JPS59194089A - Liquidized gas pressure feed method and liquidized gas pump - Google Patents

Liquidized gas pressure feed method and liquidized gas pump

Info

Publication number
JPS59194089A
JPS59194089A JP6786383A JP6786383A JPS59194089A JP S59194089 A JPS59194089 A JP S59194089A JP 6786383 A JP6786383 A JP 6786383A JP 6786383 A JP6786383 A JP 6786383A JP S59194089 A JPS59194089 A JP S59194089A
Authority
JP
Japan
Prior art keywords
gas
pressurized gas
container
liquefied gas
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6786383A
Other languages
Japanese (ja)
Inventor
Kenji Hosoyama
謙二 細山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUENERUGII BUTSURIGAKU KENKYUSHO
Original Assignee
KOUENERUGII BUTSURIGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUENERUGII BUTSURIGAKU KENKYUSHO filed Critical KOUENERUGII BUTSURIGAKU KENKYUSHO
Priority to JP6786383A priority Critical patent/JPS59194089A/en
Publication of JPS59194089A publication Critical patent/JPS59194089A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To improve the reliability by feeding low temperature pressurized gas onto the liquidized gas face in an enclosed adiabatic container immersed in liquidized gas then pressure feeding the liquidized gas through variation of volume. CONSTITUTION:A pair of enclosed adiabatic containers 11, 11' are immersed in liquidized gas then suction pipes P1, P1' and pressure feed pipes P2, P2' associated with valves V1, V1', V2, V2' are coupled below said containers 11, 11' while adiabatic floats 12, 12' are floated on the liquidized gas face in said containers 11, 11' where the upper section is coupled through a heatexchanger 15 to a pressurized gas supply source 14 to pressure feed the liquidized gas through variation of gas volume. Consequently mechanical pressurization through a piston is not required thereby frictional problem caused through sliding between the piston and cylinder can be eliminated resulting in improvement of reliability.

Description

【発明の詳細な説明】 本発明は液体窒素、液体酸素、液体空気、液体ヘリウム
等の極低温の液化ガスを圧送するのに適した液化ガスの
圧送方法およびそれに使用する低温ガス駆動式の液化ガ
スポンプ、特に小容量液化ガスポンプに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a liquefied gas pumping method suitable for pumping cryogenic liquefied gases such as liquid nitrogen, liquid oxygen, liquid air, and liquid helium, and a low-temperature gas-driven liquefaction method used therein. The present invention relates to gas pumps, particularly small capacity liquefied gas pumps.

近年超伝導技術の発展により、多くの分野で超伝導装置
を実用機として使用するようになって来た。超伝導装置
を極低温に冷却し、保持するには、高性能のクライオス
タット等の多数の低温機器が必要である。これらの低温
機器の断熱特性を向上させるには、液体窒素等の基冷を
利用した断熱シールドを採用する必要がある。また、液
体窒素等の寒冷を効果的に利用するには、これに適した
液化ガスの圧送方法および小容量で信頼性の高い液化ガ
スポンプが必要である 従来のポンプでは、第1図に示すように、ピストンを、
駆動するだめの駆動装置l、例えば電動モーター、圧縮
空気駆動型アクチェーター等を室温部に具え、この脇動
力をピストンロッド2を介してピストン3に伝達し、ピ
ストン3をシリンダー4内で」二下運動させる。シリン
ダー4・を液体窒素のような液化ガス中に十分子ノ漬す
ると、液体窒素はピストン8の上昇時に逆止弁■□を’
A”’Iてシリンダー4内にζ゛y人される。ピストン
3の下降時には、シリンダー4の内圧が上昇して逆止弁
v1が閉になると共に逆止弁■2が開になり、シリンダ
ー4内の液体窒素は外部に圧送される。この際、ピスト
ンの上下運動のサイクル数が商い場合には、ピストンと
シリンダーとの間の気密すなわちシール性?iヒはあま
り問題にならないが、サイクル数が低い場合にはシール
性能を良くする必要があり、この結果ピストンとシリン
ダーとの摺動部の摩擦が問題となり、従来のポンプでは
熱性能および長期間の運転に対する信頼性に問題がある
In recent years, with the development of superconducting technology, superconducting devices have come to be used as practical devices in many fields. In order to cool and maintain superconducting devices at extremely low temperatures, a large number of cryogenic equipment such as high-performance cryostats are required. In order to improve the insulation properties of these low-temperature devices, it is necessary to employ insulation shields that utilize base cooling such as liquid nitrogen. In addition, in order to effectively use cold water such as liquid nitrogen, it is necessary to have a pressure-feeding method for liquefied gas suitable for this purpose and a small-capacity, highly reliable liquefied gas pump. , the piston,
A driving device l, such as an electric motor or a compressed air driven actuator, is provided at room temperature, and this side power is transmitted to the piston 3 via the piston rod 2, so that the piston 3 is moved inside the cylinder 4. Exercise. When the cylinder 4 is fully immersed in a liquefied gas such as liquid nitrogen, the liquid nitrogen will cause the check valve to close as the piston 8 rises.
When the piston 3 descends, the internal pressure of the cylinder 4 rises, the check valve v1 closes, and the check valve ■2 opens, and the cylinder The liquid nitrogen in the cylinder is pumped to the outside.At this time, if the number of cycles of the vertical movement of the piston is short, the airtightness or sealing between the piston and the cylinder is not a big problem, but the cycle When the number is low, it is necessary to improve the sealing performance, and as a result, friction between the sliding parts between the piston and the cylinder becomes a problem, and conventional pumps have problems with thermal performance and reliability for long-term operation.

