JPS59195595A - Apparatus for crystal growth - Google Patents

Apparatus for crystal growth

Info

Publication number
JPS59195595A
JPS59195595A JP6659583A JP6659583A JPS59195595A JP S59195595 A JPS59195595 A JP S59195595A JP 6659583 A JP6659583 A JP 6659583A JP 6659583 A JP6659583 A JP 6659583A JP S59195595 A JPS59195595 A JP S59195595A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
crystal growth
heating
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6659583A
Other languages
Japanese (ja)
Other versions
JPH0160000B2 (en
Inventor
Toshihiko Suzuki
利彦 鈴木
Nobuyuki Izawa
伊沢 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6659583A priority Critical patent/JPS59195595A/en
Publication of JPS59195595A publication Critical patent/JPS59195595A/en
Publication of JPH0160000B2 publication Critical patent/JPH0160000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide the apparatus which is collectively small-sized and lightweight by constituting a magnetic field generating means of a specific solenoid type so that the magnetic field may act efficiently on crystal growth in an apparatus for crystal growth having means for heating an electro-conductive liquid body and for giving a magnetic field. CONSTITUTION:To the outer circumference of a vessel 2 wherein an electro- conductive liquid body 3, such as a molten liquid of an Si semiconductor, is contained, a heating body 4, for heating the liquid body 3, is provided. A coiled body 10, i.e. a solenoid type magnetic field generating apparatus, is coiled and arranged around the assembly so that the direction of the axial center of the coil may coincide with the center of the vertical direction wherein the crystal is lifted, or the center of the vessel 2. Meanwhile, the coiled body 10 is constituted axially of three parts, the central part 10A, the upper end part 10B, and the lower end part 10C, wherein 10A and 10B, and 10A and 10C are respectively wound in the opposite direction to each other. In this way, the apparatus is made small-sized, an unfavorable effect of a leaking magnetic field on others is remarkably reduced, and the power consumption can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は単結晶、例えば半導体結晶を得る結晶成長法に
係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a crystal growth method for obtaining single crystals, for example semiconductor crystals.

背景技術とその問題点 例えば半導体単結晶を育成させるにチョクラルスキー法
CCZ法)が広く用いられる。この方法では石英るつぼ
内で宕解した半導体融液に種結晶を浸してこれを引き上
げることによって単結晶を育成させるものであるが、こ
の場合半導体融液と石英るつぼの反応によって酸素の混
入が多く、引き上げた結晶中の酸素濃度は1018/z
3の桁になる。この結晶中に入った過剰の酸素は集積回
路製造過程等の熱処理工程で種々の欠陥、例えば積層欠
陥、酸素析出物、転位ループなどを発生させ、半導体装
置の特性を劣化させる原因をつくる。また単結晶半導体
ではこのような結晶欠陥のほかに成長縞と呼ばれる結晶
中のミクロな不純物分布の不均一性が問題になる。この
成長縞発生の原因は融液中の熱対流による影響が重要で
あることが知られている。一方、電気伝導性を有する液
状体の熱対流は、磁場によって抑制される。即ち、電気
伝導性を有する物体が磁場中で運動するとき、物体の中
に電位差が発生し、電流が流れる。一方、磁場の中で運
動する電流の担体には力が働くから物体は新しい力を受
ける。今C2法の例をとると、これに熱対流が生じてい
る場合これを横切る方向に磁場を加えるとき、電気伝導
性をもつ流体が磁力線を横切ることになって、その結果
流体の運動方向と磁場に垂直な方向に電流が流れる。そ
のため電流と磁場に垂直な方向に力が発生する。そして
この力は熱対流とは逆方向になり対流が抑制され、見か
け上流体の粘性を大きくする効果となるものである。
BACKGROUND TECHNOLOGY AND PROBLEMS The Czochralski method (CCZ method), for example, is widely used to grow semiconductor single crystals. In this method, a single crystal is grown by dipping a seed crystal into a semiconductor melt melted in a quartz crucible and pulling it out, but in this case, a large amount of oxygen is mixed in due to the reaction between the semiconductor melt and the quartz crucible. , the oxygen concentration in the pulled crystal is 1018/z
It becomes a digit of 3. Excess oxygen that has entered the crystal causes various defects such as stacking faults, oxygen precipitates, and dislocation loops during heat treatment steps such as integrated circuit manufacturing processes, causing deterioration of the characteristics of semiconductor devices. In addition to such crystal defects, single-crystal semiconductors also suffer from non-uniform microscopic impurity distribution in the crystal called growth striations. It is known that the influence of thermal convection in the melt is an important cause of the occurrence of growth streaks. On the other hand, thermal convection in a liquid having electrical conductivity is suppressed by a magnetic field. That is, when an electrically conductive object moves in a magnetic field, a potential difference is generated within the object and a current flows. On the other hand, a force acts on a current carrier moving in a magnetic field, so an object receives a new force. Taking the example of the C2 method, when thermal convection is occurring and a magnetic field is applied in a direction across it, the electrically conductive fluid will cross the lines of magnetic force, and as a result, the direction of movement of the fluid will change. Current flows in the direction perpendicular to the magnetic field. Therefore, a force is generated in the direction perpendicular to the current and magnetic field. This force is in the opposite direction to thermal convection, suppresses convection, and has the effect of apparently increasing the viscosity of the fluid.

