JPS59195614A - Expander lens - Google Patents

Expander lens

Info

Publication number
JPS59195614A
JPS59195614A JP7082083A JP7082083A JPS59195614A JP S59195614 A JPS59195614 A JP S59195614A JP 7082083 A JP7082083 A JP 7082083A JP 7082083 A JP7082083 A JP 7082083A JP S59195614 A JPS59195614 A JP S59195614A
Authority
JP
Japan
Prior art keywords
light flux
lens
incident
diameter
intensity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082083A
Other languages
Japanese (ja)
Inventor
Takeshi Baba
健 馬場
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Atsushi Someya
染谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7082083A priority Critical patent/JPS59195614A/en
Publication of JPS59195614A publication Critical patent/JPS59195614A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To convert the intensity distribution of incident light flux easily by making the expanding ratio of projected light flux to the incident light flux made incident to a center part different from the expanding ratio of projected light flux to incident light made incident to the peripheral part of an optical system. CONSTITUTION:The focal distances of the 1st and 2nd concave lenses and the 3rd convex lens are defined as -f1, -f2, f3 respectively. Incident light flux in a diameter (a) is expanded up to beta1=f3/f1 times at its light flux diameter, and a part larger than (b) at the diameter of the incident light flux, the light flux diameter is expanded up to beta2=f3/f2 times by the 2nd concave lens 2 and convex lens 3. If it is defined that f1<f2 (provided that f1, f2 are positive values), the expanding ratio beta1 of light flux passing through the center part of the optical system and the expanding ratio beta2 of light flux passing through the peripheral part of the lens have the relation of beta1>beta2 and the diameter of light flux passing through the center part of the optical system is expanded in the direction from the incident side to the projection side more largely as compared to the diameter of light flux passing through the peripheral part of the optical system, so that the intensity distribution of the projected light flux is relatively strengthened at the peripheral part as compared to the intensity distribution of the incident light flux.

Description

【発明の詳細な説明】 を有するエクスパンダーレンズの改良に関する。[Detailed description of the invention] The present invention relates to an improvement of an expander lens having the following characteristics.

従来、レーザビームプリンター等で使用される光束は、
光源であるレーザ光のもつガウス型の光強度分布のよう
にその周辺部よシその中心部の方が元の強度が高い強度
分布よシも、その中心部よシその周辺部の強度が高い強
度分布をもつほうが、その元スポットの周辺のエッヂ部
が強調されてプリントアウト等したものが高解像にでき
ることが知られている。
Conventionally, the luminous flux used in laser beam printers, etc.
Like the Gaussian light intensity distribution of laser light, which is a light source, the original intensity is higher at the center than at the center. It is known that when the intensity distribution is used, the edges around the original spot are emphasized, and printouts, etc., can have higher resolution.

このような入射元来の強度分布を変換する光学素子とし
て代表的なものは第1図のような円錐レンズlOがある
が、これを偏心のないように加工したジ、これの面の元
軸に対する傾きの角度を設定内にするためにこれを配置
調整することが困難で実用的でない。
A typical optical element that converts the original intensity distribution of the incident light is the conical lens lO shown in Figure 1. It is difficult and impractical to adjust the position so that the angle of inclination is within the setting.

また、このような入射元来の強度分布を変換する光学素
子は、元シャツターアレイ等の照明光学系としても必要
とされる。即ち、レーザ光を照明光源としてそのま\用
いた場合、その照明光束の周辺部の九の強度がその中心
部のそれに比較して低いために被照明体に明るさの歪が
生じ、これを除去゛するためにはレーザ光の光束径を被
照明体に比べて充分大きく拡大しなければならず、しか
しこうすると照明光のエネルギーの内、被照明体を照明
していない部分の照明光のエネルギーのかなシの部分が
無駄になる。したがって、この場合には一様でない入射
光の強度分布を一様な強度分布に変換する素子が要求さ
れる。
Further, such an optical element that converts the original intensity distribution of the incident light is also required as an illumination optical system such as an original shutter array. In other words, when a laser beam is directly used as an illumination light source, the intensity at the periphery of the illumination beam is lower than that at the center, causing brightness distortion on the illuminated object. In order to eliminate this, the beam diameter of the laser beam must be expanded sufficiently compared to the object to be illuminated, but in this case, of the energy of the illumination light, the part of the illumination light that does not illuminate the object to be illuminated is used. A large amount of energy is wasted. Therefore, in this case, an element is required that converts the uneven intensity distribution of the incident light into a uniform intensity distribution.

