JPS59198464A - Visible and near infrared light sensitive photoconductive material - Google Patents

Visible and near infrared light sensitive photoconductive material

Info

Publication number
JPS59198464A
JPS59198464A JP58073404A JP7340483A JPS59198464A JP S59198464 A JPS59198464 A JP S59198464A JP 58073404 A JP58073404 A JP 58073404A JP 7340483 A JP7340483 A JP 7340483A JP S59198464 A JPS59198464 A JP S59198464A
Authority
JP
Japan
Prior art keywords
visible
photoconductive material
photoconductive
light
sb2se3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58073404A
Other languages
Japanese (ja)
Inventor
Masato Harigai
真人 針谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58073404A priority Critical patent/JPS59198464A/en
Publication of JPS59198464A publication Critical patent/JPS59198464A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Abstract

PURPOSE:To obtain a photoconductive material having superior photoconductive characteristics with respect to lights in wavelength region from the visible light to near IR rays by using photoconductive material composed essentially of CdS. Sb2S3.Sb2Se3 type compd. CONSTITUTION:The intended photoconductive material is composed essentially of CdS.Sb2S3.Sb2Se3 type compds., and this type compd. is prepared by introducing gaseous H2S and H2Se into an aq. acidic soln. of potassium antimonyl tartarate, antimony trichloride, and cadmium salt. As a result, superior photoconductive characteristics can be obtained to lights in the visible and near IR region, especially in 400-1,000nm wavelength region.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光4電材料に関し、特に400〜11000n
の波長の可視域から近赤外域の光に対してすぐれた感度
を有する光導電性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to photovoltaic materials, particularly 400 to 11000 nm.
The present invention relates to a photoconductive material that has excellent sensitivity to light in the visible to near-infrared wavelength range.

〔従来技術〕[Prior art]

従来、可視域から近赤外域(400〜1000 nm 
)の光に対して感度を有する光導′亀材料は極めて少な
い。一方、半導体レーザー技術の発展にともない、フォ
トセンサー、光通信などに使用し得るこの近赤外域にす
ぐれた感度を有する光導電材料に対する要望がとみに高
まってきている。
Conventionally, from the visible region to the near-infrared region (400 to 1000 nm
) There are very few light guide materials that are sensitive to light. On the other hand, with the development of semiconductor laser technology, there is a growing demand for photoconductive materials that have excellent sensitivity in the near-infrared region and can be used in photo sensors, optical communications, and the like.

ところで、現有の代表的な半導体レーザーとしての(G
a 、 AI)−As系は、その遷移の関係から、レー
ザーダイオードとしての機能を満足するためにはAIの
含有割合が必然的に決定され、このため、発振波長の短
波化には限界がある。したがって、このような半導体レ
ーザーを光源とするフォトセンサーなどに適用し得る光
導電材料としては、可視域から近赤外域、特に700 
nm−11000nの波長域にすぐれた感度を有するも
のが必要となる。
By the way, (G
a, AI)-As system, due to its transition relationship, the content ratio of AI is inevitably determined in order to satisfy the function as a laser diode, and for this reason, there is a limit to shortening the oscillation wavelength. . Therefore, photoconductive materials that can be applied to photosensors using such semiconductor lasers as light sources are suitable for use in the visible to near-infrared range, especially in the 700 nm range.
A material having excellent sensitivity in the wavelength range of nm-11000n is required.

しかし、現在のところこの領域に感度を有する材料は、
その種類が81 、 CdTlなどごくわずかのものに
限られ、かつそれらは大面積状に成形して使用すること
が困難であるという問題がある。
However, currently the only materials sensitive to this region are
There are problems in that the types are limited to only a few, such as 81 and CdTl, and it is difficult to mold and use them in a large area.

〔目的〕〔the purpose〕

本発明は上述の点に鑑みてなされたものであり、可視域
から近赤外域、特に400 nm 〜1000 n+1
1の波長域の光に対してすぐれた光導電特性を有する光
導電材料を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and has been made in the visible range to the near-infrared range, particularly from 400 nm to 1000 n+1.
An object of the present invention is to provide a photoconductive material having excellent photoconductive properties for light in one wavelength range.

〔構成〕〔composition〕

上記目的を達成するため、本発明の可視・近赤外域用光
導電材料は、Cd5−8b2S3・Sb2Se3系化合
物を主成分として構成されており、このCdS・Sb2
S3・Sb2Se3系化合物は、酒石酸アンチモニルカ
リウム、三塩化アンチモンおよびカドミウム塩を含有す
る酸性水溶液に硫化水素ガスおよびセレン化水素ガスを
通気させることにより調製される。
In order to achieve the above object, the photoconductive material for visible and near-infrared regions of the present invention is composed of a Cd5-8b2S3/Sb2Se3-based compound as a main component, and this CdS/Sb2
The S3.Sb2Se3-based compound is prepared by passing hydrogen sulfide gas and hydrogen selenide gas through an acidic aqueous solution containing potassium antimonyl tartrate, antimony trichloride, and a cadmium salt.