第1図はこのような磁場中で単結晶の成長を行う単結晶
成長装置を示すもので、(1)はその単結晶成長を行う
チェンバー、(2)はその電気伝導性を有する液状体(
3)が収容された石英るつぼ等の容器で、(4)は例え
ばグラファイト発熱体よりなる液状体(3)の加熱手段
、(5)は磁場発生装置でこれより発生させた磁場が液
状体(3)に与えられるようになされる。
Figure 1 shows a single crystal growth apparatus that grows a single crystal in such a magnetic field. (1) shows the chamber in which the single crystal grows, and (2) shows the electrically conductive liquid (
3) is a container such as a quartz crucible in which the liquid (3) is housed, (4) is a heating means for the liquid (3) made of, for example, a graphite heating element, and (5) is a magnetic field generator whose magnetic field generates a liquid (3). 3).

(7)は液状体(3)に浸漬六れてこれよシ引き上げら
れることによって単結晶(8)を成長する種結晶である
(7) is a seed crystal that grows a single crystal (8) by being immersed in the liquid (3) and pulled up.

このような製電においてその磁場発生手段(5)として
は、例えば図示のようにチェンバー(1)を挾んでその
両側に夫々ポールピースにコイルが巻装された構成(以
下ポールピース型という)をとって両者間に発生するほ
ぼ水平方向の磁束が液状体(3)を横切るような構成と
するか、成いはチェンバー(1)の外周を繞って巻回す
るコイル体を配置しく以下ソレノイド型という)、この
コイル体に対する通電によってコイルの軸心方向(垂直
方向)すなわち重力方向の#場全液状体(3)に与える
ようになす。しかしながらこのようなポールピース型の
磁場装置とする場合も、またコイルを巻回するソレノイ
ド型の磁場装置とする場合においてもいずれも長短所を
相そなえている。すなわちポールピース型による場合、
その重量が大となりまた大型化されるものであるに比し
、ソレノイド型による場合は、その重量及び全体の大き
さにおいてポールピース型に比して小さくできるものの
、このようなソレノイド型成をとる場合、そのコイルの
上下端において大きな漏洩磁場が発生し、これが他の電
動機や計器類に悪影響を及ぼすという欠点を有し、この
漏洩磁場を遮蔽する大損シな遮蔽手段を必要とする。更
に消費電力が大きいという欠点を有する。また、上述し
たように磁場によって効率よく熱対流を抑制するには、
この対流の流れに対して直角方向の磁場を加えることが
望ましいものであるが、上述したポールピース型、或い
はソレノイド型は、夫々上として水平方向、或いは垂直
方向のいずれか一万のみをとるものであって、その効率
において問題がある。
In such electrical manufacturing, the magnetic field generating means (5) may have a structure (hereinafter referred to as pole piece type) in which coils are wound around pole pieces on both sides of a chamber (1) sandwiching the chamber (1) as shown in the figure. The solenoid should be configured so that the almost horizontal magnetic flux generated between the two crosses the liquid body (3), or a coil body that is wound around the outer circumference of the chamber (1). By applying current to this coil body, a field is applied to the entire liquid body (3) in the axial direction (vertical direction) of the coil, that is, in the direction of gravity. However, both the pole piece type magnetic field device and the solenoid type magnetic field device in which a coil is wound have advantages and disadvantages. In other words, in the case of pole piece type,
