JPS59196626A - Output circuit suppressing through-current - Google Patents

Output circuit suppressing through-current

Info

Publication number
JPS59196626A
JPS59196626A JP58071050A JP7105083A JPS59196626A JP S59196626 A JPS59196626 A JP S59196626A JP 58071050 A JP58071050 A JP 58071050A JP 7105083 A JP7105083 A JP 7105083A JP S59196626 A JPS59196626 A JP S59196626A
Authority
JP
Japan
Prior art keywords
current
source
transistor
field effect
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071050A
Other languages
Japanese (ja)
Inventor
Shinobu Miyata
忍 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58071050A priority Critical patent/JPS59196626A/en
Publication of JPS59196626A publication Critical patent/JPS59196626A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain an output circuit suppressing a through-current without decreasing the operating speed by connecting an N type depletion FET to each input side of a series circuit comprising P and N enhancement FETs. CONSTITUTION:The P enhancement FETQP and the N enhancement FETQN are connected in series and a common connecting point of both FETs is taken as an output terminal. N depletion FETs Q1, Q2 whose gate and source are connected are connected respectively to a gate of each FET. Then, the FETs QP and QN are not turned on at the same time, the operating time is decreased and the through-current is suppressed.

Description

【発明の詳細な説明】 (発明の属する技術分野ン 本発明は出刃回路特に貫通電流を抑止した出刃回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a blade circuit, and particularly to a blade circuit in which through-current is suppressed.

(従来技術) 従来の出刃回路は、第1図に示すように、電源端子VD
Dと接地端子GND間にP−型エンノ)ンスメント電界
効果トランジスタ(P−EFETという。)QP とN
−型エンノ)ンスメンレトラ/ジスク(N−EFETと
いう。)QNを直列に挿入し、P−EFETQPのソー
スをVDDに、N−EF’ETQNのソースをGNDに
接続し、P−EFETQPのドレインとN−EFETQ
Nのドレインの共通接続点を出力端子vOとし、谷のト
ランジスタのゲート’tそれぞれ人力端子V11. V
12としている。
(Prior art) As shown in Fig. 1, the conventional Deba circuit has a power terminal VD.
A P-type enforcement field effect transistor (referred to as P-EFET) QP and N are connected between D and the ground terminal GND.
-type encoder/disc (referred to as N-EFET) QN is inserted in series, the source of P-EFETQP is connected to VDD, the source of N-EF'ETQN is connected to GND, and the drain of P-EFETQP and N -EFETQ
The common connection point of the drains of N is set as the output terminal vO, and the gates of the transistors in the valley 't are respectively connected to the human power terminals V11. V
It is set at 12.

この従来の出刃回路のDC的な動作を考えると、FET
QP、QNのゲートに、それぞれ人力される入力信号f
31.82が、“H“レベルになると、QNはオン状態
i Qpはオフ状態となり、出刃端子v0はL“レベル
となり、人力信号Sl、82が“L”レベルになるとk
 QNはオフ状態、QPはオン状態となV、出刃端子v
Oは“H“レベルとなる。
Considering the DC operation of this conventional Deba circuit, the FET
Input signal f that is input manually to the gates of QP and QN, respectively.
31. When 82 goes to the "H" level, QN goes to the on state i, Qp goes to the off state, the blade terminal v0 goes to the "L" level, and when the human power signal Sl, 82 goes to the "L" level, k
QN is off and QP is on.V, blade terminal v
O becomes "H" level.

又、人力信号S1が“H“レベル、82が“L“レベル
になるとQP、QNともにオフ状態となり、出刃端子v
Oは高インピーダンス状態となる。したがって、入力信
号S1,82のいずれの状態においても、VDD−GN
D間にはDC的な径路がないため、電源電流■0は流れ
る事はない。ただし。
Also, when the human power signal S1 goes to "H" level and the signal 82 goes to "L" level, both QP and QN turn off, and the blade terminal v
O becomes a high impedance state. Therefore, in either state of input signals S1 and 82, VDD-GN
Since there is no DC-like path between D, the power supply current ■0 does not flow. however.

出力端子vOより出力電流を取り出す場合は、当然電源
電流は流れるが、通常出刃端子VOに接続される素子の
入力インピーダンスはほぼ無限大であるので、電源電流
■0は流れ々いと考えられる。
When an output current is taken out from the output terminal VO, the power supply current naturally flows, but since the input impedance of the element connected to the output terminal VO is almost infinite, it is thought that the power supply current 0 flows only a little.