本発明の目的は上記の点に鑑み、上記欠点を改良するた
めになされたもので、容易に入射元来の強度分布を変換
できるエクスパンダ−レンズを提供することにある。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention has been made to improve the above drawbacks, and it is an object of the present invention to provide an expander lens that can easily transform the original intensity distribution of incidence.

即ち、本発明は、エクスパンダ−レンズの中心部に入射
する入射光束に対する射出光束のエクスパンド比と、光
学系の周辺部に入射する入射光束に対する射出光束のエ
クスパンド比が異なることを特徴とするエクスバンダー
レンズからなる光学系によって上記の目的を達成するも
のである。
That is, the present invention provides an expander lens characterized in that the expansion ratio of the emitted light beam to the incident light beam incident on the center of the expander lens is different from the expansion ratio of the emitted light beam to the incident light beam incident on the periphery of the optical system. The above objective is achieved by an optical system consisting of a bander lens.

以下、本発明に係るエクスパンダ−レンズからなる光学
系の実施例を図面に従って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of optical systems comprising expander lenses according to the present invention will be described below with reference to the drawings.

第2図は本発明に係るエクスパンダ−レンズからなる光
学系の第1実施例で、1は焦点距離が−f。
FIG. 2 shows a first embodiment of an optical system comprising an expander lens according to the present invention, and 1 has a focal length of -f.

の第1のおうレンズ、2は焦点距離が−f2の中心部分
は穴があいた第2のおうレンズ、3は焦点距離が13の
とつレンズであり、第1のおうレンズlと第2のおうレ
ンズ2の像側焦点ととつレンズ3の物体焦点は点Fで一
致しており、f1〜f2である。
, 2 is a second lens with a focal length of -f2 and a hole in the center, 3 is a lens with a focal length of 13, and the image side of the first lens l and second lens 2 is The focal point and the object focal point of the lens 3 coincide at point F, which is f1 to f2.

4は中心開口を有するアパーチャーであシ、中心開口の
直径faとし、4司辺のしゃ元部の最大直径はbである
。第2図よシ明らかなように、直径a内の入射光束は、
第1のおうレンズl及びとつレンズ3によってβ、−=
’f、/f、倍に光束径が拡大され、入射光束の直径が
bよシ大きな部分は第2のおうレンズ2及びとつレンズ
3によシβ2= f3/f2倍に光束径が拡大される。
4 is an aperture having a central opening, the diameter of the central opening is fa, and the maximum diameter of the shield portion of the four sides is b. As is clear from Fig. 2, the incident light flux within diameter a is
β, −= by the first lens l and the totsu lens 3
The diameter of the light beam is expanded by a factor of f, /f, and in the portion where the diameter of the incident light beam is larger than b, the diameter of the light beam is expanded by a factor of β2=f3/f2 by the second lens 2 and lens 3.

したがって、f、(β2(但しf、、β2は正の値)と
すると、光学系の、中心部を通る光束に対するエクスパ
ンド比β1とレンズの周辺部を通る光束に対するエクス
パンド比β2は、β1〉β2の関係となり、光学系中心
部を通る光束径が光学系の周辺部を通る光束径と比較し
て入射側から射出側に従ってよ多大きく拡大されるため
に、射出光束の強度分布は入射光束の強度分布に比して
、周辺部の方が相対的に強くなる。たとえば入射光束の
強度分布を第3図(alのごとくガウス型とすると、射
出光束の強度分布は第3図(b)のごとく、周辺部の光
の強度は中心部の元の強度と比較して相対的に高まシ、
この光束を不図示のレンズで絞シ、これをレーザビーム
としてレーザビームプリンタ等に使用した場合にはプリ
ントアウトしたものは高解像にすることができる。
Therefore, if f, (β2 (where f, , β2 is a positive value), then the expansion ratio β1 of the optical system for the light flux passing through the center and the expansion ratio β2 for the light flux passing through the peripheral part of the lens are β1>β2 Since the diameter of the beam passing through the center of the optical system is greatly expanded from the incident side to the exit side compared to the diameter of the beam passing through the periphery of the optical system, the intensity distribution of the output beam is similar to that of the incident beam. The intensity distribution is relatively stronger at the periphery.For example, if the intensity distribution of the incident light beam is Gaussian as shown in Figure 3 (al), the intensity distribution of the emitted light beam will be as shown in Figure 3 (b). As shown, the intensity of light at the periphery is relatively high compared to the original intensity at the center.
If this light beam is focused by a lens (not shown) and used as a laser beam in a laser beam printer or the like, the printed matter can have a high resolution.

