JPS59197881A - Reflected electron detecting device having energy selecting function - Google Patents

Reflected electron detecting device having energy selecting function

Info

Publication number
JPS59197881A
JPS59197881A JP7266283A JP7266283A JPS59197881A JP S59197881 A JPS59197881 A JP S59197881A JP 7266283 A JP7266283 A JP 7266283A JP 7266283 A JP7266283 A JP 7266283A JP S59197881 A JPS59197881 A JP S59197881A
Authority
JP
Japan
Prior art keywords
sample
reflected electron
filter
scintillator
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7266283A
Other languages
Japanese (ja)
Inventor
Eiji Watanabe
英二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP7266283A priority Critical patent/JPS59197881A/en
Publication of JPS59197881A publication Critical patent/JPS59197881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To obtain an energy selecting function of a reflected electron which scarcely exerts a bad influence on an irradiated electron ray by a simple structure without generating a retarding voltage in the vicinity of a sample by providing a holding means for inserting and detaching a filter to the reflected electron, in front of the detecting surface of a reflected electron detecting element. CONSTITUTION:The lower magnetic pole piece 2 of an objective lens is provided on the upper part of a sample room 1, and a reflected electron detecting device is placed between the lower magnetic pole piece 2 and a sample 3. This detecting device consists of a scintillator 6 of a right angle prism type, a light pipe 7 and a photoelectric multiplier 8. Also, this disk-shaped filters 11, 12 held by a filter holding means 8 are placed between the scintillator 6 and the sample 3. According to this constitution, a reflected electron 15 generated by irradiating a sample by an electron ray 14 transmits through the filter 12, is made incident to the lower face of the scintillator 6 and converted to a light beam. The light beam is reflected by the inside surface of the scintillator 6, collected in the direction of the light pipe 7, made incident to the multiplier 8 transduced to an electric signal. Subsequently, the reflected electron of weak energy is cut to detect only the reflected electron of high energy.

Description

【発明の詳細な説明】 本発明はエネルギー選択機能を有する反射電子検出装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a backscattered electron detection device having an energy selection function.

走査電子顕微鏡等の電子線装置においては、試オ゛1や
加]−拐料に電子線を照射したとぎに発生ずる反則電子
を検出して試料に関する情報として用いることが多い。
In an electron beam apparatus such as a scanning electron microscope, foul electrons generated when a specimen or sample is irradiated with an electron beam are often detected and used as information regarding the specimen.

一般に、反射電子の]エネルギーは、零から試料照射電
子線のエネルギーまで広範囲に分布するが、エネルギー
に拘わりなく全ての反則電子を検出するかわりに、ある
範囲のエネルギーを有する反射電子のみを選択して検出
するようにすれば、反射電子が持つ試料に関する情報の
種類を絞ることが出来る。例えば、高いエネルギーの反
射電子を検出すれば試料表面に関する情報を多く含/υ
だ情報が得られ、低いエネルギーの反射電子を検出ずれ
ば試料深部に関する情報を多く含んだ情報が得られる。
In general, the energy of backscattered electrons is distributed over a wide range from zero to the energy of the electron beam irradiating the sample, but instead of detecting all foul electrons regardless of energy, only backscattered electrons with energy within a certain range are selected. By detecting the reflected electrons, it is possible to narrow down the type of information about the sample that the backscattered electrons have. For example, detecting high-energy backscattered electrons contains a lot of information about the sample surface.
By detecting low-energy backscattered electrons, information containing a lot of information about the deep part of the sample can be obtained.

反射電子をそのエネルギーに応じて選別するだめの装置
としては、従来より、反射電子検出装置の前面に偏向磁
場やりターディング電場を発生する装置が提案されてい
るが、装置が大川りになるだけでなく、装置から漏れる
電場や磁場が入射電子線を不正に偏向させる原因となる
欠点があった。そのため多くの走査電子顕微鏡は、その
ような装置を設(プず出来るだけ低いエネルギーの反則
電子線まで検出出来るように反射電子検出装置dを構成
していた。従って、高いエネルギーのly、 !74電
子線のみを検出して試別表面に関りる情報を多く含/υ
た情報を1qることは出来なかつlこ。
As a device for sorting backscattered electrons according to their energy, a device that generates a deflection magnetic field or a tarding electric field in front of a backscattered electron detection device has been proposed, but the device is too complicated. However, there was a drawback in that the electric and magnetic fields leaking from the device could cause the incident electron beam to be improperly deflected. For this reason, many scanning electron microscopes are equipped with such a device and have a backscattered electron detection device d that can detect even the lowest energy foul electron beams.Therefore, high energy ly,!74 Detects only the electron beam and contains a lot of information related to the sample surface /υ
It is not possible to obtain the same information.