一方、AC的な動作を考えると、大力信号81゜82が
、“H″ルベルら“L″ルベル又は、″L″レベルから
“H″ルベル変化する場合、過渡的には、人力信号S1
.82は同時に“H”レベルでも“L“レベルでもない
中間レベルとなる八め、FETQP、QNが同時にオン
状態となり、VDD −G N D間にパルス状に貫通
電流工8が流れる。又、出力端子VOには、配線容量や
VOに接続された素子の大力容量等がつくので、等測的
には容量COがGND−出力端子vO間に接続されてい
る事になるので出刃端子vOが“L“レベルから“H“
レベルとなるとき、前記容量COを充電するための電流
IOが電源より流れる。したがって、電源電流IOは、
Io二18 +j o  となろう容量COは実際には
数十PFと小容量であるため、■s )) i 6  
となり、第3図に示すような波形となる。
On the other hand, considering AC operation, when the large force signals 81 and 82 change from "H" level to "L" level, or from "L" level to "H" level, transiently, the human force signal S1
.. At the same time, FET QP and QN are turned on at the same time, and the through current 8 flows in a pulsed manner between VDD and GND. Also, since the output terminal VO has the wiring capacitance and the large capacitance of the element connected to VO, isometrically, the capacitance CO is connected between GND and the output terminal vO, so the Deba terminal vO goes from “L” level to “H”
When the level is reached, a current IO for charging the capacitor CO flows from the power supply. Therefore, the power supply current IO is
Since the capacitance CO that would be Io218 +j o is actually a small capacity of several tens of PF, ■s )) i 6
This results in a waveform as shown in FIG.

したがって、出刃回路の消費電力全軽減するためには、
貫通電流Is f減少させる必要があるが、貫通電流■
s f減少させるためには、FETQp。
Therefore, in order to completely reduce the power consumption of the Deba circuit,
It is necessary to reduce the through current Is f, but the through current ■
To reduce s f, FET Qp.

QNの入力信号S1,82の立上り1立下り時間tr、
tf’i速め% QPI QNが同時にオン状態となる
時間tONを短くする、QP、 QNのgmを小さくし
て5貫通電流工8の値金小さくする等の方法が考えられ
るが* QPI QNは出刃トランジスタであるので、
動作速度や静電耐圧を確保するために、トランジスタ形
状が犬きく、 Qp、 QNの入力容量は大きくなるの
で5貫通電流I8を十分小さく出来る程、前記tr、 
 tfを小さくする事は困難である。又I QPI Q
Nのgmを小さくして貫通電流IBを軽減するには、大
幅にgmを小さくしなければ十分な効果が得られないた
め、出刃回路の動作速度が大幅に低下することになる。
Rise 1 fall time tr of input signal S1,82 of QN,
tf'i speed up % QPI QN can be considered to shorten the time tON when they are in the ON state at the same time, reduce the gm of QP and QN, and reduce the price of 5 through current work 8. Since it is a transistor,
In order to ensure operating speed and electrostatic withstand voltage, the transistor shape is narrow and the input capacitances of Qp and QN are large, so the tr,
It is difficult to reduce tf. Also I QPI Q
In order to reduce the through current IB by reducing the gm of N, a sufficient effect cannot be obtained unless the gm is significantly reduced, so the operating speed of the blade circuit will be significantly reduced.

(発明の目的) 本発明の目的は、従来技術のか\る問題点に対処して、
出刃回路の動作速度を低下するCとなく、貫通電流■8
の抑止された出刃回W&ヲ提供することにある。
(Object of the Invention) The object of the present invention is to address the problems of the prior art and to
There is no C which reduces the operating speed of the blade circuit, and the through current ■8
The aim is to provide a suppressed cutting time W&wo.