第4図は本発明に係るエクスノ(ンダーレンズの第2実
施例を示している。第4図に於て、11は第1のレンズ
系で、おうレンズllaととつレンxtlbとからなp
、12は第2のレンズ系で、同じくおうレンズ12aと
とつレンズ12bとからなり、これら第1及び第2のレ
ンズ系11.12は夫々単独で従来のエクスバンダーレ
ンズを構成している。4は孔あきのアノ(−チャーで、
とつレンズllaの前面に配置されている。孔あきのア
パーチャー4の外側を通過した平行光束は第2のレンズ
系12によりその光束径が拡大されて平行光束として射
出する。孔あきのアノく−チャ−4の開口を通過した中
心部の平行入射光束は第1のレンズ糸11によシその光
束径を拡大されて平行射出光束として第1のレンズ系t
iから射出する。
FIG. 4 shows a second embodiment of the X-N lens according to the present invention. In FIG.
, 12 is a second lens system, which also consists of a lens 12a and a lens 12b, and these first and second lens systems 11 and 12 each constitute a conventional extender lens. 4 is a perforated person (-char,
It is arranged in front of the totsu lens lla. The parallel light beam that has passed through the outside of the perforated aperture 4 is enlarged in diameter by the second lens system 12 and exits as a parallel light beam. The parallel incident light beam at the center that has passed through the aperture of the perforated anode 4 is enlarged in diameter by the first lens thread 11 and sent to the first lens system t as a parallel emitted light beam.
Eject from i.

史に、この射出した光束は第2のレンズ系12に入射し
、これに、J:9その光束径を更に拡大されて平行射出
光束として第2のレンズ系12から射出する。従って、
周辺の入射光束は第2のレンズ糸12によシ一段階たけ
その光束径全拡大されるのされるので、中心部の入射光
束は周辺部の入射光束に対してそれの強度が著るしくお
ちるっ従って第3図(atに示したようなガウス型の強
度分布を有する平行光束を入射すれば、その射出光束の
強度分布は第3図[b)のようなものになることは自明
であろう。
Historically, this emitted light beam enters the second lens system 12, where the diameter of the light beam is further expanded by J:9, and the light beam exits from the second lens system 12 as a parallel emitted light beam. Therefore,
The incident light beam at the periphery is enlarged by the second lens thread 12 by one step, so that the intensity of the incident light beam at the center is significantly greater than that at the periphery. Therefore, it is obvious that if a parallel beam having a Gaussian intensity distribution as shown in Figure 3 (at) is incident, the intensity distribution of the output beam will be as shown in Figure 3 [b]. Probably.

第5図は本発明に係る光学系に応用する光変調素子の一
例の断面図である。26は絶縁性の基板、24a 、2
4b + 24c 、24d 、24e”’は列状に配
列されたインジウムティンオキサイド等の薄膜からなる
発熱抵抗体、23は絶縁層、22はたとえば有機溶剤か
らなる液層、21は透明な保護板で、これらがこの順序
で積層されて光変調素子20が構成されている。また、
25a、25b。
FIG. 5 is a sectional view of an example of a light modulation element applied to the optical system according to the present invention. 26 is an insulating substrate, 24a, 2
4b + 24c, 24d, 24e"' are heating resistors made of thin films such as indium tin oxide arranged in rows, 23 is an insulating layer, 22 is a liquid layer made of, for example, an organic solvent, and 21 is a transparent protective plate. , these are laminated in this order to constitute the light modulation element 20. Also,
25a, 25b.

2’5c・・・はスイッチで、夫々発熱抵抗体24a。2'5c... are switches, each of which has a heating resistor 24a.

24b 、24c・・・に接続さ詐ている。スイッチ2
5a。
24b, 24c, etc. are connected fraudulently. switch 2
5a.

25b 、25c・・・が閉成されていない時は発熱抵
抗体24 a + 24 b * 24 c・・・は通
電加熱されないので液層2の温度即ち屈折率は一様であ
シ、従って、ある角度で入射してきた元はそのまま透過
して一定の角度で光変調素子20外へ射出する。
When 25b, 25c... are not closed, the heating resistors 24a+24b*24c... are not heated by electricity, so the temperature of the liquid layer 2, that is, the refractive index, is uniform, and therefore, The light incident at a certain angle is transmitted as is and exits from the light modulation element 20 at a certain angle.

