JPS59197516A - Transfer of bloom or slab in walking beam reheating furnace - Google Patents

Transfer of bloom or slab in walking beam reheating furnace

Info

Publication number
JPS59197516A
JPS59197516A JP7201783A JP7201783A JPS59197516A JP S59197516 A JPS59197516 A JP S59197516A JP 7201783 A JP7201783 A JP 7201783A JP 7201783 A JP7201783 A JP 7201783A JP S59197516 A JPS59197516 A JP S59197516A
Authority
JP
Japan
Prior art keywords
transfer
slab
bloom
steel
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7201783A
Other languages
Japanese (ja)
Inventor
Kenji Kagawa
香川 健治
Osamu Tanda
坦田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7201783A priority Critical patent/JPS59197516A/en
Publication of JPS59197516A publication Critical patent/JPS59197516A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/201Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace walking beam furnace
    • F27B9/202Conveyor mechanisms therefor
    • F27B9/207Conveyor mechanisms therefor consisting of two or more conveyors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0001Positioning the charge
    • F27D2003/0002Positioning the charge involving positioning devices, e.g. buffers, buffer zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0059Regulation involving the control of the conveyor movement, e.g. speed or sequences
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0071Regulation using position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/15Composition, conformation or state of the charge characterised by the form of the articles
    • F27M2001/1539Metallic articles
    • F27M2001/1547Elongated articles, e.g. beams, rails
    • F27M2001/1552Billets, slabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To transfer a slab on bloom freely changing materials gap and transfer speed, by a method wherein the slab on bloom is transferred between the beams operating a suitable transfer distance by detecting the position of slab or bloom on the before stage beam in a split-type reheating furnace and then the after stage beam is operated. CONSTITUTION:Slabs on blooms 2e and 2f to be transferred are charged by an optional gap onto the before stage beam 1a of split-type reheating furnace. The position of slab on bloom 2e is detected with a detector 12 and the slab on bloom 2e is transferred between the beams operating the transfer distance from the detector 12 until the gap between the slab on bloom 2e and the slab on bloom 2d on the after stage beam 1b becomes a settled gap G. Then, the slab on bloom 2e is transferred to the original position of transferred slab on bloom 2d within the beam by operating the after stage beam. Those transfer between the beams and transfer within the beam are alternately carried out and the transfer between the beams is carried out by a fixed gap. By this method, the material transfer speed can be optionally changed and the utilization efficiency of reheating furnace can be improved in walking beam reheating furnace.

Description

【発明の詳細な説明】 本発明は、ウオーキングビーム式加熱炉において可動ビ
ームが材料進行方向で複数に分割されている加熱炉(以
下、分割型加熱炉という)の材料搬送方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for transporting materials in a walking beam heating furnace in which a movable beam is divided into a plurality of parts in the material advancing direction (hereinafter referred to as a divided heating furnace).

近時、連続鋳造装置あるいは分塊圧延によって製造され
た鋼片を、熱片のまま圧延工程に供する直送圧延、ある
いは熱片状態で一旦加熱炉に装入し、加熱・均熱した後
、圧延を行なうホットチャージが行なわれるようになっ
た。
Recently, steel slabs produced by continuous casting equipment or blooming are subjected to direct rolling, in which they are subjected to the rolling process as hot slabs, or they are first charged into a heating furnace in the hot slab state, heated and soaked, and then rolled. A hot charge is now available.

ところで、ホットチャージの場合、被加熱材料の温度が
高いほど、加熱炉入口近傍の低温域を早い速度で通過さ
せ、加熱炉の高温域で集中的に加熱・均熱することが熱
放散を防止するうえで望ましい。
By the way, in the case of hot charging, the higher the temperature of the material to be heated, the faster it passes through the low-temperature area near the entrance of the heating furnace, and intensive heating and soaking in the high-temperature area of the heating furnace prevents heat dissipation. It is desirable to do so.