(発明の構成〕 本発明の回路は、電源端子と接地端子間に一導電型キャ
リャトランジスタと反対導電型キャリヤトランジスタを
直列接続して挿入し、該両トランジスタの共通接続点を
出刃端子とし、前記−導電型キャリヤトランジスタの制
御電極にゲートとソースが接続された反対導電をキャリ
ヤデプレッション型の第1FETのドレインを接続し、
前記反対導電キャリヤトランジスタの制御電極にゲート
とソースが接続された反対導電型キャリヤデプレッショ
ン型の第2F’ETのソースを接続し、前記第1FET
ソース及び前記第2FETのドレインをそれぞれ人力端
子としたことからなっている。
(Structure of the Invention) The circuit of the present invention includes a carrier transistor of one conductivity type and a carrier transistor of opposite conductivity type connected in series and inserted between a power supply terminal and a ground terminal, and a common connection point of both transistors being a deba terminal, connecting the drain of the carrier depletion type first FET to the opposite conductivity whose gate and source are connected to the control electrode of the conductivity type carrier transistor;
The source of a second F'ET of opposite conductivity type carrier depletion type, the gate and source of which are connected to the control electrode of the opposite conductivity carrier transistor, is connected to the control electrode of the first FET.
The source and the drain of the second FET are respectively human terminals.

(実施例) 以下、本発明を図面を参照して詳細に説明するっ第2図
に本発明の一実癩例の回路図を示す。
(Example) The present invention will now be described in detail with reference to the drawings. FIG. 2 shows a circuit diagram of an embodiment of the present invention.

この実施例の回路は、第1図に示した従来の回路に対し
て、P−EFETQPとN−EF’ETQNのゲートに
、N−型デプレッション電界効果トランジスタ(N−D
FETという。)Qlのドレイン、Qzのソースがそれ
ぞれ接続され、前記Ql、Q2のゲートとソースは接続
されb Qlのソース%Q2のドレインをそれぞれ人力
端子Vrx、 yBとし、人力信号81.82がそれぞ
れ人力されるようにしたことからなっている。
The circuit of this embodiment differs from the conventional circuit shown in FIG. 1 in that an N-type depletion field effect transistor (N-D
It is called FET. ) The drain of Ql and the source of Qz are connected, respectively, and the gates and sources of Ql and Q2 are connected, respectively. It consists of things that are made to look like this.

N−DFETQI、Qzは、ゲートとソースが接続され
ていて、ゲート−ソース間にバイアス電圧がかからない
ため、ドレインがゲート、ソースに対して高電位となる
場合I Qll Qzのドレイン電流■DはQl、Q2
のピンチオフ電流IDDと等しくなジ小電流しか流れな
くなる。一方、ゲート、ソースがドレインに対して高電
位となると、実質的にはドレインがソースとして働くの
で、ドレイン電流よりはゲート−ドレイン間電圧の二乗
に比例した大電流が流れる。
In N-DFETQI, Qz, the gate and source are connected and no bias voltage is applied between the gate and source, so when the drain has a high potential with respect to the gate and source, the drain current of I Qll Qz ■D is Ql ,Q2
Only a small current equal to the pinch-off current IDD will flow. On the other hand, when the gate and source have a higher potential than the drain, the drain essentially works as a source, so a large current flows that is proportional to the square of the gate-drain voltage rather than the drain current.

したがって、大力信号81.82が、“L″ルベルら“
H“レベルになる場合、AC的には第4図に示すように
I Qpのゲート電圧Vhが“H″ルベルなるのに比べ
て、QNのゲート電圧VBが遅れて uH“レベルにな
るので、 Qrはほぼオフ状態と力ってからQNがオン
状態になり、貫通電流工8は極めて少なくなる。人力信
号5IIS2が″H″レベルから“L”レベルになる場
合も同様にVBが“L″ルベルなるのに比べて、VAが
遅れてL“レベルになるので貫通電流工8は極めて少な
くなる。又、前記VA、 VBの信号の遅れはQl、Q
2の寸法を変える事により調整ができ、人力信号S1.
 Stの立上り、立下り時間tr。
Therefore, the large force signal 81.82 is “L” Lebel et al.
When reaching the H level, in terms of AC, as shown in FIG. 4, compared to the gate voltage Vh of IQp reaching the "H" level, the gate voltage VB of QN reaches the uH level with a delay. After Qr is almost in an OFF state, QN is in an ON state, and the through current 8 becomes extremely small. Similarly, when the human input signal 5IIS2 goes from the "H" level to the "L" level, VA goes to the L level with a delay compared to when VB goes to the "L" level, so the through-current process 8 becomes extremely small. Also, the delays of the VA and VB signals are Ql and Q
Adjustment can be made by changing the dimensions of S1.
The rise and fall times tr of St.

tfに対して、はぼ同等の値で十分であL出力回路の動
作速度を大きく損うことはない。
A value approximately equal to tf is sufficient and does not significantly impair the operating speed of the L output circuit.