本発明者は、小容量で長期間の運転に対して信頼性の旨
い高性能の液化ガスポンプについて鋭意研究を重ねた結
果、ピストンをシリンダー内で上下運動させる代りに密
閉断熱容器内の加圧ガスの容積を増減することにより目
的を達成できることを見出し、本発明に到達したもので
ある。
As a result of extensive research into a high-performance liquefied gas pump that is small in capacity and reliable for long-term operation, the inventor discovered that instead of moving the piston up and down in a cylinder, the pressurized gas pump is The present invention was achieved by discovering that the objective can be achieved by increasing or decreasing the volume of the .

本発明は、極低温の液化ガスを圧送するに当り、(1,
)  液化ガス中に浸漬した密閉断熱容器内の液化ガス
面上の空間を占める冷温の加圧ガスの容積を増大し、こ
れにより前記容器内の液化ガスを押下げて前記容器の下
部から液化ガスを外部に圧送し、 (2)  次いで前記容器内の前記加圧ガスの容積を減
少し、これにより液化ガスの圧送を止めると共に前記容
器内に液化ガスを吸込み、 (8)かかる(1)および(2)の操作を交互に行うこ
とを特徴とする液化ガス圧送方法である。
The present invention provides (1,
) increasing the volume of cold pressurized gas that occupies the space above the surface of the liquefied gas in a closed, insulated container immersed in the liquefied gas, thereby pushing down the liquefied gas in said container and forcing the liquefied gas out from the bottom of said container; (2) Then, the volume of the pressurized gas in the container is reduced, thereby stopping the pressure feeding of the liquefied gas and sucking the liquefied gas into the container, (8) (1) and This method is characterized in that the operation (2) is performed alternately.

本発明方法では、加圧ガスとしては、圧送しよ5とする
液化ガス、例えは液体窒素と同伴のガス、例えば窒素ガ
スを使用するのが普通であるか、この場合には加圧ガス
は周囲の液化ガスによって冷却、再凝縮してその容積が
減少するので、これに対応して多量の加圧ガスが必要に
なる。この問題は、加圧ガスとして、圧送しようとする
液化ガス、例えば液体窒素より沸点の低いガス、例えば
氷菓ガス、ヘリウムガスを使用することにより、再凝縮
による加圧ガスの容積の減少を回避することにより、解
決される。
In the method of the present invention, as the pressurized gas, it is common to use a liquefied gas to be pumped, for example, a gas accompanying liquid nitrogen, such as nitrogen gas, or in this case, the pressurized gas is As the volume decreases due to cooling and recondensation by the surrounding liquefied gas, a correspondingly large amount of pressurized gas is required. This problem can be solved by using a gas with a lower boiling point than the liquefied gas to be pumped, such as liquid nitrogen, such as ice cream gas or helium gas, as the pressurized gas, to avoid a reduction in the volume of the pressurized gas due to recondensation. This will solve the problem.