また、スケール疵防止や材質特性あるいは省エネルギー
の点からも加熱炉内での材料移送速度を変更することが
望ましい。
Furthermore, it is desirable to change the material transfer speed within the heating furnace from the viewpoint of preventing scale defects, material properties, and energy saving.

従来、炉内材料の移送速度を変更する手段としてウオー
キングビーム式の分割型加熱炉が使用され、それぞれの
可動ビームのサイクル数を変更することで対処されてい
た゛。しかしながら、このような従来の操業方法では可
動ビームのス1ヘローク(前進長さ)が一定長さに決ま
っているため5材料幅寸法か一定である場合にしか適用
できなかったり、材料間隔の調整量は可動ビームのスト
ロークの整数倍に限定される等の難点があって、加熱炉
の利用効率は極めて悪かった。
Conventionally, a walking beam split heating furnace has been used as a means to change the transfer speed of materials in the furnace, and this has been done by changing the number of cycles of each movable beam. However, in this conventional operation method, the stroke (advance length) of the movable beam is fixed at a constant length, so it can only be applied when the width of the material is constant, or it is difficult to adjust the material spacing. There are drawbacks such as the amount being limited to an integer multiple of the stroke of the movable beam, and the utilization efficiency of the heating furnace was extremely poor.

本発明は、分割型加熱炉において、それぞれの材料幅が
異なっていても相対向する各可動ビーム上への移載に際
し、材料間隔を自在に変更でき、かつ移送速度も自由に
変更可能な新規な搬送方法を提供することを目的とする
The present invention provides a novel method in which the spacing between materials can be freely changed and the transfer speed can be freely changed when transferring materials onto opposing movable beams even if the materials have different widths in a split heating furnace. The purpose is to provide a convenient transportation method.

以下、本発明の実施例を図面にもとすき説明する。第1
図は本発明を実施する分割型加熱炉であり、可動ビーム
が前段(装入側)と後段(抽出側)とに2分割さ扛てい
る例を示す。装入テーブル3によって加熱炉前面に搬送
された鋼片2は、チャージャー4によって炉内へ固定ス
キッド5を介して装入される。前段ビーム1aと後段ビ
ーム1bは、それぞれサポート支柱]、Oa、10bで
支持され、その各サポー1へ支柱の基部は、トラス6a
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows a split-type heating furnace for implementing the present invention, and shows an example in which the movable beam is divided into two parts: a front stage (charging side) and a rear stage (extraction side). The steel billet 2 transferred to the front side of the heating furnace by the charging table 3 is charged into the furnace via the fixed skid 5 by the charger 4. The front beam 1a and the rear beam 1b are supported by support struts], Oa, and 10b, respectively, and the base of the strut to each support 1 is connected to a truss 6a.
.

6bに固定しである。7a、7bは、上下駆動シリンダ
ーであり、前記トラス6a、6bをクランク機構8a、
8bを介して上下動する。9a、9bは前後進駆動シリ
ンダーであり、前記トラス6a、6bに接続され、任意
の前後進量の設定によって、トラスの前後進駆動を行な
うようになっている。
It is fixed at 6b. 7a, 7b are vertical drive cylinders, and the trusses 6a, 6b are connected to a crank mechanism 8a,
It moves up and down via 8b. Reference numerals 9a and 9b denote forward and backward drive cylinders, which are connected to the trusses 6a and 6b, and are configured to drive the trusses back and forth by setting an arbitrary amount of forward and backward movement.

而して、前段ビーム1aと後段ビーム1bは、それぞれ
独立して、上昇−前進一下降一後退を1サイクルとする
短形運動を行ないつつ固定スキッド5上の鋼片2を順次
装入側から抽出側方向(矢印X方向)へ移送する。1.
1a、1]、bは前段・後段各ビームの前後進移動量を
測定するために設けられたセルシンエンコーダである。
The front beam 1a and the rear beam 1b independently move the steel pieces 2 on the fixed skid 5 from the charging side while performing a rectangular movement in which one cycle is ascending, advancing, descending, and retreating. Transfer in the extraction side direction (arrow X direction). 1.
1a, 1], b are celsin encoders provided to measure the amount of forward and backward movement of each of the front and rear beams.