このようにして得られるCd5−8b2S3・Sb2S
e3系化合物は粉末形態である。したがって、これを焼
結膜として厚膜の形で使用することも、またノ々イング
ーとともに用いて塗布することも、さらに−また加圧成
形して蒸着源あるいはスノξツタ用ターゲットとして用
いて薄膜形にすることもできる。
Cd5-8b2S3・Sb2S obtained in this way
The e3-based compound is in powder form. Therefore, it can be used in the form of a thick film as a sintered film, or it can be applied with a non-ingu, or it can be pressed into a thin film form and used as a vapor deposition source or a target for snow ivy. It can also be done.

また、光感Ifをさらに高めるため、必要に応じて、C
u、GaなどのIb族元素、■b族元素などの活性成分
を添加して熱拡散させることもできる。
In addition, in order to further increase the photosensitivity If, C
It is also possible to add active ingredients such as Ib group elements such as u and Ga, and b group elements to effect thermal diffusion.

CdS’5b2S3− Sb2Se3系の光導′亀材料
は、CdSが主として600 nm〜800nmの波長
域の光に対して感度を示し、さらにSb2Se3が80
0〜11000nの波長域の光に対して感度を有するこ
とから、可視・近赤外領域の広範の光に対して感度を有
するのであろうと考えられる。
CdS'5b2S3-Sb2Se3-based light guiding material has CdS showing sensitivity mainly to light in the wavelength range of 600 nm to 800 nm, and Sb2Se3 showing sensitivity to light in the wavelength range of 80 nm to 800 nm.
Since it is sensitive to light in the wavelength range of 0 to 11,000 nm, it is thought that it is sensitive to a wide range of light in the visible and near-infrared regions.

以下本発明の光導電材料を、実施例に基づいて説明する
The photoconductive material of the present invention will be explained below based on Examples.

実施例1 酒石酸アンチモニルカリウムK〔5b(C4H206)
(OH2) ] 0.3mol、三塩化アンチモン5b
C130,3molおよび塩化カドミウムCd Cl 
20− J m o 1を各々秤量し、これを2Nの硫
酸水溶液に溶解させたのち、これを50°CK調温した
Example 1 Potassium antimonyl tartrate K [5b (C4H206)
(OH2) ] 0.3 mol, antimony trichloride 5b
C130,3 mol and cadmium chloride Cd Cl
20-J m o 1 was weighed and dissolved in a 2N sulfuric acid aqueous solution, and then the temperature was adjusted to 50°C.

との水溶液に、硫化水素0.61/minおよびセレン
化水素0.3 l〆mlnの割合で、硫化水素およびセ
レン化水素を各々30分間通気し、(0,3CdS)・
(0,38b2S3)・(0,3Sb2S83)と推定
される沈殿物を得た。
(0,3CdS).
A precipitate estimated to be (0,38b2S3)/(0,3Sb2S83) was obtained.

この沈殿物を純水でよく洗浄したのち、脱水し、50℃
の温度下で48時間乾燥させた。乾燥後、これをよく粉
砕し、次いで石英ルツボに充填し、N2雰囲気下400
℃で60分間熱処理を行った。熱処理後、これをよく洗
浄し、十分乾燥した。得られた粉体を、プレスによって
、直径5mrr+、厚さ1.0mmの大きさに成形し、
これを蒸着源として表面清浄なガラス基板(20mm 
X 20 mm X 1 rnm)上に膜厚2μmの薄
膜ケ形fEシた。この時の蒸着は、基板温度320°C
1酸素分圧5 X 10= Torrの真空条件下で行
い、膜厚モニターはエビワーズ社製FTM−3を用いた
After thoroughly washing this precipitate with pure water, it was dehydrated and heated to 50°C.
It was dried for 48 hours at a temperature of . After drying, it was thoroughly crushed, then filled into a quartz crucible, and heated for 400 minutes under an N2 atmosphere.
Heat treatment was performed at ℃ for 60 minutes. After the heat treatment, this was thoroughly washed and thoroughly dried. The obtained powder was molded into a size with a diameter of 5 mrr+ and a thickness of 1.0 mm using a press,
Using this as an evaporation source, a glass substrate with a clean surface (20 mm
A thin film with a thickness of 2 μm was deposited on the substrate (20 mm x 1 rnm). At this time, the deposition temperature was 320°C.
The coating was carried out under a vacuum condition of 1 oxygen partial pressure of 5 x 10 Torr, and the film thickness was monitored using FTM-3 manufactured by Eviewars.