本発明方法を実施するのに好適な液化ガスポンプは、低
温ガス直接駆動式の液化ガスポンプにおいて、液化ガス
1pjl入青」6よび液化ガス圧送管を下部に設けた1
対の第1および第2のtL4閉断熱容器と、前記容器内
の液化ガス面上り空間を占める冷温の加圧ガスの容積を
増減する手段とを具え、前記吸入管に升を設け、前記圧
送′θに弁を設け、前記加圧ガス容積増減手段により前
記第1s器内の前記加圧ガスの容積を増大し、これによ
り、・σ比ガスを押下げて前記弁を経て液化ガスを外部
に圧送し、これと同時に前記第2容器内の前記加圧ガス
の容積を減少し、これにより前記弁を経て前記第2容器
内に液化ガスを吸込むサイクルと、前記加圧ガス容積増
減手段を切換えて前記/Bl+; 1容器内の前記加圧
ガスの容積を減少し、これにより前記弁を経て前記第1
容器内に液化ガスを吸込み、これと同時に前記第2容器
内の前記加圧ガスの容積を増大し、これにより前記弁を
経て液化ガスを外部に圧送するサイクルとを、交互に連
続的に行うことができるように構成したことを特徴とす
る液化、1ガスポンプである。
A liquefied gas pump suitable for carrying out the method of the present invention is a low-temperature gas direct drive type liquefied gas pump having a capacity of 1 pjl of liquefied gas and a liquefied gas pressure feeding pipe provided at the bottom.
a pair of first and second tL4 closed heat-insulating containers; and means for increasing or decreasing the volume of the cold pressurized gas occupying the liquefied gas surface space in the containers; 'θ is provided with a valve, and the volume of the pressurized gas in the first s vessel is increased by the pressurized gas volume increase/decrease means, thereby pushing down the σ ratio gas and directing the liquefied gas to the outside through the valve. and at the same time reduce the volume of the pressurized gas in the second container, thereby sucking the liquefied gas into the second container through the valve, and the pressurized gas volume increasing/reducing means. switching said /Bl+; to reduce the volume of said pressurized gas in said first container, thereby passing said first
A cycle of sucking the liquefied gas into the container, simultaneously increasing the volume of the pressurized gas in the second container, and thereby pumping the liquefied gas to the outside through the valve, is alternately and continuously performed. This is a liquefaction, one gas pump characterized by being configured so that it can

次に、本発明を図面を参照して例について説明する。The invention will now be explained by way of example with reference to the drawings.