12は鋼片検出器(以下、単に検出器という)であり、
前段ビームで移送する鋼片の位置を検出するための例え
ばH,M、D等の周知の検出器が使用可能である。
12 is a steel piece detector (hereinafter simply referred to as a detector),
Known detectors, such as H, M, D, etc., can be used to detect the position of the billet transported by the pre-beam.

該検出器12の取付位置は、前段ビーム1aの上方、下
方もしくは側方のいずれでもよいが、搬送方向について
は第6図に示すように前段ビームJaが最抽出端、すな
わちビームの端部が抽出方向移動限界の位置(第6図の
仮想線y+)より内側の作動範囲であれば、どの位置で
もよいが、搬送トラッキング誤差の関係上、できるたけ
端部に近い方が望ましい。
The mounting position of the detector 12 may be above, below, or to the side of the front beam 1a, but in the transport direction, as shown in FIG. Any position may be used as long as it is within the operating range of the extraction direction movement limit position (imaginary line y+ in FIG. 6), but it is desirable to be as close to the end as possible in view of transport tracking errors.

13は炉内の鋼片を抽出テーブル14に抽出するための
エギストラクターである。
13 is an egistractor for extracting the steel pieces in the furnace onto the extraction table 14.

次に、上記構成の分割型加熱炉によって本発明を実施す
る具体的な方法を説明する。第2a図は被搬送鋼片2e
、2fが前段ビームla上に既に任意の鋼片間隔で装入
され、後段ビーム1bJ:には鋼片2a〜2dが後述す
る方法で、既に一定の鋼片間隔Gで並へられている状態
を示す。
Next, a specific method of implementing the present invention using the split-type heating furnace configured as described above will be explained. Figure 2a shows the transported steel piece 2e.
, 2f have already been charged onto the front beam la at an arbitrary spacing between steel slabs, and the steel slabs 2a to 2d have already been arranged at a constant spacing G on the rear beam 1bJ: by the method described later. shows.

なお、この時の後段ビーム1bは、最抽出側に退避停止
されており、また最後部の鋼片2dは前段ビーム1aの
作動と干渉しない位置に載置され、鋼片2dの後端面(
装入側)と検出器12との離隔距離Lbは、鋼片2dが
検出器12をオフした時からのビーム移送比9ILを演
算するが、いずれの方法でも求めることができる。
Note that the rear beam 1b at this time is retracted and stopped on the most extraction side, and the rearmost steel piece 2d is placed in a position that does not interfere with the operation of the front beam 1a, and the rear end surface of the steel piece 2d (
The separation distance Lb between the charging side) and the detector 12 is determined by calculating the beam transfer ratio 9IL from the time when the steel billet 2d turns off the detector 12, but it can be determined by any method.

さて、以下の実施例は前段ビームIa上の鋼片2eを抽
出側方向で搬送し、後段ビームlb上の最後部鋼片2d
との材料間隔が所望の鋼片間隔Gとなるように搬送する
までを第1段階(ビーム間移送)1次に鋼片2eを先の
鋼片2dが載置されていた同じ位置までさらに搬送する
までを第2段階(ビーム内移送)として説明する。
Now, in the following example, the steel piece 2e on the front beam Ia is conveyed in the extraction side direction, and the rearmost steel piece 2d on the rear beam lb is conveyed.
In the first stage (beam-to-beam transfer), the steel billet 2e is further transported to the same position where the previous steel billet 2d was placed. The process up to this point will be described as the second stage (transfer within the beam).

まず第1段階であるが、第2a図の状態から前段ビーム
1aのみを単独に作動すれは、第1段階の搬送終了後は
第2b図の状態になる。この搬送終了後における位置関
係は、次式(1)のとおりである。
First, in the first stage, if only the front beam 1a is operated independently from the state shown in FIG. 2a, the state shown in FIG. 2b will be obtained after the first stage of conveyance is completed. The positional relationship after this conveyance is completed is as shown in the following equation (1).

