JPS5919809Y2 - Internal combustion engine intake air heating device - Google Patents

Internal combustion engine intake air heating device

Info

Publication number
JPS5919809Y2
JPS5919809Y2 JP8678780U JP8678780U JPS5919809Y2 JP S5919809 Y2 JPS5919809 Y2 JP S5919809Y2 JP 8678780 U JP8678780 U JP 8678780U JP 8678780 U JP8678780 U JP 8678780U JP S5919809 Y2 JPS5919809 Y2 JP S5919809Y2
Authority
JP
Japan
Prior art keywords
ptc element
inner cylinder
intake passage
cylinder
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8678780U
Other languages
Japanese (ja)
Other versions
JPS5666057U (en
Inventor
脩嗣 後藤
一美 田坂
勝 田中
雅美 所
靖彦 石田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP8678780U priority Critical patent/JPS5919809Y2/en
Publication of JPS5666057U publication Critical patent/JPS5666057U/ja
Application granted granted Critical
Publication of JPS5919809Y2 publication Critical patent/JPS5919809Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Means For Warming Up And Starting Carburetors (AREA)

Description

【考案の詳細な説明】 本考案は内燃機関の吸気加熱装置に関する。[Detailed explanation of the idea] The present invention relates to an intake air heating device for an internal combustion engine.

機関温度が低い機関暖機完了前には気化器から供給され
た燃料の気化が十分でなく、斯くして多量の燃料が液状
のまま機関シリンダ内に供給されるために暖機完了後に
比べて燃焼が悪く、その結果安定した機関の運転を確保
できないという問題がある。
Before the engine warm-up is completed when the engine temperature is low, the fuel supplied from the carburetor is not sufficiently vaporized, and as a result, a large amount of fuel is supplied in liquid form into the engine cylinders, compared to after the engine warm-up is completed. There is a problem in that combustion is poor and, as a result, stable engine operation cannot be ensured.

従って通常暖機運転時には暖機完了後におけるよりも濃
い混合気を機関シリンダ内に供給して安定した機関の運
転を確保するようにしている。
Therefore, during normal warm-up operation, a richer air-fuel mixture is supplied into the engine cylinders than after completion of warm-up to ensure stable engine operation.

しかしながらこのように濃い混合気を機関シリンダ内に
供給した場合にに排気ガス中の有害成分である未燃炭化
水素HC並びに一酸化炭素COが増大するばかりでなく
燃料消費率が悪化するという問題を生ずる。
However, when such a rich mixture is supplied into the engine cylinder, there is a problem that not only does the amount of unburned hydrocarbons HC and carbon monoxide CO, which are harmful components in the exhaust gas, increase, but also the fuel consumption rate worsens. arise.

従って機関暖機運転時において気化器から供給される液
体燃料を十分に気化することができれば機関シリンダ内
に供給される混合気を薄くしても安定した機関の運転が
確保でき、しかもこのような薄い混合気を使用できるこ
とにより排気ガス中の有害成分を低減できると共に燃料
消費率を向上させることができる。
Therefore, if the liquid fuel supplied from the carburetor can be sufficiently vaporized during engine warm-up, stable engine operation can be ensured even if the air-fuel mixture supplied to the engine cylinders is diluted. By being able to use a lean mixture, harmful components in exhaust gas can be reduced and fuel consumption can be improved.

機関暖機運転時において液状燃料の気化を促進するため
に従来より吸気マニホルドライザ一部に排気ガスを導い
て排気ガスにより吸気マニホルドライザ一部を加熱する
ようにした吸気加熱装置が知られているがこのような排
気ガス熱を利用した吸気加熱装置は機開始動後暫らくし
ないと排気ガス塩が上昇しないために機関始動後即座に
液状燃料の気化を促進させるのは困難である。
In order to promote vaporization of liquid fuel during engine warm-up, an intake air heating device is conventionally known in which exhaust gas is guided into a part of the intake manifold riser and the part of the intake manifold riser is heated by the exhaust gas. However, in such an intake air heating device that utilizes exhaust gas heat, exhaust gas salts do not rise until some time after the engine is started, so it is difficult to promote vaporization of liquid fuel immediately after the engine is started.