Compared to the solenoid type, which has a large weight and is large in size, the solenoid type can be smaller in weight and overall size compared to the pole piece type. In this case, a large leakage magnetic field is generated at the upper and lower ends of the coil, which has a negative effect on other electric motors and instruments, and requires a costly shielding means to shield this leakage magnetic field. Furthermore, it has the disadvantage of high power consumption. In addition, as mentioned above, in order to efficiently suppress thermal convection using a magnetic field,
It is desirable to apply a magnetic field in a direction perpendicular to this convection flow, but the above-mentioned pole piece type or solenoid type can only be applied in the horizontal or vertical direction, respectively. However, there is a problem with its efficiency.

発明の目的 本発明においては、上述した結晶成長装置において、そ
の−場発生装置としてソレノイド型構属會とシ、しかも
その改良を図って、これの磁場で結晶成長に有効に作用
するようにし、全体として小型軽量で、更に漏洩磁場に
よる他への悪影響を激減することができ、消費電力の低
減化をも図ることができ−るようにした結晶成長装置を
提供するものである。
Purpose of the Invention In the present invention, in the above-mentioned crystal growth apparatus, a solenoid-type structure is used as the field generating device, and the magnetic field is improved so that the magnetic field thereof acts effectively on crystal growth. The object of the present invention is to provide a crystal growth apparatus that is small and lightweight as a whole, can drastically reduce the adverse effects of leakage magnetic fields on others, and can also reduce power consumption.

発明の概要 本発明においては電気伝導性を示す液状体例えばシリコ
ン融液を収容する容器とこの液状体音加熱する手段と容
器を取り囲むように配置するコイル体とを具備してなる
ものでおるが、特にこのコイル体において互いに巻回方
向(電流方向)が異る2つ以上の領域ヲ設け、これら領
域の11Aニジ合う領域が互いにその巻回方向が逆向き
となるようにするものであってコイル体への通電によっ
て容器内の液状体に磁場を印加するようになすものであ
るO 実施例 一第2図を参照して本発明による結晶成長装置の一例を
説明すると、第2図において第1図と対応する部分には
同一符号を付して重複説明を省略する。
Summary of the Invention The present invention comprises a container containing an electrically conductive liquid such as a silicon melt, a means for acoustically heating the liquid, and a coil body disposed to surround the container. In particular, this coil body is provided with two or more regions with different winding directions (current directions), and the winding directions of these regions are opposite to each other. Embodiment 1 An example of a crystal growth apparatus according to the present invention will be described with reference to FIG. 2. In FIG. Portions corresponding to those in FIG. 1 are designated by the same reference numerals and redundant explanation will be omitted.