さらにこの蒸着j模をN2′4囲気下、150℃の温度
で20分+tlアニールを行ったのち、この薄膜上に、
マスク音用いて蒸着によりり/型状の金−俵を設け、分
光光電流5f:測定した。
Furthermore, after performing annealing of this evaporated pattern at a temperature of 150° C. for 20 minutes in an N2'4 atmosphere, on this thin film,
A mold-shaped gold bale was provided by vapor deposition using a mask sound, and a spectroscopic photocurrent of 5f was measured.

測定は、ハロゲンランプを光源とし、ブレーズ波長75
0 nmのグレーティング(格子刻線600本/mm)
をイイするモノクロメータにコンG−250型)を使用
した。波長による光エネルギーの変動を防止するため、
モノクロメータを通過した光を一部フオドマルチシライ
ヤー(光電増倍管)に受光させ、これを回転型連続ND
フィルターにフィートノ々ツクさせることにより、試料
に照射される光エネルギーが一定になるようにした。
The measurement uses a halogen lamp as the light source, and the blaze wavelength is 75.
0 nm grating (600 grating lines/mm)
A monochromator (Con G-250 model) was used. To prevent fluctuations in light energy due to wavelength,
A portion of the light that has passed through the monochromator is received by a photomultiplier (photomultiplier tube), which is then transferred to a rotating continuous ND.
By striking the filter, the light energy irradiated onto the sample was made constant.

第1図に測定結果を示す。図中aは本発明の光導電材料
の分光特性曲線、bは比較用の81の分光特性曲線であ
る。この測定結果がら明らがなように、本発明で得られ
た光導電材料は、40()−1000nmの可視・近赤
外域用の光導電素子として使用するに十分な特性を有す
ることが確−eされた。
Figure 1 shows the measurement results. In the figure, a is a spectral characteristic curve of the photoconductive material of the present invention, and b is a spectral characteristic curve of 81 for comparison. As is clear from these measurement results, it is confirmed that the photoconductive material obtained in the present invention has sufficient characteristics to be used as a photoconductive element for the visible and near-infrared region of 40()-1000 nm. -e was made.

実施例2 上記実施例1と同様にして、(0,3Cd5)・(0,
3Sb2S3)−(0,3Sb2Se3)と推定される
沈殿物を洗浄乾燥したのち、この化1投物に対してCu
30 ppm、 Ga 60 ppmを添加した。次い
でこ扛を石英ルツボ中に充填し、実施例1と同一条件で
熱処理して蒸着源用材料を作成した。さらに実施例1と
同様にして、試料を作成し、分光光′6流を測定した。
Example 2 In the same manner as in Example 1 above, (0,3Cd5)・(0,
After washing and drying the precipitate estimated to be 3Sb2S3)-(0,3Sb2Se3), Cu
30 ppm and 60 ppm of Ga were added. Next, this material was filled into a quartz crucible and heat treated under the same conditions as in Example 1 to produce a material for a vapor deposition source. Furthermore, a sample was prepared in the same manner as in Example 1, and the spectroscopic light '6 flow was measured.

測定結果を第2図に示す。図中aは本発明の光61国材
料の分光特性曲線であり、bは実施例1と同様の比較用
の81 の分光特性曲線である。第2図のから明らかな
ように、可視域400〜600 nmにおいて光電流が
増加していることが認められる。
The measurement results are shown in Figure 2. In the figure, a is the spectral characteristic curve of the optical 61 material of the present invention, and b is the spectral characteristic curve of 81 for comparison, which is the same as in Example 1. As is clear from FIG. 2, it is recognized that the photocurrent increases in the visible range of 400 to 600 nm.

これは、添加した不純物がCdSに対して増感中心とし
て働いているためであると考えられるう〔効果〕 上記実施例から明らかなように、本発明の光導′iL利
料は、可視領域ならびに近赤外頭載の光に対してすぐれ
た感度を有し、さらに成形性にもすぐれている。したが
って、本冗明の光導電材料は、可視近赤外域用の受光素
子、フォトセンサー、レーデ−ダイオードの用いられる
プリンター、光通信などへの適用が’T能である。
This is thought to be because the added impurity acts as a sensitizing center for CdS. [Effect] As is clear from the above examples, the light guide iL of the present invention can be used in both the visible region and It has excellent sensitivity to near-infrared overhead light and also has excellent moldability. Therefore, the photoconductive material of the present invention can be applied to light-receiving elements for visible and near-infrared regions, photosensors, printers using radar diodes, optical communications, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の光導亀拐料の分光特性曲
線すグラフである。 a・・・本発明の光4電材料の分光特性曲線。 b・・・Stの分光特性曲線(比較)。
FIGS. 1 and 2 are graphs of the spectral characteristic curves of the light guiding material of the present invention. a... Spectral characteristic curve of the photovoltaic material of the present invention. b... Spectral characteristic curve of St (comparison).