このような問題を解決するためにハニカル構造の正特性
サーミスタ素子(以下、PTC素子と称す)を吸気マニ
ホルドと気化器の接合部に挿入して気化器から供給され
る混合気体を加熱するようにした吸気加熱装置が提案さ
れている。
In order to solve this problem, a positive temperature coefficient thermistor element (hereinafter referred to as a PTC element) with a honeycomb structure is inserted into the joint between the intake manifold and the carburetor to heat the mixed gas supplied from the carburetor. An intake air heating device has been proposed.

しかしながら気化器がら供給された液状燃料の大部分は
気化器エアホーンの内壁面に沿って流れ、従って液状燃
料の気化を促進するにはこの内壁面に沿って流れる液状
燃料を集中的に加熱する必要がある。
However, most of the liquid fuel supplied from the vaporizer flows along the inner wall surface of the vaporizer air horn, and therefore, in order to promote vaporization of the liquid fuel, it is necessary to intensively heat the liquid fuel flowing along this inner wall surface. There is.

しかしながら上述の吸気加熱装置ではPTC素子から発
する熱のうちで液状燃料の加熱に使用される熱の割合は
少なく、かなりの部分の熱が空気を加熱するのに使用さ
れる。
However, in the above-mentioned intake air heating device, only a small proportion of the heat emitted from the PTC element is used to heat the liquid fuel, and a considerable portion of the heat is used to heat the air.

従ってこの吸気加熱装置は液状燃料の気化を促進させる
ものとしては満足のいくものではなく、また空気が加熱
されるので充填効率が低下するという問題も有している
Therefore, this intake air heating device is not satisfactory in terms of promoting the vaporization of liquid fuel, and also has the problem that the filling efficiency is reduced because the air is heated.

本考案は発熱体から発する熱を空気の加熱に用いるので
はなく液状燃料を加熱するのに効果的に使用し、それに
よって液状燃料の気化を十分に促進することのできる吸
気加熱装置を提供することにある。
The present invention provides an intake air heating device that effectively uses heat emitted from a heating element to heat liquid fuel instead of heating air, thereby sufficiently promoting vaporization of liquid fuel. There is a particular thing.

以下、添付図面を参照して本考案を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図計参照すると、1は機関本体、2は吸気マニホル
ド、3はマニホルド集合部、4は断熱部材、5はこの断
熱部材4を介して吸気マニホルド2上に固定された気化
器を夫々示す。
Referring to the first diagram, 1 is the engine body, 2 is the intake manifold, 3 is the manifold gathering part, 4 is the heat insulating member, and 5 is the carburetor fixed on the intake manifold 2 via the heat insulating member 4. .

この気化器5はほぼ垂直に延びる1次側エアホーン6と
1次側スロットル弁7を有する1次側気化器Aと、はぼ
垂直に延びる2次側エアホーン8と2次側スロットル弁
9を有する2次側気化器Bとにより構成される。
This carburetor 5 has a primary carburetor A having a primary air horn 6 and a primary throttle valve 7 extending approximately vertically, and a secondary air horn 8 and a secondary throttle valve 9 extending approximately vertically. It is composed of a secondary side carburetor B.

第1図並びに第2図に示されるように1次側気化器A下
方の断熱部材4内には1次側エアホーン6とほは゛同一
の内径を有する中空円筒状発熱体容器11が設けられ、
この発熱体容器11の下端部は吸気マニホルド集合部3
内に突出する。
As shown in FIGS. 1 and 2, a hollow cylindrical heating element container 11 having almost the same inner diameter as the primary air horn 6 is provided in the heat insulating member 4 below the primary side vaporizer A.
The lower end of this heating element container 11 is connected to the intake manifold collecting part 3.
protrude inward.

第2図並びに第3図に示されるように発熱体容器11は
例えばアルミ合金のような熱伝導性のよい導電性材料か
ら形成された薄肉の内筒12と外筒13とを具備する。
As shown in FIGS. 2 and 3, the heating element container 11 includes a thin inner cylinder 12 and an outer cylinder 13 made of a conductive material with good thermal conductivity, such as aluminum alloy.