L t = L b −G・・・・・・・・(1)但し
、Lt:鋼片2cが検出器12をオンしてから搬送され
る距離(rn m ) r−b :後段ビームJb上の鋼片2dの後端面と検出
器12間の距離(丁n m )G :鋼片間隔(m m
 ) なお、要搬送距FJI L tには次の(2)式の制限
条件が必要である。すなわち、前段ビーム1aで鋼片2
eを持ち上げ移送する際に、鋼片の重心の位置とビーム
先端の位置関係でオーバーハング許容量αを定めておか
ないと、ビームから鋼片が落下する危険があるためであ
る。実際のオーバーハング許容量は、鋼片の幅寸法の1
73〜1/4の範囲であればよい。
L t = L b -G (1) However, Lt: Distance (rn m) that the steel piece 2c is conveyed after turning on the detector 12 r-b: Above the rear beam Jb Distance between the rear end surface of the steel slab 2d and the detector 12 (min) G: Steel slab interval (mm
) Note that the required transport distance FJI L t requires the following limiting condition of equation (2). In other words, the steel piece 2 is attached to the front beam 1a.
This is because when lifting and transferring the steel piece, if the overhang allowance α is not determined based on the positional relationship between the center of gravity of the steel piece and the tip of the beam, there is a risk that the steel piece will fall from the beam. The actual overhang allowance is 1 of the width of the billet.
It may be in the range of 73 to 1/4.

Lt≦に+α・・・・・・・ (2) 但し、K:検出器12から重油出側にある前段ビーム1
aの前端までの距離(mm) α:ビーム先端からのオーバーハング許容量(m m 
) 以下、第3図および第4図によって、前段ビーム1aに
よる鋼片2eの要搬送距FJltLtの具体的な制御方
法を説明する。
+α for Lt≦ (2) However, K: front stage beam 1 located on the heavy oil outlet side from the detector 12
Distance to the front end of a (mm) α: Allowable overhang from the tip of the beam (mm
) Hereinafter, a specific method of controlling the required conveyance distance FJltLt of the steel billet 2e by the front beam 1a will be explained with reference to FIGS. 3 and 4.

現在位置における搬送対象の鋼片2eの前端面と検出器
12との距離をLlとすると、Llが(3)式の条件を
満足している間は、前段ビーム1aを最大入1−ローク
Sで作動させる。
Let Ll be the distance between the front end surface of the steel billet 2e to be conveyed at the current position and the detector 12, then as long as Ll satisfies the condition of equation (3), the front beam 1a is turned to the maximum input 1-roke S. Activate it with.

L1≦N+α−・・・・・ (3) 但し、Ll:M14片2eの現在位置における前端面と
検出器12との距離(mm) N :前段ビーム1aが重装入側にある時の検出器+2
から前段ビーム1aの 前端までの距離(mm) さて、前段ビーム1aが重油出端に至った時、L+<L
tで、かつ次の(4)式の条件となった場合は次のス1
−ロークを最大ストロークSで作動させると、鋼片の落
下の恐れがあるので、次回のス1〜ロークは最大ストロ
ークSより小さいス1へ口−りで作動させなければなら
ない。
L1≦N+α−... (3) However, Ll: Distance (mm) between the front end surface of the M14 piece 2e at the current position and the detector 12. N: Detection when the front beam 1a is on the heavy loading side. vessel +2
Distance from to the front end of the front beam 1a (mm) Now, when the front beam 1a reaches the heavy oil output end, L+<L
If t and the condition of the following equation (4) is satisfied, then the following step 1
- If the rake is operated at the maximum stroke S, there is a risk of the steel piece falling, so the next strokes must be operated at the stroke S1, which is smaller than the maximum stroke S.

このため1次回の搬送に備える前段ビームの後退iMを
次の(5)式の制限条件で定める。
For this reason, the retreat iM of the front beam in preparation for the first transport is determined by the following limiting condition of equation (5).