第2a図は本発明の少容量液化ガスポンプの一実施例を
示す。第2a図に示すポンプは、1対の第1および第2
の密閉断熱容器11.11’を具え、これらの断熱容器
内の液化ガス面上にはそれぞれ断熱フロート12.12
’を上下運動自在に浮かせておく。前記断熱容器11.
11’の下部にはそれぞれ、貯槽13内の圧送しようと
する液化ガスを吸込むだめの吸入管P1.P工′および
前記液化ガスを圧送するための圧送管P2.P2′を設
ける。吸入管P工、P1′にはそれぞれ弁v1.v、’
を設け、圧送管P2.P2’にはそれぞれ弁■2.■2
′を設ける。圧送管P2とP2′とはそれそわ弁v2.
■2′の排出側で互に連結されて一本の圧送管P3にな
る。第1および第2の断熱容器11 、11’の上部に
はそれぞれ外部の加圧ガス供給蒜14、例えば圧縮機の
吐出側と連結するための加圧ガス管P、、P、′を設け
る。管P4+ ’ P4’にしまその途中に熱交換器1
5を設ける。第2b図に示すように、管p、、、p、’
はそれぞれ第1および第2σ)三方弁■8.■8′とそ
の第−口16.16’で連結する。これらの三方弁v3
.v8’の第二ロ17 、17’のそれぞれ力・ら出る
加圧ガス管P51P5’は互に連結されて一本の/+1
−+圧ガス管P6に1よる。この管P6は圧縮機14と
その吐出側で連結する。三方弁■31■3’の第三口1
8.18’のそれぞれから出る加圧ガス管P7とP7′
とは互に連結されて一本の加圧ガス管P8となり、この
〈17は圧縮機14とその吸入側で連結する。]I:l
:出側の賃P6には高圧ノ(ツファータンク19を連結
し、吸入側の管P8には低圧)くツファータンク20を
図示のごとく連結する。
FIG. 2a shows an embodiment of the small capacity liquefied gas pump of the present invention. The pump shown in Figure 2a has a pair of first and second pumps.
11 and 11', and insulated floats 12 and 12 are respectively mounted above the liquefied gas surface in these insulated containers.
' Float freely so that it can move up and down. Said heat insulating container 11.
11' are each provided with a suction pipe P1. P' and a pressure-feeding pipe P2 for pressure-feeding the liquefied gas. P2' is provided. The suction pipes P and P1' each have a valve v1. v,'
is provided, and a pressure feed pipe P2. P2' each has a valve ■2. ■2
′ is provided. The pressure feed pipes P2 and P2' are connected to the strain valve v2.
(2) They are connected to each other on the discharge side of 2' to form a single pressure feed pipe P3. Pressurized gas pipes P, P, P' for connection to an external pressurized gas supply pipe 14, for example, the discharge side of a compressor, are provided at the upper portions of the first and second heat insulating containers 11, 11', respectively. Heat exchanger 1 is installed in the middle of pipe P4+ 'P4'
5 will be provided. As shown in Fig. 2b, the tubes p, , p,'
are respectively the first and second σ) three-way valve ■8. ■ Connect with 8' and its No. 16 and 16' ports. These three-way valves v3
.. The pressurized gas pipes P51P5', which come out from the second lo 17 and 17' of v8', are connected to each other to form one /+1
-+1 based on pressure gas pipe P6. This pipe P6 is connected to the compressor 14 on its discharge side. Three-way valve ■31■3' third port 1
8. Pressurized gas pipes P7 and P7' exiting from each of 18'
are connected to each other to form a single pressurized gas pipe P8, and this <17 is connected to the compressor 14 on its suction side. ]I:l
: A high-pressure tank 20 (a high-pressure tank 19 is connected to the outlet pipe P6, and a low-pressure pipe P8 on the suction side) is connected as shown in the figure.

次に、上記ポンプの作動を説明する。第1断熱容器11
内の液化ガスを外部に圧送する場合に(よ、三方弁■8
の第−口16および第二ロ17を開にしかつ第三口18
を閉にすると共に三方弁■3′σ〕第−口16′および
第三口18’を開にし力1つ第二ロ17’を閉にすると
、第2a、b図に示すように、圧縮vc14からの加圧
ガスはその吐出狽1jσつ管P6およびP5内を通って
第1三方弁■8に入り、次(・で管P4内を通り、この
間に管P、に取付けた熱交換器15により冷却されて冷
温ガスとなり、第1断熱容器11内にその上部から入る
。これと同時に、紀2断熱容器11′内の液化ガス面上
σつ低温の加圧ガスは第2断熱容器11’の上部から出
て管P′内を通り、この間に熱交換器15で管P4μ」
のjn圧ガスと熱交換してこのガスを冷却する。次(・
で、管p 、/内を通るガスは第2三方弁v8′に入り
、tP7’およびP 内を通って圧縮機14にその吸入
1iJIIで入る。第1断熱容器11に入った加圧ガス
をま断熱フロート12を加圧して液化ガスを押下げる。
Next, the operation of the above pump will be explained. First insulation container 11
When pressure-feeding the liquefied gas inside the tank to the outside, use the three-way valve ■8
The first opening 16 and the second opening 17 are opened, and the third opening 18 is opened.
When you close the three-way valve ■3'σ], open the first port 16' and the third port 18', and close the second port 17', the compression will be as shown in Figures 2a and b. The pressurized gas from vc14 passes through its discharge pipes P6 and P5, enters the first three-way valve ■8, then passes through pipe P4 at 15 to become a cold gas, which enters the first insulating container 11 from above.At the same time, the pressurized gas, which is at a temperature σ above the liquefied gas surface in the second insulating container 11', flows into the second insulating container 11. ', passes through the pipe P', and during this time passes through the heat exchanger 15 through the pipe P4μ'.
This gas is cooled by exchanging heat with the jn pressure gas. Next(·
The gas passing through the pipe p,/ enters the second three-way valve v8' and passes through tP7' and P2 into the compressor 14 at its suction 1iJII. The pressurized gas entering the first heat insulating container 11 pressurizes the heat insulating float 12 to push down the liquefied gas.