本発明はこの点に鑑みてなされたもので、反則電子検出
素子の検出面前方に、反射電子に対するフィルターを挿
脱するフィルター保持手段を設けたことを特徴とする。
The present invention has been made in view of this point, and is characterized in that a filter holding means for inserting and removing a filter for reflected electrons is provided in front of the detection surface of the foul electron detection element.

第1図は、本発明を走査電子顕微鏡に適用した場合にお
【プる試II 至近傍の構成を示す略図である。
FIG. 1 is a schematic diagram illustrating the configuration of the near vicinity when the present invention is applied to a scanning electron microscope.

図にa3いて、試料室1の上方には対物レンズの下磁極
片2が設けられており、試料3は試料ホルタ−4によっ
て保持され、試料ホルダーを載置する試料移動機構5に
よってその位置が移動される。
A3 in the figure, the lower magnetic pole piece 2 of the objective lens is provided above the sample chamber 1, the sample 3 is held by a sample holder 4, and its position is controlled by a sample moving mechanism 5 that places the sample holder. will be moved.

ト磁極片2ど試お13との間には、反射電子検出装置か
配置されており、この反射電子検出装置は直角ブリスム
型のシンチレータ6、ライトパイプ7゜光電子指イ8管
8とから構成される。又、シンチレータ6と試料3との
間にはフィルター保持手段8(こ保持された薄い円盤状
のフィルター11.12゜13が選択的に配置される。
A backscattered electron detection device is arranged between the magnetic pole pieces 2 and 13, and this backscattered electron detection device consists of a right-angled brism type scintillator 6, a light pipe 7°, and a photoelectronic finger 8 tube 8. be done. Further, between the scintillator 6 and the sample 3, a filter holding means 8 (a thin disc-shaped filter 11, 12, 13 held by the filter holding means 8) is selectively disposed.

これらのフィルターやシンチレータ6には、電子線通過
孔が穿たれてJシつ、対物レンズによって集束された電
子線14の試料照射経路を妨げないように配慮されてい
る。
These filters and scintillators 6 are provided with electron beam passage holes so as not to obstruct the sample irradiation path of the electron beam 14 focused by the objective lens.

このような構成において、電子線14の試料照射によっ
て試料から発生づ−る反射電子15はフィルター(図で
は12)をj式過してシンチレータ6の下面に入射し、
そのエネルギーは光に変換される。この光はプリズム型
シンチレーク6の内面で反射されてライトパイプ7の方
向へ集められ、光電子増信管8に入射して電気信号に変
換される。
In such a configuration, reflected electrons 15 generated from the sample by irradiation of the sample with the electron beam 14 pass through a filter (12 in the figure) and enter the lower surface of the scintillator 6.
That energy is converted into light. This light is reflected by the inner surface of the prism-type scintillator 6, collected in the direction of the light pipe 7, enters the photoelectron intensifier tube 8, and is converted into an electrical signal.

このような型の反射電子検出装置は、例えば実開昭54
−19657号明細書に詳説されているが、通常シンチ
レータはエネルギーの弱い反射電子でも検出できるよう
に構成されていて、例えば2KeV以上のエネルギーを
有する反射電子は全て検出される。そこで、前述したよ
うな観察目的のために弱いエネルギーの反射電子をカッ
トして高いエネルギーの反射電子のみを検出するために
は、弱いエネルギーの反射電子をカットづ゛るように、
フィルター保持手段9を紙面上左右方向に移動操作りる
ことによってフィルター11.12.13のつらいずれ
かをシンデレータロの下面に配置する。即ら、反射電子
はフィルター11.12.13のいずれかを透過する際
に例えば3KeV、5eV、7KeV以上のエネルギー
を損失するので、シンデレータロには各々5Ke v、
7Ke y、9KeV以上のエネルギーを持って試料か
ら発生する反1’l電子のみが検出されることになる。
This type of backscattered electron detection device is, for example,
As detailed in the specification of No. 19657, a scintillator is usually configured to be able to detect even low-energy reflected electrons, and for example, all reflected electrons having an energy of 2 KeV or more are detected. Therefore, in order to cut off the backscattered electrons with weak energy and detect only the backscattered electrons with high energy for the observation purpose described above, it is necessary to cut off the backscattered electrons with low energy.
By moving the filter holding means 9 in the left and right directions on the paper, any of the icicles of the filters 11, 12, and 13 is placed on the lower surface of the cinder taro. That is, when reflected electrons pass through any of the filters 11, 12, and 13, they lose energy of, for example, 3 KeV, 5 eV, and 7 KeV or more, so the sintered electrons have 5 Ke V, 5 Ke V, and 7 KeV, respectively.
Only anti-1'l electrons generated from the sample with energy of 7Key, 9KeV or more will be detected.

