facility
JPS59160519A (en) Wet type waste gas desulfurizer
JPH034919A (en) Desulfurization apparatus for waste gas