このため、逆止弁■、は閉になると共に逆止弁v2は開
になり、液化ガスは弁■2を通って外部の所要の場所に
圧送される。この際、第2断熱容器11′の上部は管p
 、/、第2三方弁■8′、’i77’および管8を経
て圧縮機14・にその吸入側で連結されているので、第
2断熱容ril’F 11.’内の液化ガス面上の加圧
ガスは’2.;’Z p 、/を通って排出され、断熱
フロー ) 12’は上昇し、逆止弁V□′は開になり
、逆止弁■2′は閉になる。この結果、貯槽13内の液
化ガスは弁v□′を通って第2断熱容器11′内に流入
する。ここに、第1断熱容器ll内の液化ガスが外部に
圧送される場合をit′1:を方向サイクルと称する。
Therefore, the check valve (2) is closed and the check valve (v2) is opened, and the liquefied gas is forced to the required location outside through the valve (2). At this time, the upper part of the second heat insulating container 11' is connected to the pipe p.
, /, is connected to the compressor 14 on its suction side via the second three-way valve ■8', 'i77' and the pipe 8, so that the second adiabatic volume ril'F11. The pressurized gas on the liquefied gas surface in '2. ;'Z p , / is discharged, the adiabatic flow ) 12' rises, the check valve V□' opens, and the check valve ■2' closes. As a result, the liquefied gas in the storage tank 13 flows into the second heat insulating container 11' through the valve v□'. Here, the case where the liquefied gas in the first heat insulating container 11 is pumped to the outside is referred to as a direction cycle.

第2a図はかかる順方向サイクルを示す9このようにし
て第11lyr熱容器11内の孜化ガスの外部への圧送
および貯槽13内の液化ガスの第2断熱容器11’内へ
の流入が終った時点で、上述のtiii’1方向サイク
ルの場合とは逆に三方弁■8を切り換えて、その第−口
16および第三口18を開にしかつ第二ロ17を閉にす
ると共に、第2三方弁■8′の第−口16′および第二
ロ17′を開にしかつ第三口18′を閉にする。すると
、圧縮機14の吐出側からの加圧ガスは管PLIおよび
P5′内を通って第2三方弁■8′に入り、次いで管p
 、/内を通り、この間に熱交換器15により冷却され
、冷温ガスとなって第2断熱容器11′内にその上部か
ら入る。
FIG. 2a shows such a forward cycle. In this way, the pumping of the liquefied gas in the 11th lyr heat container 11 to the outside and the flow of the liquefied gas in the storage tank 13 into the second insulated container 11' are completed. At this point, contrary to the case of the tiii' one-way cycle described above, the three-way valve ■8 is switched to open the first port 16 and the third port 18, and close the second port 17. 2 Open the first port 16' and the second port 17' of the three-way valve 8' and close the third port 18'. Then, the pressurized gas from the discharge side of the compressor 14 passes through the pipes PLI and P5', enters the second three-way valve ■8', and then enters the pipe p
, /, during which time it is cooled by the heat exchanger 15, becomes a cold gas, and enters the second heat insulating container 11' from above.