第2図は、フィルター12の構造を示す断面図ぐある。FIG. 2 is a sectional view showing the structure of the filter 12.

フィルター材としてはポリカーボナイト等のプラスデッ
ク薄膜の両面にアルミやカーボン等の導電物質を]−テ
ィングしたものが用いられる。フィルターの厚さは、電
子線通過孔Hから離れるにしたがって段階的に薄くなる
ように形成されており、フィルターの異った位置を透過
する反則電子rJ15a、15b、15cのフィルター
内における紅路の長ざD h<略一定に保たれるように
しである。そのため、シンデレータロの検出面内のいず
れかに入射する反射電子線に対してもエネルギー減衰量
を略一定に保つことが出来る。尚フィルター11.13
もフィルター12と同様な形状となっているが、フィル
ターの厚さは異っている。
The filter material used is a thin film made of polycarbonite or the like coated with a conductive material such as aluminum or carbon on both sides. The thickness of the filter is formed so that it gradually becomes thinner as it moves away from the electron beam passage hole H, and the red path in the filter of the foul electrons rJ15a, 15b, and 15c passing through different positions of the filter is reduced. The length D h is kept substantially constant. Therefore, the amount of energy attenuation can be kept substantially constant even for reflected electron beams that are incident on any part of the detection surface of the cinderella. Furthermore, filter 11.13
The filter 12 also has the same shape as the filter 12, but the thickness of the filter is different.

所で、本発明は第1図の実施例装置に限定されるもので
はなく、装置を簡略化するためフィルターを複数個使用
する代りに単一のフィルターを使用する場合とフィルタ
ーを使用しないで直接シンチレータに入射させる場合と
に切換るようにしてもよい。又、シンチレータを使用ぼ
ずに半導体検出素子を利用した反射電子検出装置に本発
明を適用することも容易である。
By the way, the present invention is not limited to the apparatus of the embodiment shown in FIG. It may be possible to switch between the case where the light is incident on the scintillator and the case where the light is incident on the scintillator. Furthermore, the present invention can be easily applied to a backscattered electron detection device that uses a semiconductor detection element without using a scintillator.

以上のように、本発明によれば、試料近傍にリターディ
ング電圧を発生させるようなことなしに、簡単な構造で
且つ試料照射電子線に対する悪影響の少ない反射電子の
エネルギー選択機能が得られるため、各種の電子線装置
における反射電子検出装置として用いて大きな効果が発
揮される。
As described above, according to the present invention, it is possible to obtain an energy selection function for reflected electrons that has a simple structure and has little adverse effect on the electron beam irradiating the sample without generating a retarding voltage near the sample. It is highly effective when used as a backscattered electron detection device in various electron beam devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置を示す略図、第2図は第
1図(こJ5けるフィルターを示す断面図である。 1:試料室、2:対物レンズ下磁極片、3:試料、4:
試料ホルタ−15;試料移動装置、6:シンチレータ、
7:ライトパイプ、8:光電子増イ8管、9:フィルタ
ー保持装置、11,12.13=フイルター、14:試
料照@電子線、15゜15a、15b、15C:反射電
子線。 特許出願人 日本電子株式会社 代表者 伊藤 −夫
FIG. 1 is a schematic diagram showing an apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a filter shown in FIG. , 4:
Sample holter 15; sample moving device, 6: scintillator,
7: light pipe, 8: photomultiplier 8 tube, 9: filter holding device, 11, 12.13 = filter, 14: sample illumination @ electron beam, 15° 15a, 15b, 15C: reflected electron beam. Patent applicant JEOL Ltd. Representative Ito-husband

Claims (3)