L+>N+α・・・・・・・・・ (4)Ln≦M≦に
−L、十α−(5) 但し、M:前段ビーム最終ストローク直前のビーム後退
量(m m ) Ln:要搬送距離Ltのうちの残り移送量(mm) 以上の工程で、L+=Ltとなった位置で前段ビーム1
aを停止すれば、銅片2eのビーム間移送は終了し、鋼
片2eと後段ビーム1b上のS片2dとの間隔は、一定
の間隔Gに載置される。
L+>N+α・・・・・・・・・ (4) Ln≦M≦, −L, 10α− (5) However, M: Beam retreat amount just before the final stroke of the front stage beam (mm) Ln: Required transport Remaining transfer amount of distance Lt (mm) In the above process, at the position where L+=Lt, the front beam 1
If step a is stopped, the inter-beam transfer of the copper piece 2e is completed, and the distance between the steel piece 2e and the S piece 2d on the subsequent beam 1b is placed at a constant interval G.

次に、前段ビーム]、a上の後続鋼片2fを前記鋼片2
eと同様に搬送するための準備として、一旦、ビーム間
移送が終了した鋼片2eを待機位置まで搬送するが、こ
の明細書中ではこの搬送をビーム内移送とする。すなわ
ち、鋼片2eを該鋼片の後端面と検出器12との間隔が
待機間隔Lbとなるように移送するものであり、その手
順を第5図のフローチャートにもとすき説明する。
Next, the preceding beam], the succeeding steel piece 2f on a is attached to the steel piece 2
In preparation for conveyance in the same manner as in e, the steel piece 2e that has been transferred between beams is once conveyed to a standby position, but in this specification, this conveyance is referred to as intra-beam conveyance. That is, the steel piece 2e is transferred so that the distance between the rear end surface of the steel piece and the detector 12 becomes the waiting interval Lb.The procedure will be explained with reference to the flowchart of FIG.

待機間隔Lbの搬送にあたっては、次の(6)式の関係
を満たすr−bの値だけ後段ビーム]、bを単独に動か
すか、もしくは必要に応じて後段ビーム1bと前段ビー
ム1aとを連結作動させ搬送する。
When transporting the standby interval Lb, the rear beam 1b and the front beam 1a are moved individually by the value of r-b that satisfies the following equation (6), or the rear beam 1b and the front beam 1a are connected as necessary. Operate and transport.

G≦L b≦l(十α十〇、Lb≧K・・・(6)とこ
ろで、鋼片2eに後続する次組片2fが、仮に後段ビー
ム1bの作動と干渉する範囲にあった場合は、後段ビー
ムlbを最大ストロークSで作動すると後段ビーム1b
の上昇作動によって次組片2fを部分的に持ち上げてし
まう危険性があるので、次組片2fと干渉しない範囲の
小さいス1へローフS′で後段ビーム1bを単独に作動
させ、鋼片の後端面と検出器との間の現在距離L2を確
認しつつ、銅片位置がr−bになった位置で停止する。
G≦L b≦l (1α10, Lb≧K...(6) By the way, if the next set piece 2f following the steel piece 2e is in the range where it interferes with the operation of the rear beam 1b, , when the rear beam lb is operated at the maximum stroke S, the rear beam 1b
Since there is a risk of partially lifting the next steel piece 2f due to the rising operation of the steel piece, the rear beam 1b is operated independently in a small loaf S' of the steel plate in a small range that does not interfere with the next steel piece 2f. While checking the current distance L2 between the rear end face and the detector, the robot stops at the position where the copper piece position becomes rb.

この時、前段ビーム1aは重装入側へ退避させている。At this time, the front beam 1a is retracted to the heavy loading side.

また、次組片2fが後段ビーム1bの作動範囲と干渉し
ない時は、次組片が次のビーム作動で後段ビーム1bと
干渉する範囲にあるかどうかを確認する。
Further, when the next set 2f does not interfere with the operating range of the rear beam 1b, it is checked whether the next set 2f is in the range where it will interfere with the rear beam 1b in the next beam operation.