しかし、スイッチ25cが閉成さ詐て発熱抵抗体24 
cが通電加熱すると、この熱をうけた液層22−は局部
的に温度上昇し、この温度上昇に伴なって屈折率が他の
液層22の部分と異なったグラディエンド・インデック
ス領域27が生じる。従ってこの領域27に入射する元
は屈折等されてその光路を変更され図ボの如く拡が9の
ある発散光となって元俊調素子20から射出する。
However, the switch 25c is closed and the heating resistor 24 is falsely closed.
When c is heated by electricity, the temperature of the heated liquid layer 22- rises locally, and as a result of this temperature rise, a gradient-end index region 27 whose refractive index is different from that of other parts of the liquid layer 22 is formed. arise. Therefore, the light beam incident on this region 27 is refracted, changes its optical path, becomes a diverging light beam with a spread of 9 as shown in the figure, and exits from the light beam element 20.

今、ここでは透過型の光変調素子として説明したがミラ
ーを液層22と絶縁層23との間に設けて反射性とする
ことによ逆反射型の光変調素子もo3能である。、また
、液層22を局部的に加熱して沸謄させ、この中に蒸気
/!!全形成し、この蒸気泡によシ光路を変化させるこ
とによ9元変調してもよい。また、発熱抵抗体の代りに
赤外線吸収層を用いて赤外線をあてることによシ発熱さ
せてもよい。
Although the explanation has been made here as a transmission type light modulation element, a retroreflection type light modulation element can also be used by providing a mirror between the liquid layer 22 and the insulating layer 23 to make it reflective. , Also, the liquid layer 22 is locally heated to boiling, and steam/! ! Nine-dimensional modulation may be performed by forming the entire beam and changing the optical path using the vapor bubbles. Further, instead of the heating resistor, an infrared absorbing layer may be used to generate heat by applying infrared rays.

ま/ζ、上記実施例では光路変化用の部材として液体を
用いたが固体であってもよい。なお、これら光変調素子
の詳細な原理及び構成については特願昭57−1022
93及び特願昭57−178154  及び特願昭57
−182781等に記載されているのでこれ以上詳述し
ない。
In the above embodiment, a liquid is used as the optical path changing member, but a solid may be used. The detailed principles and structure of these light modulation elements are disclosed in Japanese Patent Application No. 1022-1983.
93 and Japanese Patent Application No. 57-178154 and Japanese Patent Application No. 1987-178154
-182781 etc., so it will not be described in further detail.