内筒12はその上端部に水平方向外側に延びる上部フラ
ンジ14を有し、一方外筒13はその上端部に水平方向
外側に延びる上部フランジ15を有すると共にその下端
部に水平方向内側に延びる下部フランジ16を有する。
The inner tube 12 has an upper flange 14 extending horizontally outward at its upper end, while the outer tube 13 has an upper flange 15 extending horizontally outward at its upper end, and a lower portion extending horizontally inward at its lower end. It has a flange 16.

内筒12と外筒13間に形成される環状空間内には複数
個の平板状のPTC素子17が挿入される。
A plurality of flat PTC elements 17 are inserted into the annular space formed between the inner cylinder 12 and the outer cylinder 13.

一方、第3図に示されるように内筒12の外周面は正多
角柱体状から形成され、各PTB素子17と外筒13間
の空間内には夫々導電性板ばね18が挿入される。
On the other hand, as shown in FIG. 3, the outer peripheral surface of the inner tube 12 is formed into a regular polygonal column shape, and a conductive plate spring 18 is inserted into the space between each PTB element 17 and the outer tube 13. .

従って各PTC素子17はこれら板ばね18のばね力に
よって内筒12の平坦な外周面上に圧着せしめられる。
Therefore, each PTC element 17 is pressed onto the flat outer peripheral surface of the inner cylinder 12 by the spring force of these leaf springs 18.

従ってPTC素子17の内面は内筒12に電気的に接続
され、一方PTC素子17の外面は板ばね18を介して
外筒13に電気的に接続される。
Therefore, the inner surface of the PTC element 17 is electrically connected to the inner cylinder 12, while the outer surface of the PTC element 17 is electrically connected to the outer cylinder 13 via the leaf spring 18.

第2図に示されるように内筒12の上部7ランジ14と
外筒13の上部フランジ15との間には例えばシリコン
ゴムからなる絶縁体19がPTC素子17の上縁部を覆
うように挿入され、一方内筒12の下端部と外筒13の
下部フランジ16間にも例えばシリコンゴムからなる絶
縁体20がPTC素子17の下縁間を覆うように挿入さ
れる。
As shown in FIG. 2, an insulator 19 made of silicone rubber, for example, is inserted between the upper 7 flange 14 of the inner cylinder 12 and the upper flange 15 of the outer cylinder 13 so as to cover the upper edge of the PTC element 17. Meanwhile, an insulator 20 made of silicone rubber, for example, is inserted between the lower end of the inner cylinder 12 and the lower flange 16 of the outer cylinder 13 so as to cover between the lower edges of the PTC element 17.

第2図に示されるように断熱部材4は外筒13の外径に
ほぼ等しい内径を有する孔21を形成しており、この孔
21内に発熱体容器11が挿入される。
As shown in FIG. 2, the heat insulating member 4 has a hole 21 having an inner diameter approximately equal to the outer diameter of the outer cylinder 13, into which the heating element container 11 is inserted.

更に、断熱部材4は孔21の上端部に大径部22を有し
、この大径部22内に上部フランジ14.15と絶縁体
19の積層構造体からなる発熱体容器フランジ23が嵌
着される。
Further, the heat insulating member 4 has a large diameter portion 22 at the upper end of the hole 21, and a heating element container flange 23 made of a laminated structure of an upper flange 14.15 and an insulator 19 is fitted into this large diameter portion 22. be done.

第2図かられかるように発熱体容器フランジ23の高さ
は大径部22の高さよりも高く形成されている。
As can be seen from FIG. 2, the height of the heating element container flange 23 is formed higher than the height of the large diameter portion 22.

従って気化器5が一様厚みのガスケット24を介して断
熱部材4上に締着されたときに内筒12は下方へ向けて
強力に押圧せしめられる。
Therefore, when the carburetor 5 is fastened onto the heat insulating member 4 via the gasket 24 having a uniform thickness, the inner cylinder 12 is strongly pressed downward.