これと同時に、第1断熱容器11内の冷温の加圧カスは
第1断熱容器11の上部から出て管P、内を通り、この
間に熱交換器15で管P4′内の加圧ガスを冷却し、次
いで第1三方弁■8に入り、さらに管P7およびP8内
を通って圧縮機14の吸入側に入る。第2断熱容器11
’に入った加圧ガスは第2断熱容器11’内の断熱フロ
ー) I Z’を介して液化ガスを押下げるので、逆止
弁■、′は閉になりかつ逆止弁■2′は開になる。この
結果、第2断熱容器11′内の液化ガスは弁V 、/を
通って外部に圧送される。これと同時に、第1断熱容器
11内の液化ガス面上の加圧ガスは管P、を通って排出
されるので、逆止弁■、は開になりかつ逆止弁■2は閉
になる。この結果、貯槽13内の液化ガスは弁vlを通
って第1断熱容器11内に流入する。ここに、第2断熱
容器11’内の液化ガスが外部に圧送される場合を逆方
向サイクルと称する。
At the same time, the cold pressurized gas in the first insulated container 11 exits from the upper part of the first insulated container 11 and passes through the pipe P, during which time the pressurized gas in the pipe P4' is removed by the heat exchanger 15. After being cooled, it enters the first three-way valve 8, and further passes through pipes P7 and P8 to enter the suction side of the compressor 14. Second insulation container 11
The pressurized gas that has entered 11' pushes down the liquefied gas through the adiabatic flow (IZ') in the second insulated container 11', so the check valves 2 and 2 are closed, and the check valve 2' is closed. Become open. As a result, the liquefied gas in the second heat insulating container 11' is forced to the outside through the valves V,/. At the same time, the pressurized gas on the liquefied gas surface in the first heat insulating container 11 is discharged through the pipe P, so the check valve ■ is opened and the check valve ■2 is closed. . As a result, the liquefied gas in the storage tank 13 flows into the first heat insulating container 11 through the valve vl. Here, the case where the liquefied gas in the second heat insulating container 11' is pumped to the outside is referred to as a reverse cycle.

上述の順方向および逆方向サイクルを交互に繰返し行う
ことにより貯槽18内の液化ガスを連続的に外部に圧送
することができる。
By repeating the above-described forward and reverse cycles alternately, the liquefied gas in the storage tank 18 can be continuously pumped to the outside.

なお、外部の加圧ガス供給源14としては圧縮機の代り
にボンベを用いることができ、この場合には管P6を圧
縮機の代りにボンベに連結し、管P8を圧縮機の代りに
別個の排気ポンプ(図示せず)に連結するかあるいは大
気に開放する。
Note that a cylinder can be used as the external pressurized gas supply source 14 instead of the compressor. In this case, the pipe P6 is connected to the cylinder instead of the compressor, and the pipe P8 is connected to the cylinder instead of the compressor. connected to an exhaust pump (not shown) or vented to the atmosphere.

第2a図に示す本発明ポンプの例では、断熱フロー)1
2.12’を用いているが、場合によってはこれらの断
熱フロートを省略し、7′1y化ガスと加圧ガスとを直
、11.:接触させて作動さぜることができる。
In the example of the pump according to the invention shown in FIG. 2a, the adiabatic flow) 1
2.12' is used, but in some cases these adiabatic floats may be omitted and the 7'1y gas and pressurized gas are directly connected to 11. : Can be operated by touching.

しかし、第2a図に示すように断熱フロート12゜12
’を使用すると、加圧ガスと液化ガスとの直接の接触面
積がほとんどic くなるので、加圧ガスが71り化ガ
ス中に溶は込むのを防止することができ、また断熱フロ
ートは断熱作用を持っているので、加圧ガスがこれと接
触する液化ガスによって冷却、再凝縮するのを防止する
ことができる。
However, as shown in Figure 2a, the adiabatic float 12°12
When using ', the direct contact area between the pressurized gas and the liquefied gas becomes almost ic, which prevents the pressurized gas from dissolving into the liquefied gas. This function prevents the pressurized gas from being cooled and recondensed by the liquefied gas that comes into contact with it.

第3図は密閉断熱容器の他の例を示す。この例では、密
閉断熱容器例えば第1断熱容器11内の断熱フロー)1
2を、ベロー21を介して第1断熱容器11の上部の内
面22に上下運動自在に連結する。ベロー21内に封鎖
された加圧ガスは第1断熱容器ll内の液化ガスと完全
に遮断されるので、長期間にわたる運転に際しても、液
化ガス中への加圧ガスの溶は込みが完全に防止される。
FIG. 3 shows another example of a sealed and insulated container. In this example, the insulation flow in a closed insulation container, for example, the first insulation container 11) 1
2 is connected to the inner surface 22 of the upper part of the first heat insulating container 11 via a bellows 21 so as to be vertically movable. The pressurized gas sealed in the bellows 21 is completely isolated from the liquefied gas in the first insulating container 11, so that even during long-term operation, the pressurized gas is completely prevented from dissolving into the liquefied gas. Prevented.