第6図は本発明に係る上記光学系と光変調素子を画像形
成装置に適用した一実施例である。第6図に於て、30
はレーザ光源、31はコリメータレンズ、32は第2図
もしくは第4図で説明したエクスパンダレンズのいず扛
か一方、33は紙面に垂直な方向にパワーをもつシリン
ドリカルレンズ、20は上記光変調素子、24は発熱抵
抗体24c等を有するヒーターアレイ、34は投影レン
ズ、35は紙面に垂直方向に長手方向を有する遮光部材
、36は感光ドラムで図示矢印方向に回転している。レ
ーザ光源30からのレーザ元はコリメータレンズ31に
よシ平行光束とされる。この時、紙面と平行方向のこの
平行光束の強度分布はガウス型とする。この平行光束は
エクスパングーレンズ32に入射し上記せるようにその
射出光束の強度分布は第3図(1))の如くなる。これ
から射出した平行光束はシリンドリカルレンズ33によ
り+変調素子20のヒーターアレイ24上に線状に集光
されるっ今、ヒーターアレイ24が加熱されてない時、
光変調素子20にはグラディエンド・インテックス領域
も(7くは蒸気泡ぐよ形成されていないので、シリンド
リカルレンズ33によシ、粉状に集光された光束はその
ま3元変調素子20を透過し、投影レンズ34により遮
光部材35上に再び線上に集光されるつ じかし、ヒー
ターアレイ24に画像信号が加えられて、たとえば発熱
抵抗体24cが通電加熱すると、この上の液層にグラデ
ィエンド・インテックス領域もしくは蒸気泡が形成され
る。ここを透過する元は上記せる如く屈折等されて一点
鎖線で示した如く、発散光となり投影レンズ34を/r
 L/て遮元部拐35に集光せず、発熱抵抗体24cの
位置に対応した感光ドラム36の表面位置に集光して点
像を形成する。従って、画像1a号にj心してヒーター
アレイ24が線走査されて多数の点像が感光ドラム36
の図示矢印方向に形1h哲を 成される。この走査をくり返すこと ラム36の表面に2次元的感光像、即ち静電潜像が形成
される。この静電潜像はトナー像となシ公知の方式で転
写材に転写されてプリントアウトされる。故に、エクス
パンダ−レンズ系32によって変換された光束の強度分
布はほぼ一様であり、この光束が線状に集光される光変
調素子2o内の位置の光強度分布もほぼ一様であシ、こ
こから発散光となって感光ドラム36に集光した点像は
ほぼ同じ強度をもつので感光ドラム36はほぼ一様に感
光されるので解像度の良好な画像をうろことができる。
FIG. 6 shows an embodiment in which the optical system and light modulation element according to the present invention are applied to an image forming apparatus. In Figure 6, 30
is a laser light source, 31 is a collimator lens, 32 is one of the expander lenses explained in FIG. 24 is a heater array having a heating resistor 24c, etc.; 34 is a projection lens; 35 is a light-shielding member having a longitudinal direction perpendicular to the plane of the paper; and 36 is a photosensitive drum rotating in the direction of the arrow shown in the figure. A laser source from a laser light source 30 is converted into a parallel beam by a collimator lens 31. At this time, the intensity distribution of this parallel light beam in the direction parallel to the plane of the paper is Gaussian. This parallel light beam enters the expanding lens 32, and as described above, the intensity distribution of the emitted light beam becomes as shown in FIG. 3(1). The parallel light beam emitted from this is linearly condensed onto the heater array 24 of the + modulation element 20 by the cylindrical lens 33. Now, when the heater array 24 is not heated,
The light modulation element 20 also has a gradient end/intex region (7), since no vapor bubbles are formed, the light beam condensed into a powder form passes through the cylindrical lens 33 and directly passes through the three-dimensional modulation element 20. When the image signal is applied to the heater array 24 and, for example, the heating resistor 24c is heated by electricity, the liquid layer above it is A gradient end/intex region or a vapor bubble is formed.The source that transmits through this is refracted as described above, and becomes diverging light as shown by the dashed line, passing through the projection lens 34 at /r.
L/, the light is not focused on the shield part 35, but is focused on the surface position of the photosensitive drum 36 corresponding to the position of the heating resistor 24c to form a point image. Therefore, the heater array 24 is line-scanned centered on image 1a, and a large number of point images are formed on the photosensitive drum 36.
The shape of 1h is formed in the direction of the arrow shown in the figure. By repeating this scanning, a two-dimensional photosensitive image, that is, an electrostatic latent image is formed on the surface of the ram 36. This electrostatic latent image is transferred to a transfer material as a toner image by a known method and printed out. Therefore, the intensity distribution of the light flux converted by the expander lens system 32 is substantially uniform, and the light intensity distribution at the position within the light modulation element 2o where this light flux is linearly focused is also substantially uniform. Since the point images converged on the photosensitive drum 36 as divergent light have substantially the same intensity, the photosensitive drum 36 is exposed to light almost uniformly, so that an image with good resolution can be obtained.

この他にも本発明は、第3図(1))のように強度分布
を変換したものを再びレーザビームとし、このレーザビ
ーム金ポリコン等で走査すると共にレンズ等で集光して
レーザビームプリンター等に用いてもよい。この場合、
エツジ部の光強度が高くなるので非常に解像度の艮い画
像をうろことができる。
In addition, the present invention converts the intensity distribution as shown in FIG. 3 (1)) into a laser beam again, scans this laser beam with a gold polycon, etc., and condenses it with a lens, etc. to produce a laser beam printer. It may also be used for in this case,
Since the light intensity at the edges is high, it is possible to see very high-resolution images.