干渉する範囲に入っている場合、または干渉範囲になく
ても作業上前段ビーム1aを同時に作動させたくない場
合は、当鋼片2eの重心が後段ビーム1bの作動範囲に
入っているかを確認し、作動範囲に入っていない場合は
、前・後段ビームを連結作動させ、次組片か後段ビーム
lbと干渉しない位置で、かつ当鋼片2eの重心位置が
後段ビーム後退量にくるように移送する。
If it is within the range of interference, or if you do not want to operate the front beam 1a at the same time even if it is not within the interference range, check whether the center of gravity of this piece 2e is within the operation range of the rear beam 1b. If it is not within the operating range, connect the front and rear beams and move the steel piece 2e to a position where it does not interfere with the next set or rear beam lb, and so that the center of gravity of the steel piece 2e is at the rear beam retreat amount. do.

その後は、前段ビーム1aを重装入側へ退避させ、前記
の重心位置が後段ビームの作動範囲に入っている場合も
含めて、後段ビーム1bの単独作動で鋼片位置がLbに
なった位置で移送を停止する。
After that, the front stage beam 1a is retracted to the heavy loading side, and the position where the billet position becomes Lb by independent operation of the rear stage beam 1b, including when the above-mentioned center of gravity position is within the operation range of the rear stage beam. to stop the transfer.

次鋼片2fが次のビーム作動で後段ビーム1bと干渉す
る範囲に入ってこない場合で、かつ操業上前段ビーム1
aも作動させたい時は、前・後段ビームを連結作動し、
鋼片位置がLbになれば移送は終了する。なお、この連
結作動中、鋼片位置がLbとなる以前に、次鋼片2fが
次のビーム作動で後段ビーム1bと干渉する範囲に入っ
てくる場合がある。その際には、前記と同様の処理、す
なわち当鋼片2eの重心移動が必要なときの重心移動処
理および後段ビーム1b単独での移送を行なう。。
When the next beam 2f does not come into the range where it will interfere with the subsequent beam 1b during the next beam operation, and during operation, the first beam 1
If you want to operate a as well, connect the front and rear beams,
When the steel billet position reaches Lb, the transfer ends. During this connection operation, the next steel piece 2f may come into the range where it will interfere with the subsequent beam 1b in the next beam operation before the steel piece position reaches Lb. At that time, the same process as described above, that is, the process of moving the center of gravity of the steel piece 2e when it is necessary to move it, and the transfer of the latter beam 1b alone are performed. .

以上の第1段階(ビーム間移送)に続く第2段階(ビー
ム内移送)の移送処理によって、後段ビームib上での
各鋼片の間隔は、第2c図に示す所望の間隔Gに設定さ
れたことになり、以後はビーム間移送とビーム内移送を
交互に繰り返せばよい。勿論、上記の移送作動中に炉内
への新たな後続鋼片の前段あるいは後段ビームlbの先
端の鋼片抽出が随時可能なことは言うまでもない。
Through the above-described first step (inter-beam transfer) and subsequent second-step (intra-beam transfer) transfer process, the spacing between the steel slabs on the subsequent beam ib is set to the desired spacing G shown in FIG. 2c. Therefore, from now on, inter-beam transfer and intra-beam transfer may be repeated alternately. Of course, during the above-mentioned transfer operation, it is possible to extract a new succeeding steel billet into the furnace at any time at the tip of the front or rear beam lb.