本発明においては、電気伝導性を壱する液状体(3)、
例えばシリコン半導体融液を収容する容器(2)の外周
、図においては発熱体(4)の外周に、コイル体αQす
なわちソレノイド型磁場発生装置を、その巻回軸心方向
が第2図の例においては垂直方向に?aう結晶引き上げ
方向の中心、すなわち容器(2)の中心と一致するよう
に巻回配置する。そして、特に本発明においては、この
コイル体叫を、その軸心方向に関して、例えば軸心方向
の中央部と、その上下両端との3領域(IOA )、(
IOB ’) 、(l0C)によって構成し、その14
シ合う領域(IOA )と(IOB ) 、 (IOA
 )と(100)とが相互に逆向きの巻回方向となるよ
うにする。すなわち、第2図においてこのコイル体(6
)はO印及びO印によって示すもので、○印は例えば第
2図において紙面の上方から下方に向かう通電方向を示
すものとするとき、■はこれと逆に紙面の下方から上方
に向う通流方向4示すものとする。
In the present invention, a liquid having high electrical conductivity (3),
For example, a coil body αQ, that is, a solenoid-type magnetic field generator, is placed around the outer periphery of a container (2) containing a silicon semiconductor melt, or around the outer periphery of a heating element (4) in the figure, and its winding axis direction is as shown in FIG. Vertically? It is wound so that it coincides with the center of the crystal pulling direction, that is, the center of the container (2). In particular, in the present invention, this coil body shape is divided into three areas (IOA), for example, the central part in the axial direction, and the upper and lower ends thereof, with respect to the axial direction.
IOB'), (l0C), its 14
The matching areas (IOA) and (IOB), (IOA
) and (100) are wound in opposite directions. That is, in Fig. 2, this coil body (6
) are indicated by O and O marks. For example, in Fig. 2, the ○ mark indicates the current direction from the top to the bottom of the page, and the ■ symbol indicates the current direction from the bottom to the top of the page. Flow direction 4 shall be shown.

コイル体01の上下端よりの漏洩磁束を大幅に減少させ
ることができる。すなわち、コイルよシ発生する磁場の
分布は、コイルの中心軸上に関して次のように表わすこ
とができる。
The leakage magnetic flux from the upper and lower ends of the coil body 01 can be significantly reduced. That is, the distribution of the magnetic field generated by the coil can be expressed as follows with respect to the central axis of the coil.

ここでμ0は導磁率、nはコイルの巻数、■は通電流f
fi、rはコイル半径、tはコイルの長さである。
Here, μ0 is the magnetic permeability, n is the number of turns of the coil, and ■ is the conducting current f
fi and r are the coil radius, and t is the length of the coil.

第3図は、コイルとその中心軸上における磁場分布との
関係を示すもので、この例では、その長さtと直径が等
しいすなわちL=2rのコイルリυと、長さが短い、t
 =(H)rのコイル(22)とが隣り合うように配置
されたものにおいて、その軸心上における磁場分布を示
すものである。この場合、コイル(2υに関しての軸心
上の磁場分布は、曲線aで与えられる。但し、この場合
、コイルの中心点XQの磁場強度を1として規格化した
ものである。一方、流さがこれの死のコイル(221の
みの同様の中心軸上の磁場分布を、同図中曲線すに示す
。この」場合においても、コイルeυの中心x6の磁場
強度でその規格化を行ったものである。今、コイル+Z
υに対してコイル(2りと逆方向に電流を流し、逆方向
の磁場に%生させたとすると、そのと銭の中心軸上の磁
場部分は、第3図中曲祿cに示すように両曲線a及びb
の差の分布、すなわち曲線Cに示すようになる。
Figure 3 shows the relationship between the coil and the magnetic field distribution on its central axis.
This shows the magnetic field distribution on the axis of a coil (22) of =(H) r arranged so as to be adjacent to each other. In this case, the magnetic field distribution on the axis with respect to the coil (2υ) is given by curve a. However, in this case, the magnetic field strength at the center point XQ of the coil is normalized as 1. On the other hand, the current The similar magnetic field distribution on the central axis of the death coil (221 only) is shown in the curve in the same figure. In this case also, it is normalized by the magnetic field strength at the center x6 of the coil eυ. .Now, coil + Z
If a current is passed in the opposite direction to the coil (2) to generate a magnetic field in the opposite direction, the magnetic field portion on the central axis of the coil will be as shown in curve c in Figure 3. Both curves a and b
The distribution of the difference is as shown in curve C.