DC的には、大力信号S”+ 82ト* 前記VA、V
Bは同電位となるので、DC的な動作は、従来の出刃回
路と同じである。
In terms of DC, the large power signal S”+82t* The above VA, V
Since B is at the same potential, the DC operation is the same as the conventional blade circuit.

々お、前述の実織例においては、トランジスタとしてエ
ンノ・ンスメント電界効果トランジスタを用いたけれど
も、P−EFETの代りにP N P ノ(イボーラト
ランジスタ、N−EFETの代りにNPNバイポーラト
ランジスタを用い、ソースをエミ・ツタ(大力電極)、
ドレインをコレクタ(出刃電極)。
In the above-mentioned actual example, although an Ennomous Field Effect Transistor was used as a transistor, a PNP (Ibora transistor) was used instead of a P-EFET, and an NPN bipolar transistor was used instead of an N-EFET. , the source is Emi Tsuta (large power electrode),
The drain is the collector (deba electrode).

ゲートをベース(制御電極)と置き替えれば全く同様に
本発明を適用できることは言うまでもない。
It goes without saying that the present invention can be applied in exactly the same way if the gate is replaced with the base (control electrode).

(発明の効果) 以上詳細に説明した様に、本発明によれば、−導電型キ
ャリヤトランジスタの制御電極に反対導電型キャリヤデ
プレッション型の電界効果トランジスタQlのドレイン
を接続し2反対導電型キャリヤトランジスタのゲートに
1反対導電型キャリヤデプレッション型の電界効果トラ
ンジスタQ2のソース全接続し、前記Ql、Q2のゲー
トとソースを接続しh Ql のソースs Q2のドレ
インに大力信号81.82を大力することによ凱へ〇動
作においても、前記−導電をキャリヤトランジスタと前
記反対導電型キャリヤトランジスタが同時にオン状態と
なることがほとんど無くなり、しかも前記Ql、 Q2
の寸法全考慮することにより、スイッチング時間を短縮
できるので、動作速度を低下することなく5貫通電流を
抑止した出刃回路を提供することが出来るっ
(Effects of the Invention) As explained in detail above, according to the present invention, the drain of the field effect transistor Ql of the opposite conductivity type carrier depletion type is connected to the control electrode of the − conductivity type carrier transistor, and the two opposite conductivity type carrier transistors Connect all the sources of a field effect transistor Q2 of opposite conductivity type carrier depletion type to the gate of h, connect the gates and sources of Ql and Q2, and apply a large power signal 81.82 to the source of Ql and the drain of Q2. Even in the operation, the negative conductivity carrier transistor and the opposite conductivity type carrier transistor are almost never turned on at the same time, and the Ql and Q2
By taking all the dimensions into account, switching time can be shortened, making it possible to provide a cutting circuit that suppresses through-current without reducing operating speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一例を示す回路図、第2図は本発明の一
実施例を示す回路図、第3図は従来例の動作波形の一例
を示す図、第4図は本発明の一実施例の動作波形の一例
を示す図である。 図において、QP・・・・・・P−型エンハンスメント
電界効果トランジスタt QN・・・・・・N−型エン
ハンスメント電界効果トランジスタ* Qll Q2・
・・・・・N−型デプレッション電界効果トランジスタ
、 Vll。 v12・・・・・・入力端子、VO・・・・・・出力端
子、 VDD・・・・・・電源端子、GND・・・・・
・接地端子、 Sl、 Sz・・・・・・人力信号。 第1図      第2図 第3 図 心4 図
Fig. 1 is a circuit diagram showing an example of the conventional example, Fig. 2 is a circuit diagram showing an embodiment of the present invention, Fig. 3 is a diagram showing an example of operating waveforms of the conventional example, and Fig. 4 is a circuit diagram showing an example of the present invention. It is a figure which shows an example of the operation waveform of an Example. In the figure, QP...P-type enhancement field effect transistor t QN...N-type enhancement field effect transistor* Qll Q2.
...N-type depletion field effect transistor, Vll. v12...Input terminal, VO...Output terminal, VDD...Power supply terminal, GND...
・Ground terminal, SL, Sz...Human signal. Figure 1 Figure 2 Figure 3 Centroid 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 電源端子と接地端子間に一導電型キャリャトランジスタ
と反対導電型キャリヤトランジスタ’t−if列接続し
て挿入し、該両トランジスタの共通接続点を出力端子と
し、前記−導電型キャリヤトランジスタの制御電極にゲ
ートとソースが接続された反対導電型キャリャデプレヅ
ション型の第1電界効果トランジスタのドレインを接続
し、前記反対導電キャリヤトランジスタの制御電極にゲ
ートとソースが接続された反対導電型キャリヤデプレッ
ション型の第2電界効果トランジスタのソースを接続し
、前記第1電界効果トランジスタのソース及び前記第2
電界効果トランジスタのドレインをそれぞれ人力端子と
したことを特徴とする貫通電流を抑止し比出力回路。
A carrier transistor of one conductivity type and a carrier transistor of the opposite conductivity type are connected and inserted in a 't-if series between a power supply terminal and a ground terminal, a common connection point of both transistors is used as an output terminal, and the -conductivity type carrier transistor is controlled. an opposite conductivity type carrier whose gate and source are connected to the electrode of a first field effect transistor of an opposite conductivity type carrier depletion type, and whose gate and source are connected to the control electrode of the opposite conductivity carrier transistor; A source of a second depression type field effect transistor is connected to the source of the first field effect transistor and the second field effect transistor.
A specific output circuit for suppressing through current, characterized in that the drains of field effect transistors are each made into a human terminal.
JP58071050A 1983-04-22 1983-04-22 Output circuit suppressing through-current Pending JPS59196626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071050A JPS59196626A (en) 1983-04-22 1983-04-22 Output circuit suppressing through-current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071050A JPS59196626A (en) 1983-04-22 1983-04-22 Output circuit suppressing through-current