なお、本発明を実施するための制御機構は、特に例示し
ていないが、検出器12.セルシンエンコーダー11a
、llb、駆動シリンダー9a、9b等の入・出力機器
と周知の電子計算機システムとの組み合せにより自動ま
たは半自動制御システムが必要に応じて採用できる。さ
らに、実施例では可動ビームが2分割されている分割型
加熱炉の場合を示したが、可動ビームが3分割以上にな
っている加熱炉の場合も、前・後段ビームの相互関係を
置換するだけで本発明を実施しうろことは言うまでもな
い。
Although a control mechanism for carrying out the present invention is not particularly illustrated, the control mechanism for implementing the present invention includes the detector 12. Sershin encoder 11a
, llb, drive cylinders 9a, 9b, etc., and a well-known electronic computer system, an automatic or semi-automatic control system can be adopted as necessary. Furthermore, although the example shows the case of a split-type heating furnace in which the movable beam is divided into two, in the case of a heating furnace in which the movable beam is divided into three or more, the mutual relationship between the front and rear beams may be replaced. It goes without saying that the present invention can be carried out by using only the following.

本発明によれば、前段ビーム上の鋼片間隔がランダムで
あっても、後段ビームへの移載の際に任意の鋼片間隔が
設定できるので、加熱炉の利用効率は極めて高くなり、
燃料の節減効果も大である。
According to the present invention, even if the spacing between the steel slabs on the front beam is random, any spacing between the steel slabs can be set when transferring the steel slabs to the rear beam, so the utilization efficiency of the heating furnace is extremely high.
The fuel saving effect is also large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する分割型加熱炉の概略を示す
側面図である。 第2a図、第2b図および第2c図は、鋼片の搬送工程
を示す側面図である。 第3図は、ビーム間移送工程の位置関係を示す拡大側面
図である。 第4図はビーム間移送作動のフローチャー1〜、第5図
はビーム内移送作動のフローチャー1〜である。 第6図は、検出器の設置位置を示す側面図である。 1a:前段ビーム   lb:後段ビーム2:鋼片  
      3:装入テーブル4:ブソシャ−5=固定
スキッド 6a、6bニドラス 7’a、7b:駆動シリンダー8
a、8b:クランク機構 9a、9b:前後進駆動シリンダー 10a、10b:サポート支柱 11a、llb:セルシンエンコーダ 12:鋼片検出器   13:エキストラクター14二
抽出テーブル 兜67 ケー」2゜ 第4百
FIG. 1 is a side view schematically showing a divided heating furnace for implementing the present invention. FIGS. 2a, 2b, and 2c are side views showing the conveying process of the steel billet. FIG. 3 is an enlarged side view showing the positional relationship of the beam-to-beam transfer process. FIG. 4 shows flowcharts 1-- of the inter-beam transfer operation, and FIG. 5 shows flowcharts 1-- of the intra-beam transfer operation. FIG. 6 is a side view showing the installation position of the detector. 1a: Front beam lb: Back beam 2: Steel piece
3: Charging table 4: Bushosha-5 = Fixed skid 6a, 6b Nidras 7'a, 7b: Drive cylinder 8
a, 8b: Crank mechanisms 9a, 9b: Forward and backward drive cylinders 10a, 10b: Support struts 11a, llb: Selshin encoder 12: Slab detector 13: Extractor 14 2 Extraction table helmet 67 K'2゜400th

Claims (1)

【特許請求の範囲】[Claims] 被搬送鋼片の移送方向に可動ビームが複数に分割された
ウオーキングビーム式加熱炉の前記可動ビーム間の鋼片
の搬送方法であって、前記可動ビームのうぢの前段ビー
ム上の鋼片位置を検出する検出器を設け、前段ビームを
該ビーム上の被搬送鋼片と後段ビーム上の既搬送鋼片と
の間隔が予め定められた設定間隔になるまで、前記検出
器からの移送距離を演算しつつビーム間移送し、ついで
後段ビームを作動して前記被搬送鋼片を前記既搬送鋼片
の元の位置までビーム内移送し、以後ビーム間移送とビ
ーム内移送を交互に行ない、一定の鋼片間隔でビーム間
移載することを特徴とする、ウオーキングビーム加熱炉
における鋼片の搬送方法。
A method for transporting a steel billet between the movable beams of a walking beam heating furnace in which the movable beam is divided into a plurality of parts in the direction of transport of the billet to be conveyed, the method comprising: determining the position of the billet on a former beam of the movable beam; A detector is provided to detect the forward beam, and the conveyance distance from the detector is increased until the distance between the conveyed piece of steel on the beam and the conveyed piece of steel on the latter beam reaches a predetermined interval. While performing calculations, the beam is transferred between beams, and then the subsequent beam is operated to transfer the transferred steel piece within the beam to the original position of the transferred steel piece. After that, inter-beam transfer and intra-beam transfer are performed alternately, and the beam is transferred at a constant rate. A method for transporting steel billets in a walking beam heating furnace, characterized by transferring steel billets between beams at intervals of .
JP7201783A 1983-04-23 1983-04-23 Transfer of bloom or slab in walking beam reheating furnace Pending JPS59197516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7201783A JPS59197516A (en) 1983-04-23 1983-04-23 Transfer of bloom or slab in walking beam reheating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7201783A JPS59197516A (en) 1983-04-23 1983-04-23 Transfer of bloom or slab in walking beam reheating furnace