その結果、絶縁部材20は内筒12の下端部と外筒13
の下部フランジ16間の間隙を完全に密封し、斯くして
内筒12の下端部と外筒13の下部フランジ16間を介
して混合気が内筒12と外筒13間に侵入するのを完全
に阻止することができる。
As a result, the insulating member 20 connects the lower end of the inner cylinder 12 and the outer cylinder 13.
The gap between the lower flange 16 of the inner cylinder 12 and the lower flange 16 of the outer cylinder 13 is completely sealed, thus preventing the air-fuel mixture from entering between the inner cylinder 12 and the outer cylinder 13 through the lower end of the inner cylinder 12 and the lower flange 16 of the outer cylinder 13. can be completely prevented.

第2図に示されるように外筒13は導線25を介して吸
気マニホルド2に接続される。
As shown in FIG. 2, the outer cylinder 13 is connected to the intake manifold 2 via a conductor 25. As shown in FIG.

一方、内筒12に接続された導線26は第1図に示すよ
うに温度検出スイッチ27、中性点電圧検出スイッチ2
8並びにイグニッションスイッチ29を介して電源30
に接続される。
On the other hand, as shown in FIG.
8 and the power supply 30 via the ignition switch 29
connected to.

温度検出スイッチ27は機関冷却水温が例えば60°C
以下のときオン状態にあり、機関冷却水温が60°C以
上になるとオフ状態となる。
The temperature detection switch 27 indicates that the engine cooling water temperature is, for example, 60°C.
It is in the on state in the following cases, and becomes in the off state when the engine cooling water temperature reaches 60°C or higher.

一方、中性点電圧検出スイッチ28は機関駆動のオール
タネータの中性点電圧が所定レベル以下のときオフ状態
にあり、この中性点電圧が所定レベル以上になるとオン
状態となる。
On the other hand, the neutral point voltage detection switch 28 is in an off state when the neutral point voltage of the engine-driven alternator is below a predetermined level, and is in an on state when this neutral point voltage exceeds a predetermined level.

PTC素子17は電流供給開始時に大きな電流が流れる
ために機関を始動すべくセルモータを駆動しているとき
にはPTC素子17には電流の供給を開始しないように
する必要がある。
Since a large current flows through the PTC element 17 when current supply starts, it is necessary to prevent the PTC element 17 from starting supply of current when the starting motor is being driven to start the engine.

このために中性点電圧検出スイネチ28が設けられる。For this purpose, a neutral point voltage detection switch 28 is provided.

即ち、機関がセルモータにより回転せしめられるときに
は中性点電圧は低く、機関が自刃運転を開始すると中性
点電圧が高くなって中性点電圧検出スイッチ28がオン
状態となり、PTC素子17に電流の供給が開始される
That is, when the engine is rotated by the starter motor, the neutral point voltage is low, and when the engine starts self-driving operation, the neutral point voltage becomes high and the neutral point voltage detection switch 28 is turned on, causing current to flow to the PTC element 17. Supply begins.

このようにPTC素子17に電流の供給が開始されると
PTC素子17は即座に温度上昇し、その結果内筒12
も即座に温度上昇する。
When the supply of current to the PTC element 17 is started in this way, the temperature of the PTC element 17 immediately rises, and as a result, the inner cylinder 12
temperature rises immediately.

一方、機関が始動すると1次側気化器Aから供給された
燃料のうちの大部分の液状燃料は1次側エアホーン6の
内壁面に沿って下降し、次いでこの液状燃料は発熱体容
器11の内筒12の内壁面に沿って下降する。
On the other hand, when the engine starts, most of the liquid fuel supplied from the primary side carburetor A descends along the inner wall surface of the primary side air horn 6, and then this liquid fuel flows into the heating element container 11. It descends along the inner wall surface of the inner cylinder 12.

従って内筒12の内壁面上を下降する液状燃料は内筒1
2によって加熱され、斯くして液状燃料は内筒12によ
って加熱され、斯くして液状燃料の気化が促進されるこ
とになる。
Therefore, the liquid fuel descending on the inner wall surface of the inner cylinder 12
2, the liquid fuel is thus heated by the inner cylinder 12, and thus the vaporization of the liquid fuel is promoted.