【特許請求の範囲】[Claims] (1)反射電子検出素子の検出面前方に、反射電子に対
りるフィルターを挿脱するためのフィルター保持手段を
設*−31〔ことを特徴とするエネルギー選択機能を有
する反射電子検出装置。
(1) A backscattered electron detection device having an energy selection function, characterized in that a filter holding means for inserting and removing a filter for backscattered electrons is provided in front of the detection surface of the backscattered electron detection element.
(2)前記フィルター保持手段は、任意に選択される複
数のフィルターを保持することを特徴とする特iiQ請
求の範囲第1項記載のエネルギー選択機11Lを有する
反則電子検出装置。
(2) The foul electron detection device having the energy selector 11L according to claim 1, wherein the filter holding means holds a plurality of arbitrarily selected filters.
(3)前記フィルターは、不均一な膜厚を有すること、
を特徴とする特許請求の範囲第1項記載のエネルギー選
択機能を有する反則電子検出装置。
(3) the filter has a non-uniform film thickness;
A foul electron detection device having an energy selection function according to claim 1.
JP7266283A 1983-04-25 1983-04-25 Reflected electron detecting device having energy selecting function Pending JPS59197881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266283A JPS59197881A (en) 1983-04-25 1983-04-25 Reflected electron detecting device having energy selecting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266283A JPS59197881A (en) 1983-04-25 1983-04-25 Reflected electron detecting device having energy selecting function

Publications (1)

Publication Number Publication Date
JPS59197881A true JPS59197881A (en) 1984-11-09

Family

ID=13495799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266283A Pending JPS59197881A (en) 1983-04-25 1983-04-25 Reflected electron detecting device having energy selecting function

Country Status (1)

Country Link
JP (1) JPS59197881A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157814U (en) * 1985-03-22 1986-09-30
EP0725975A1 (en) * 1993-10-26 1996-08-14 Metrologix, Inc. Detection system for measuring high aspect ratio
WO1998000853A1 (en) * 1996-07-01 1998-01-08 K E Developments Limited Detector devices
US8629395B2 (en) 2010-01-20 2014-01-14 Hitachi High-Technologies Corporation Charged particle beam apparatus
KR20150036579A (en) 2012-09-25 2015-04-07 가부시키가이샤 히다치 하이테크놀로지즈 Electron microscope and electron beam detector
US11393658B2 (en) 2018-11-13 2022-07-19 Hitachi High-Tech Corporation Charged particle beam apparatus and sample observation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157814U (en) * 1985-03-22 1986-09-30
EP0725975A1 (en) * 1993-10-26 1996-08-14 Metrologix, Inc. Detection system for measuring high aspect ratio
EP0725975A4 (en) * 1993-10-26 1997-12-29 Metrologix Inc Detection system for measuring high aspect ratio
WO1998000853A1 (en) * 1996-07-01 1998-01-08 K E Developments Limited Detector devices
AU714501B2 (en) * 1996-07-01 2000-01-06 K E Developments Limited Detector devices
US8629395B2 (en) 2010-01-20 2014-01-14 Hitachi High-Technologies Corporation Charged particle beam apparatus
KR20150036579A (en) 2012-09-25 2015-04-07 가부시키가이샤 히다치 하이테크놀로지즈 Electron microscope and electron beam detector
US9355815B2 (en) 2012-09-25 2016-05-31 Hitachi High-Technologies Corporation Electron microscope and electron beam detector
US11393658B2 (en) 2018-11-13 2022-07-19 Hitachi High-Tech Corporation Charged particle beam apparatus and sample observation method

Similar Documents

Publication Publication Date Title
Duncumb Enhanced X-ray emission from extinction contours in a single-crystal gold film
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US5408098A (en) Method and apparatus for detecting low loss electrons in a scanning electron microscope
US2257774A (en) Electronic-optical device
JP2899629B2 (en) Charged secondary particle detector
JPH09171791A (en) Scanning type electron microscope
EP1063677B1 (en) Charged particle beam device
US4958079A (en) Detector for scanning electron microscopy apparatus
GB2052147A (en) Scanning electron microscope
JP2006093161A (en) Electron scanning microscope
US3601575A (en) Method and apparatus for viewing the impact spot of a charge carrier beam
JP3170680B2 (en) Electric field magnetic lens device and charged particle beam device
JPS59197881A (en) Reflected electron detecting device having energy selecting function
US3732426A (en) X-ray source for generating an x-ray beam having selectable sectional shapes
US3155827A (en) Electron microscope with a secondary electron source utilized for electron probe analysis
PL207238B1 (en) System for detection of secondary and backward scattered electrons for use in scanning electron microscope
Sherman et al. Dark field imaging of semicrystalline polymers by scanning transmission electron microscopy
Goldstein et al. The wavelength-dispersive spectrometer and its proposed use in the Analytical Electron Microscope
JP3494152B2 (en) Scanning electron microscope
JPH01118757A (en) Mask for surface analyzing device
JPH08124512A (en) Particle beam device provided with reflected electron detector
USRE29500E (en) Scanning charged beam particle beam microscope
US5289005A (en) Electron microscope
Pease The determination of the area of emission of reflected electrons in a scanning electron microscope