Publications (1)

Publication Number Publication Date
JPS59197516A true JPS59197516A (en) 1984-11-09

Family

ID=13477219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7201783A Pending JPS59197516A (en) 1983-04-23 1983-04-23 Transfer of bloom or slab in walking beam reheating furnace

Country Status (1)

Country Link
JP (1) JPS59197516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279615A (en) * 1985-06-04 1986-12-10 Mitsubishi Electric Corp Method for controlling conveyance of billet in continuous heating furnace for hot rolling installation
JPS61279616A (en) * 1985-06-04 1986-12-10 Mitsubishi Electric Corp Control device for transfer of rolling material at dividing point of walking beam in heating furnace
KR100431844B1 (en) * 1999-12-24 2004-05-20 주식회사 포스코 A method of charging slab in a continuous heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279615A (en) * 1985-06-04 1986-12-10 Mitsubishi Electric Corp Method for controlling conveyance of billet in continuous heating furnace for hot rolling installation
JPS61279616A (en) * 1985-06-04 1986-12-10 Mitsubishi Electric Corp Control device for transfer of rolling material at dividing point of walking beam in heating furnace
KR100431844B1 (en) * 1999-12-24 2004-05-20 주식회사 포스코 A method of charging slab in a continuous heating furnace

Similar Documents

Publication Publication Date Title
US4585411A (en) Method and walking beam furnace for the intermediate heating of pipes in hot rolling mills
EP0353487B1 (en) Plant to roll flat products
JPS59197516A (en) Transfer of bloom or slab in walking beam reheating furnace
JPS5858906A (en) Controlling method for rolling efficiency in hot rolling
JP3264472B2 (en) Slab group transfer order determination method
US6074204A (en) Device for transferring products in plants for metallurgical treating of said products
JP2601450B2 (en) Billet flow control method for direct rolling
RU2021873C1 (en) Method to transfer continuous slabs
JPS61279615A (en) Method for controlling conveyance of billet in continuous heating furnace for hot rolling installation
JP2606149Y2 (en) Walking beam type transfer device with cutting device
JPS6315966B2 (en)
JPS583715A (en) Equipment for separately transferring and mounting high temperature cast billet
JP2002035801A (en) Charging method of continuously casting hot slab into heating furnace for hot rolling
JP3015336B2 (en) Furnace operation method of heating furnace in alternating rolling system
JPS60232483A (en) Method of conveying material of walking beam type furnace
JPH0559438A (en) Method for extracting material to be rolled in heating furnace
JPH037727B2 (en)
SU929400A1 (en) Automatic line for making articles of the endless-track support roller type
RU1803689C (en) Thin metal blanks heating furnace
JP2622457B2 (en) Heating furnace for endless rolling
JPS597541A (en) Carrying method of cylindrical body in end face machining equipment
JPS59143017A (en) Heating method of multiple kinds of materials in heating furnace
JPS59185722A (en) Heating method of heating furnace for steel material
JPS60122631A (en) Transport device for billet and the like
SU1164285A1 (en) Induction unit for heating billets