第2断熱容器11’についても第3図に示す第1断熱容
器11と同様の構造にする。
The second heat insulating container 11' also has the same structure as the first heat insulating container 11 shown in FIG.

第4図は、本発明ポンプの他の実施例を示す。FIG. 4 shows another embodiment of the pump of the present invention.

このポンプでは、第2a図に示すポンプの構造を+iミ
)年にするため忙、加圧ガスを第2a図に示す外部の加
圧ガス供給源14から供給する代りに、1対の第1およ
び第2の密閉断熱容器11 、11’内の下部にそれぞ
れ電熱ヒーターのような第1および第2の加熱器H、H
’を設け、前記加熱器によって前記容器内の液化ガスの
一部を気化して加圧ガスを発生させ、これにより液化ガ
スを加圧1−で下方に押下げる。従って、iZa図に示
す外部の加圧ガス供給源は第4図のポンプでは不必要で
ある。
In order to improve the construction of the pump shown in Figure 2a, this pump uses a pair of primary and the first and second heaters H, H, such as electric heaters, are installed at the lower part of the second sealed and insulated containers 11 and 11', respectively.
' is provided, and a part of the liquefied gas in the container is vaporized by the heater to generate pressurized gas, thereby pushing the liquefied gas downward at a pressure of 1-. Therefore, the external pressurized gas source shown in diagram iZa is unnecessary with the pump of FIG.

次に上記ポンプの作動を説明する。第1断熱容器11内
の?(グ化ガスを外部に圧送する場合には、第1断熱容
器11の第1加熱器Hを作動状態にする。すると、第1
断熱容器11内の液化ガスは加熱器■(により加熱され
てその一部が気化し、気化したガスは容器11内の液化
ガス面上の空間に集まり、液化ガ\を加圧する。これと
同時に電磁弁V、を作動させてこれを閉にする。この際
に第111Q7熱容1711内の加圧ガスはこの容器内
の液化ガスを押下げるので、逆止弁■2は開になる。こ
の結果、第1断熱容器ll内の液化ガスは旭送逆止升V
2を通って外部に圧送される。さらに、第1断熱容器l
l内の加熱器Hな作動状態にした時に、同時に第2断熱
容器11’内の第2加熱器H’を不作動状態にする。す
ると、第2断熱容器11’内の液化ガス面上の加圧ガス
は周1」]の液化ガスによって冷却さ才] 再凝縮して
その容積を次第に減少する。
Next, the operation of the above pump will be explained. Inside the first heat insulating container 11? (In the case of pressure-feeding the oxidizing gas to the outside, the first heater H of the first heat insulating container 11 is activated. Then, the first
The liquefied gas in the heat insulating container 11 is heated by the heater (2) and a part of it is vaporized, and the vaporized gas collects in the space above the liquefied gas surface in the container 11 and pressurizes the liquefied gas. Operate the solenoid valve V to close it.At this time, the pressurized gas in the 111Q7 heat capacity 1711 pushes down the liquefied gas in this container, so the check valve 2 opens. As a result, the liquefied gas in the first insulated container
2 to the outside. Furthermore, the first heat insulating container l
When the heater H in the second heat insulating container 11' is brought into operation, the second heater H' in the second heat insulating container 11' is made inoperative at the same time. Then, the pressurized gas on the liquefied gas surface in the second heat insulating container 11' is cooled by the liquefied gas around 1'' and recondenses to gradually reduce its volume.

この際、第2断熱容器11′の上部に連結され外部に通
ずる排ガス管9′から前記加圧ガスを外部に放出するこ
とにより、貯槽13内の液化ガスの第2断熱容器11′
内への流入を良くすることができる。
At this time, the pressurized gas is discharged to the outside from the exhaust gas pipe 9' connected to the upper part of the second insulating container 11' and leading to the outside, so that the liquefied gas in the storage tank 13 can be removed from the second insulating container 11'.
It can improve the inflow into the interior.

y5/は加圧ガスの排出を制御する電磁弁V5/で、P
M’は圧力計である。第2断熱容器11′内の液化ガス
面上の加圧ガスが容積を減少し始めると、逆止弁v2′
が閉になる。これと同時に電磁弁V4′を作動させてこ
れを開にする。この結果、貯槽13内の液化ガスは電磁
弁y、/を通って第2断熱容器11’内に流入する。第
4図に示す電磁弁v、、v、’の代りに逆止弁を使用し
てもよい。
y5/ is a solenoid valve V5/ that controls the discharge of pressurized gas, and P
M' is a pressure gauge. When the pressurized gas on the liquefied gas surface in the second heat insulating container 11' begins to decrease in volume, the check valve v2'
is closed. At the same time, the solenoid valve V4' is operated to open it. As a result, the liquefied gas in the storage tank 13 flows into the second heat insulating container 11' through the electromagnetic valves y,/. Check valves may be used instead of the solenoid valves v, , v,' shown in FIG.