第2図に示されるようPTC素子17と外筒13間には
空隙が設けられており、従ってPTC素子17から発す
る熱のうちのわずかな熱が板ばね18並びに絶縁部材1
9.20を介して外筒13に逃げるだけである。
As shown in FIG. 2, a gap is provided between the PTC element 17 and the outer cylinder 13, so that a small amount of the heat emitted from the PTC element 17 is transferred to the leaf spring 18 and the insulating member 1.
It simply escapes to the outer cylinder 13 via 9.20.

斯くしてPTC素子17から発する熱の大部分は内筒1
2を加熱するのに使用されることになる。
In this way, most of the heat emitted from the PTC element 17 is transferred to the inner cylinder 1.
It will be used to heat 2.

更に、内筒12の表面上は液状燃料で覆われており、従
ってPTC素子17から発する熱の大部分が液状燃料を
気化するよめに使用される。
Furthermore, the surface of the inner cylinder 12 is covered with liquid fuel, and therefore most of the heat emitted from the PTC element 17 is used to vaporize the liquid fuel.

機開始動後暫らくして機関冷却水の水温が6σCよりも
高くなると温度検出スイッチ27がオフ状態となるため
にPTC素子17への電流の供給は停止せしめられる。
When the temperature of the engine cooling water becomes higher than 6σC some time after starting the engine, the temperature detection switch 27 is turned off, and the supply of current to the PTC element 17 is stopped.

以上述べたように本考案によればPTC素子の発する熱
の大部分を液状燃料に与えることができるので液状燃料
の気化を十分に促進することができる。
As described above, according to the present invention, most of the heat generated by the PTC element can be given to the liquid fuel, so that the vaporization of the liquid fuel can be sufficiently promoted.

その結果、暖機運転時において従来より薄い混合気を用
いたとしても良好な燃焼が得られると共に安定した機関
の運転を確保することができる。
As a result, even if a thinner air-fuel mixture is used during warm-up operation than before, good combustion can be obtained and stable engine operation can be ensured.

また、暖機運転時において従来より薄い混合気が使用で
きるので排気ガス中の有害成分を低減できると共に燃料
消費率を向上することができる。
Furthermore, since a thinner air-fuel mixture can be used during warm-up operation than before, harmful components in exhaust gas can be reduced and fuel consumption rate can be improved.