すなわち、この場合コイル■υだけにおけるコイル軸心
上の端部Yeにおける磁場強度はa(1となるに比し、
コイル(221において逆方向磁場を発生させたときの
磁場強度は点coで与えられる。従ってこの場合Ye点
での磁場強度c(1はaQに対して約ハとなる。
That is, in this case, the magnetic field strength at the end Ye on the coil axis of only the coil υ is a(1),
The magnetic field strength when a reverse magnetic field is generated in the coil (221) is given by point co. Therefore, in this case, the magnetic field strength at point Ye is c (1 is approximately c with respect to aQ).

このようにしてコイル121)の上下端部に逆巻きのコ
イルヲ設けたことによってコイル1Bにおける外側の磁
場強度は減少させることができることがわかる。つまり
、第2図で説明したように磁場発生装置としてのコイル
体αQが中央における領域(IOA)に対してこれの両
側の領域(10B )及び(IOC)に実質的にその電
流の向きが逆向きとされた−ことによりコイル体Hの上
下両側から発生する磁場強度の減少、すなわち漏洩磁束
の発生が激減し得ることがわかる。
It can be seen that by providing reversely wound coils at the upper and lower ends of the coil 121) in this way, the outside magnetic field strength in the coil 1B can be reduced. In other words, as explained in Fig. 2, the current direction of the coil body αQ as a magnetic field generator is substantially opposite to the center area (IOA) and the areas (10B) and (IOC) on both sides of this. It can be seen that by setting the coil body H in the above-mentioned direction, the magnetic field intensity generated from both the upper and lower sides of the coil body H can be reduced, that is, the generation of leakage magnetic flux can be drastically reduced.

また、上述したようにコイル体αQが逆方向通電すなわ
ち複数の逆巻きのコイル領域より構成したので、各領域
による磁束の磁場の向きが混在することによって容器(
2)内における導電性液状体(2)への印加磁場は、こ
の液状体の対流の水平及び垂直両方向のほぼ全域におい
て与えられる。言い換えれば対流のほぼ全行程に関して
これと直交する方向の磁場が効率よく与えられることに
なって、これによって対流の抑制を、本シ効果的に行う
ことができる。
In addition, as described above, since the coil body αQ is made up of a plurality of reversely energized coil regions, that is, a plurality of reversely wound coil regions, the direction of the magnetic field of the magnetic flux from each region is mixed, and the container (
The magnetic field applied to the conductive liquid (2) in the conductive liquid (2) is applied almost throughout the convection of the liquid in both the horizontal and vertical directions. In other words, a magnetic field in a direction perpendicular to the convection is efficiently applied over almost the entire path of the convection, thereby making it possible to effectively suppress the convection.

尚、上述した例においては、コイル体αQを、その中央
部(IOA ”)とその両側(IOB )及び(l0C
)の3領域によって構成した場合であるが、例えば第4
図に示すように更に中央部のコイルにおいて互いに逆向
きの2領域(l0A1)、 (10A2 )より構成し
て全体として4つの領域に区分するとか、3または4領
域に限らず、多領域に区分することかできる。また同図
に示すように中央のコイル領域を大径とし、その上下両
側のコイル領域を、との大径のコイル領域と同心的に配
置するも、これよシその巻き径を小にして漏洩磁束の発
生をよシ効果的に抑制するようになすこともできる。
In the above example, the coil body αQ is divided into its central portion (IOA ”), its both sides (IOB ) and (l0C
), but for example, the fourth area
As shown in the figure, the central coil is further divided into two regions (l0A1) and (10A2) in opposite directions to each other, and divided into four regions as a whole, or divided into multiple regions, not limited to three or four regions. I can do something. Also, as shown in the same figure, the central coil area is made large in diameter, and the coil areas on both sides above and below it are arranged concentrically with the large diameter coil area, but it is better to reduce the winding diameter and leakage. It is also possible to more effectively suppress the generation of magnetic flux.