Publications (1)

Publication Number Publication Date
JPS59196626A true JPS59196626A (en) 1984-11-08

Family

ID=13449303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071050A Pending JPS59196626A (en) 1983-04-22 1983-04-22 Output circuit suppressing through-current

Country Status (1)

Country Link
JP (1) JPS59196626A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129168A (en) * 1975-05-02 1976-11-10 Toshiba Corp Semiconductor circuit
JPS585031A (en) * 1981-07-01 1983-01-12 Shiro Okamura Logical element
JPS5812422A (en) * 1981-07-15 1983-01-24 Nec Corp Delay circuit
JPS5851623A (en) * 1981-09-24 1983-03-26 Ricoh Co Ltd Cmos circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129168A (en) * 1975-05-02 1976-11-10 Toshiba Corp Semiconductor circuit
JPS585031A (en) * 1981-07-01 1983-01-12 Shiro Okamura Logical element
JPS5812422A (en) * 1981-07-15 1983-01-24 Nec Corp Delay circuit
JPS5851623A (en) * 1981-09-24 1983-03-26 Ricoh Co Ltd Cmos circuit

Similar Documents

Publication Publication Date Title
US4752703A (en) Current source polarity switching circuit
JPS6161295B2 (en)
JPH0158896B2 (en)
US4461964A (en) Voltage comparator using CMOS transistors
US4864159A (en) ECL to CMOS transition amplifier
CN110908423A (en) Cascaded complementary source follower and control circuit
JPH04242317A (en) Level conversion circuit
US4587447A (en) Input signal level converter for an MOS digital circuit
JPH01226204A (en) Asymmetrical differential amplifier
US5986463A (en) Differential signal generating circuit having current spike suppressing circuit
JPH0287819A (en) Bicmos logic circuit
US6998733B2 (en) Pulse current generation circuit
JP2534346B2 (en) High-speed logic circuit
JPS59196626A (en) Output circuit suppressing through-current
JP2500791B2 (en) Operational amplifier circuit
JPH02124632A (en) Output buffer circuit
CN220492858U (en) Push-pull type output circuit for preventing reverse input electric leakage
JPS63283315A (en) Output buffer circuit
JPH09148911A (en) Input circuit
JPH04306915A (en) Level conversion circuit
US20040145389A1 (en) High speed current mode NOR logic circuit
JPH0529847A (en) Active load circuit and differential amplifier circuit using the same
JPS5815968B2 (en) oscillation circuit
JPH07273568A (en) Voltage follower circuit
JPH04104516A (en) Buffer circuit