更に、PTC素子は平板状であるのでPTC素子の成形
が容易であり、しかも内筒の外周面を正多角柱体状に形
成することによって各PTC素子を内筒の平坦な外周面
上に確実に密着させることができる。
Furthermore, since the PTC element is flat, it is easy to mold the PTC element, and by forming the outer peripheral surface of the inner cylinder into a regular polygonal column shape, each PTC element can be securely placed on the flat outer peripheral surface of the inner cylinder. It can be brought into close contact with the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る機関吸気系の側面断面図、第2図
は第1図の部分拡大側面断面図、第3図は第2図のII
I−III線に沿ってみた断面図である。 2・・・吸気マニホルド、4・・・断熱部材、5・・・
気化器、6・・・1次側エアホーン、8・・・2次側エ
アホーン、11・・・発熱体容器、12・・・内筒、1
3・・・外筒、17・・・PTC素子。
Fig. 1 is a side sectional view of the engine intake system according to the present invention, Fig. 2 is a partially enlarged side sectional view of Fig. 1, and Fig. 3 is II of Fig. 2.
FIG. 3 is a sectional view taken along line I-III. 2...Intake manifold, 4...Insulating member, 5...
Vaporizer, 6... Primary side air horn, 8... Secondary side air horn, 11... Heating element container, 12... Inner cylinder, 1
3...Outer cylinder, 17...PTC element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気マニホルド集合部に開口する吸気通路内に燃料を供
給して該吸気通路から吸気マニホルド集合部内に燃料を
供給するようにした内燃機関において、上記吸気通路と
ほぼ同一の内径を有する中空円筒状発熱体容器を該吸気
通路と整列させて吸気通路下流側端部に取付けると共に
該中空円筒状発熱体容器の下流側端部を吸気マニホルド
集合部内に突出させ、該発熱体容器を多角柱体の外周面
形状を有する導電性内筒と、導電性外筒とにより構成し
てそれらの間に形成された空間内に平板状のPTC素子
を挿入し、外筒内周面とPTC素子外面間に導電性ばね
を挿入して該導電性ばねによりPTC素子の平担内面を
内筒の平担外周面上に圧着せしめ、上記内筒と外筒間に
電圧を印加するようにした内燃機関の吸気加熱装置。
In an internal combustion engine in which fuel is supplied into an intake passage that opens into an intake manifold assembly section, and the fuel is supplied from the intake passage into the intake manifold assembly section, a hollow cylindrical heat generating member having an inner diameter substantially the same as that of the intake passage. The body container is aligned with the intake passage and attached to the downstream end of the intake passage, and the downstream end of the hollow cylindrical heating element container is made to protrude into the intake manifold gathering part, and the heating element container is attached to the outer periphery of the polygonal prism body. A flat PTC element is inserted into the space formed between a conductive inner cylinder having a planar shape and a conductive outer cylinder, and conductivity is generated between the inner peripheral surface of the outer cylinder and the outer surface of the PTC element. Intake air heating of an internal combustion engine in which a conductive spring is inserted and the flat inner surface of a PTC element is pressed onto the flat outer circumferential surface of an inner cylinder, and a voltage is applied between the inner cylinder and the outer cylinder. Device.
JP8678780U 1980-06-23 1980-06-23 Internal combustion engine intake air heating device Expired JPS5919809Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8678780U JPS5919809Y2 (en) 1980-06-23 1980-06-23 Internal combustion engine intake air heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8678780U JPS5919809Y2 (en) 1980-06-23 1980-06-23 Internal combustion engine intake air heating device

Publications (2)

Publication Number Publication Date
JPS5666057U JPS5666057U (en) 1981-06-02
JPS5919809Y2 true JPS5919809Y2 (en) 1984-06-08

Family

ID=29320039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8678780U Expired JPS5919809Y2 (en) 1980-06-23 1980-06-23 Internal combustion engine intake air heating device

Country Status (1)

Country Link
JP (1) JPS5919809Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859353A (en) * 1981-10-05 1983-04-08 Toyota Motor Corp Sucked air heating device for internal-combustion engine

Also Published As

Publication number Publication date
JPS5666057U (en) 1981-06-02

Similar Documents

Publication Publication Date Title
JPS5918135Y2 (en) Internal combustion engine intake air heating device
JPS5918134Y2 (en) Internal combustion engine intake air heating device
JPS5939167Y2 (en) Internal combustion engine intake air heating device
JPS5920866B2 (en) Internal combustion engine intake air heating device
JPS5919808Y2 (en) Internal combustion engine intake air heating device
JPS6398473U (en)
JPS5919809Y2 (en) Internal combustion engine intake air heating device
JPS6237223B2 (en)
JPS5918133Y2 (en) Internal combustion engine intake air heating device
JPS5918138Y2 (en) Internal combustion engine intake air heating device
JPS5943490Y2 (en) Internal combustion engine intake air heating device
US4416242A (en) Intake heating apparatus of an internal combustion engine
JPS6014919Y2 (en) Internal combustion engine intake air heating device
JPS603961Y2 (en) Internal combustion engine intake air heating device
JPS5918140Y2 (en) Internal combustion engine intake air heating device
JPS601256Y2 (en) Internal combustion engine intake air heating device
JPS6024925Y2 (en) Internal combustion engine intake air heating device
JPS5918139Y2 (en) Internal combustion engine intake air heating device
JPS5918137Y2 (en) Internal combustion engine intake air heating device
JPS6014920Y2 (en) Internal combustion engine intake air heating device
JPS5918136Y2 (en) Internal combustion engine intake air heating device
JPS6012913Y2 (en) Internal combustion engine intake air heating device
JPS608140Y2 (en) Internal combustion engine intake air heating device
JPS6021498Y2 (en) Internal combustion engine intake air heating device
JPS6046263B2 (en) Internal combustion engine intake air heating device