また、上述した例においては、引き上げ法に本発明を適
用した場合について説明したがいわゆる狽型だ一ト法す
なわち水平ブリッジマン法等に適用することもでき、こ
の場合にはコイル体aOは横方向配置の構成がとられれ
ばよい。
In addition, in the above example, the present invention was applied to the pulling method, but it can also be applied to the so-called cage-type dart method, that is, the horizontal Bridgman method, etc. In this case, the coil body aO is horizontally It suffices if a configuration of directional arrangement is adopted.

尚、上述の構成によるコイル体(10は、例えば超重導
線によるコイルを用い、これをチェンノ々−の外周に設
けた冷却用ヘリウムが収容される容器内に配置するよう
にすることもできる。
The coil body (10) having the above-mentioned structure may be a coil made of, for example, a superheavy conductor wire, and this may be placed in a container in which cooling helium provided around the outer periphery of the chamber is accommodated.

発明の効果 上述し、たように本発明によれば、コイル体(ト)によ
って磁場発生装置を構成したンレノイド型構成をとるの
で軽量小型に構成し得るものであり、またこのようなソ
レノイド型構成をとるにも拘らず、互いに逆向きのコイ
ル領域が隣シ合う配置としたことによって漏洩磁束の発
生を効果的に減少させることができ、且つまた水平垂直
両方向に関して液状体(3)すなわち例えば半導体融液
に磁場を与えるようにしたので前述したように効率よく
対流の抑制を行うことができ、これらが相乗して更に消
費電力の減少化を図ることができる。
Effects of the Invention As mentioned above, according to the present invention, since the magnetic field generator is constructed using a coil body (T), it has a solenoid type structure, so it can be constructed lightweight and compact. However, by arranging the coil regions in opposite directions next to each other, it is possible to effectively reduce the generation of leakage magnetic flux. Since a magnetic field is applied to the melt, convection can be efficiently suppressed as described above, and these effects work together to further reduce power consumption.

また、漏洩磁束の発生を減少したことによってこの漏洩
磁束を遮蔽する電磁遮蔽手段の簡易化が図られるために
、更に小型軽量化の促進を図ることができる。
Further, since the generation of leakage magnetic flux is reduced, the electromagnetic shielding means for shielding this leakage magnetic flux can be simplified, so that further reduction in size and weight can be promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する従来の結晶成長装置の路
線的構成図、第2図は本発明による結晶成長装置の一例
の要部の路線的構成図、第3図はその説明に供するコイ
ルと磁界分布との関係を示す図、第4図は本発明の他の
例の要部の路線的構成図である。 (1)はチェンバー、(2)は電気伝導性液状体(3)
を収容するるつぼ、(4)は発熱体、←0はコイル体、
(10A)。 (IOB )及び(IOC)はその各コイル領域である
。 ゴゲラ 代理人 伊藤 貞しン了禽 第2図 第3図
FIG. 1 is a schematic block diagram of a conventional crystal growth apparatus for explaining the present invention, FIG. 2 is a schematic block diagram of main parts of an example of the crystal growth apparatus according to the present invention, and FIG. 3 is a schematic block diagram for explaining the same. FIG. 4, which is a diagram showing the relationship between the coil and the magnetic field distribution, is a schematic diagram of the main part of another example of the present invention. (1) is the chamber, (2) is the electrically conductive liquid (3)
(4) is a heating element, ←0 is a coil body,
(10A). (IOB) and (IOC) are the respective coil regions. Gogera Agent Ryoshin Ito Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電気伝導性を示す液状体を収納する容器と、該液状体を
加熱する手段と、上記容器をとシ囲むように配置された
コイル体等を有してなシ、該コイル体は隣シと巻回方向
の異なる少くも2つの領域を有し、該コイル体に電流を
流して上記液状体に磁場を印加するようにした結晶成長
装置。
A container for storing a liquid material exhibiting electrical conductivity, a means for heating the liquid material, and a coil body or the like disposed so as to surround the container, the coil body being adjacent to the container. A crystal growth apparatus having at least two regions with different winding directions, and applying a magnetic field to the liquid material by passing an electric current through the coil body.
JP6659583A 1983-04-15 1983-04-15 Apparatus for crystal growth Granted JPS59195595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6659583A JPS59195595A (en) 1983-04-15 1983-04-15 Apparatus for crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6659583A JPS59195595A (en) 1983-04-15 1983-04-15 Apparatus for crystal growth