Claims (1)

【特許請求の範囲】[Claims] 酒石[17ンテモニルカリウム、三塩化アンチモンおよ
びカドミウム塩を含有する酸性水溶液に硫化水素ガスお
よびセレン化水素ガスを通気することにより得られるC
d5−8b2S3・Sb2Se3系化合物を主成分とす
ることを特徴とする、可視・近赤外域用光導電材料。
Tartar [C obtained by bubbling hydrogen sulfide gas and hydrogen selenide gas into an acidic aqueous solution containing potassium 17-temonyl, antimony trichloride and cadmium salt.
A photoconductive material for visible and near-infrared regions, characterized by containing a d5-8b2S3/Sb2Se3-based compound as a main component.
JP58073404A 1983-04-26 1983-04-26 Visible and near infrared light sensitive photoconductive material Pending JPS59198464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073404A JPS59198464A (en) 1983-04-26 1983-04-26 Visible and near infrared light sensitive photoconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073404A JPS59198464A (en) 1983-04-26 1983-04-26 Visible and near infrared light sensitive photoconductive material

Publications (1)

Publication Number Publication Date
JPS59198464A true JPS59198464A (en) 1984-11-10

Family

ID=13517219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073404A Pending JPS59198464A (en) 1983-04-26 1983-04-26 Visible and near infrared light sensitive photoconductive material

Country Status (1)

Country Link
JP (1) JPS59198464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583272A (en) * 2012-01-21 2012-07-18 哈尔滨工业大学 Vermicular Sb2Se3 hydrogen storage material and preparation method thereof
CN102583271A (en) * 2012-01-21 2012-07-18 哈尔滨工业大学 Spine-like SbSe3 semiconductor hydrogen storage material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583272A (en) * 2012-01-21 2012-07-18 哈尔滨工业大学 Vermicular Sb2Se3 hydrogen storage material and preparation method thereof
CN102583271A (en) * 2012-01-21 2012-07-18 哈尔滨工业大学 Spine-like SbSe3 semiconductor hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4022577B2 (en) Method for manufacturing solar cells on a substrate
JPS61159576A (en) Formation of silicon nitride film transparent to ultravioletrays
JPH05504235A (en) Photodegradation-stable semiconductor material based on amorphous germanium and its manufacturing method
JPS59198464A (en) Visible and near infrared light sensitive photoconductive material
US4156622A (en) Tantalum oxide antireflective coating and method of forming same
JP2009044019A (en) Method of manufacturing gallium oxide-indium oxide mixed crystal, and light-sensitive element using manufactured mixed crystal
JPH02504574A (en) Cerium oxide fluoride antireflection coating for Group 2-6 photodetectors and method for forming the same
CN113013283B (en) PbSe photosensitive film infrared photoelectric detection chip, preparation method thereof and infrared photoelectric detector
JPS59198463A (en) Near infrared sensitive photoconductive material
Blount et al. Photoconductive properties of chemically deposited PbS with dielectric overcoatings
JPS6028148B2 (en) photodiode
El-Kadry et al. Variation of optical constants of cadmium telluride thin films with deposition conditions
JPS59132175A (en) Manufacture of light conducting material for near infrared rays
JP3156733B2 (en) Black quartz glass, method for producing the same, and jig using the same
KR102584653B1 (en) Photodiode using 2D graphene layer
JPS6163067A (en) Manufacture of photoconductive thin film
JPS59125738A (en) Photoconductive material usable both for visible and infrared regions
Kawaguchi et al. Evaluation and analysis of Ag photodoping in chalcogenide film by optical transmission measurement
JPS59125737A (en) Photoconductive material
JPS5957245A (en) Photoconductive material
SU1051490A1 (en) Electrophotographic material
Sebastian et al. Modification of the dark and photoconductivity and the optical transmittance of solution‐grown CdS thin films
JPS6124287A (en) Manufacture of photoconductive thin-film
SU1735800A1 (en) Electrophotographic material
JPH04188879A (en) Photoelectric conversion element and manufacture thereof