上記説明したように本発明によればガウス型の強度分布
をもつ元来をほぼ一様な光束の強度分布に変換でき、入
射光束全ロスなく非常に有効に利用することができる。
As explained above, according to the present invention, it is possible to convert an original light beam having a Gaussian intensity distribution into a substantially uniform intensity distribution, and it is possible to use the incident light beam very effectively without any total loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を示す説明図、第2図は本発明に係る
エクスバンダーレンズの第1実施例の構成図、第3図は
光の強度分布の説明図、第4図は本発明に係るエクスバ
ンダーレンズの第2実施例の構成図、第51図は本発明
に係る光学装置に適用する光変調素子の部分断面図、第
6図(r:i本発明に係るエクスバンダーレンズと第5
図の光変調素子を光学装置としての画像形成装置に適用
した一実施例の構成図である。 1;第1のおうレンズ、2;第2のおうレンズ、3;と
つレンズ、4;アパーチャー、 11 ;41のレンズ系、12;第2のレンズ糸、20
;光変調素子、24;ヒーターアレイ、24C;発熱抵
抗体、30;レーザ光源、32;エクスバンダーレンズ
系、 33;シリンドリカルレンズ、 34;投影レンズ、35;遮光部材、 36:感光ドラムつ 第1図 第2図 (○ 第3図 第4図
Fig. 1 is an explanatory diagram showing the prior art, Fig. 2 is a configuration diagram of the first embodiment of the extender lens according to the present invention, Fig. 3 is an explanatory diagram of the light intensity distribution, and Fig. 4 is an explanatory diagram showing the present invention. FIG. 51 is a block diagram of a second embodiment of the extender lens according to the present invention, and FIG. 5
FIG. 2 is a configuration diagram of an embodiment in which the light modulation element shown in the figure is applied to an image forming apparatus as an optical device. 1; first lens, 2; second lens, 3; totsu lens, 4; aperture, 11; lens system of 41, 12; second lens thread, 20
; Light modulation element, 24; Heater array, 24C; Heat generating resistor, 30; Laser light source, 32; Figure 2 (○ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] レンズの中心を通る光束に対するエクスノくンド比とレ
ンズの周辺部を通る光束に対するエクスパンド比とが異
なることを特徴とするエクスバング−レンズ。
An ex-bang lens characterized in that the expansion ratio for a light flux passing through the center of the lens is different from the expansion ratio for a light flux passing through the periphery of the lens.
JP7082083A 1983-04-21 1983-04-21 Expander lens Pending JPS59195614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082083A JPS59195614A (en) 1983-04-21 1983-04-21 Expander lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082083A JPS59195614A (en) 1983-04-21 1983-04-21 Expander lens

Publications (1)

Publication Number Publication Date
JPS59195614A true JPS59195614A (en) 1984-11-06

Family

ID=13442589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082083A Pending JPS59195614A (en) 1983-04-21 1983-04-21 Expander lens

Country Status (1)

Country Link
JP (1) JPS59195614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201416A (en) * 1986-02-04 1987-09-05 Fujitsu Ltd Optical system for laser beam working
JPH01167818A (en) * 1987-12-24 1989-07-03 Agency Of Ind Science & Technol Beam intensity flattening device
JPH0512289U (en) * 1991-08-05 1993-02-19 株式会社ホンダアクセス Long object carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201416A (en) * 1986-02-04 1987-09-05 Fujitsu Ltd Optical system for laser beam working
JPH01167818A (en) * 1987-12-24 1989-07-03 Agency Of Ind Science & Technol Beam intensity flattening device
JPH0512289U (en) * 1991-08-05 1993-02-19 株式会社ホンダアクセス Long object carrier

Similar Documents

Publication Publication Date Title
US4872743A (en) Varifocal optical element
EP0996022B1 (en) Optical apparatus and method for increasing intensity of multimode laser beams and a printer for printing lenticular images utilizing such laser beams
JPH0764003A (en) Scanning optical system
JP2001228420A (en) Device for performing dynamic control of luminous flux direction within wide visual field
JPH05142490A (en) Laser scanning optical system with nonlinear frequency characteristic
US4911733A (en) Process for fabricating color filters
JP4193950B2 (en) Optical system for line scanner or line printer
JPH02136815A (en) Ros type printing machine employing vibration countermeasure
JPS59195614A (en) Expander lens
US4641920A (en) Optical element having the function of changing the cross-sectional intensity distribution of a light beam
US5479289A (en) Method and apparatus for preparing imaged light
KR0149036B1 (en) Radiation source for a printer
KR920010622B1 (en) Optical lighting system
US3480363A (en) Optical scanning system
JPH04123016A (en) Phase shift element and laser device using the same
JPS60151610A (en) Optical element
JP3819157B2 (en) Optical device
US4865426A (en) Variable aberration imaging optical system
JPH04123017A (en) Phase shift element and laser device using the same
JPS60108819A (en) Optical printer
JPS5968723A (en) Optical modulating element
JPS6084528A (en) Linear lighting optical system
JPH08221787A (en) Optical information processor
JPS6031115A (en) Optical modulating device
JPS62287202A (en) Optical element