Publications (2)

Publication Number Publication Date
JPS59195595A true JPS59195595A (en) 1984-11-06
JPH0160000B2 JPH0160000B2 (en) 1989-12-20

Family

ID=13320438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6659583A Granted JPS59195595A (en) 1983-04-15 1983-04-15 Apparatus for crystal growth

Country Status (1)

Country Link
JP (1) JPS59195595A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081086A (en) * 1983-10-07 1985-05-09 Shin Etsu Handotai Co Ltd Process and apparatus for growing single crystal
JPH10270237A (en) * 1997-03-27 1998-10-09 Super Silicon Kenkyusho:Kk Method for deciding mounting position and deciding method of arranging direction of equipment or element
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081086A (en) * 1983-10-07 1985-05-09 Shin Etsu Handotai Co Ltd Process and apparatus for growing single crystal
JPH10270237A (en) * 1997-03-27 1998-10-09 Super Silicon Kenkyusho:Kk Method for deciding mounting position and deciding method of arranging direction of equipment or element
EP0936290A1 (en) * 1998-02-17 1999-08-18 Kabushiki Kaisha Toshiba Superconducting magnet device for crystal pulling device
JP2009216424A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Magnet position measuring method and magnetic field measuring instrument

Also Published As

Publication number Publication date
JPH0160000B2 (en) 1989-12-20

Similar Documents

Publication Publication Date Title
JP2020522457A (en) Magnetic substance used for pulling single crystal magnetic field and method for pulling single crystal magnetic field
JPS59195595A (en) Apparatus for crystal growth
KR19990063004A (en) Semiconductor Single Crystal Growth Device and Crystal Growth Method
JPH0212920B2 (en)
EP0825622B1 (en) Magnetic field generation
TWI751726B (en) A semiconductor crystal growth apparatus
JP2556966B2 (en) Single crystal growing equipment
JPS59121183A (en) Method for crystal growth
JPS6051690A (en) Manufacturing apparatus of single crystal
JP2004517797A (en) Magnetic field heating furnace for manufacturing semiconductor substrate and method of using the same
JPS6036392A (en) Apparatus for pulling single crystal
JPS6081086A (en) Process and apparatus for growing single crystal
KR970007427B1 (en) Crystal growing method
JPH0329751B2 (en)
Ozaki et al. Design study of superconducting magnets for uniform and high magnetic force field generation
TWI822373B (en) Magnet for single crystal manufacturing apparatus, single crystal manufacturing apparatus and single crystal manufacturing method
AU2002246865A1 (en) Magnetic field furnace and a method of using the same to manufacture semiconductor substrates
JPS6016891A (en) Preparation of crystal by application of magnetic field and its device
JPH101388A (en) Device for pulling up single crystal having magnetic field applying function and pulling-up method
JPS6217096A (en) Magnetic field impressing device for drawing up single crystal
JPH08188493A (en) Equipment for producing single crystal
JPS6051691A (en) Growing apparatus of single crystal semiconductor
JPH055796B2 (en)
JPS62256791A (en) Device for growing single crystal
KR940008890B1 (en) Apparatus for magnetizing and making method thereof