このようにして第1断熱容器11内の液化ガスの外部へ
の圧送および貯槽18内の液化ガスの第2断熱容器11
’内への流入が終った時点で、この容器内の加熱器H′
を作動状態にする。すると第1断熱容器11′内の液化
ガスは加熱器H′により加熱されてその一部が気化し、
気化したガスは液化ガス面上の空間に供給され、液化ガ
スを加圧する。
In this way, the liquefied gas in the first insulated container 11 is pumped to the outside and the liquefied gas in the storage tank 18 is transferred to the second insulated container 11.
When the flow into the container H' is finished, the heater H' in this container
put it into operation. Then, the liquefied gas in the first heat insulating container 11' is heated by the heater H' and a part of it is vaporized.
The vaporized gas is supplied to the space above the liquefied gas surface and pressurizes the liquefied gas.

これと同時に電磁弁y、/を作動させてこれを閉にする
。この際に第2断熱容器11’内の加圧ガスは第2断熱
容器11’内の液化ガスを押下けるので、逆止弁V2′
は開になる。この結果、第21Aji熱容器11′内の
液化ガスは弁v2′を]1nって外部に圧送される。さ
らに、第2断熱容器11’内の加熱器H′を作動状態に
した時に、同B4に第1断熱容器11内の加熱器Hを不
作動状態にする。すると、第1断熱容器11内の液化ガ
ス面上の加圧ガスは周囲の液化ガスによって冷却され、
再凝腟してその容積を次第に減少する。この際、第1断
熱容器11の上部に連結され外部に通ずる排ガス管9か
ら前記加圧ガスを外部に放出することにより、液化ガス
の第1 N、I?熱熱容器l円内の流入を良くすること
ができる。■5は加圧ガスの排出を制御する電磁弁で、
PMは圧力計である。第1断熱容器11内の加圧ガスが
容積を減少し始めると、逆止弁v2が閉になる。これと
同時に電磁弁y、/を作動させてこれを開にする。この
結果、貯ejf 1 B内の液化ガスは111.磁弁■
4を通って第B句[熱容器ll内に流入する。
At the same time, solenoid valve y, / is operated to close it. At this time, the pressurized gas in the second heat insulating container 11' pushes down the liquefied gas in the second heat insulating container 11', so the check valve V2'
becomes open. As a result, the liquefied gas in the 21st Aji heat vessel 11' is forced to the outside through the valve v2'. Further, when the heater H' in the second heat insulating container 11' is activated, the heater H in the first heat insulating container 11 is brought into an inactive state at B4. Then, the pressurized gas on the liquefied gas surface in the first heat insulating container 11 is cooled by the surrounding liquefied gas,
Recoagulate the vagina and gradually reduce its volume. At this time, by discharging the pressurized gas to the outside from the exhaust gas pipe 9 connected to the upper part of the first heat insulating container 11 and leading to the outside, the first N, I? It is possible to improve the flow inside the thermothermal container. ■5 is a solenoid valve that controls the discharge of pressurized gas.
PM is a pressure gauge. When the pressurized gas in the first heat insulating container 11 starts to reduce its volume, the check valve v2 is closed. At the same time, the solenoid valves y and / are activated to open them. As a result, the liquefied gas in the storage ejf 1 B is 111. Magnetic valve■
4 into the B clause [thermal vessel ll].

この例においても、上述の順方向および逆方向のサイク
ルを交互に繰返し行うことにより、貯槽18内の液化ガ
スを連続的に外部に圧送することができる。なお、上記
両サイクルの切換周期が充分に長い場合には、第4図に
示す排ガス管9,9′を省くことができる。
Also in this example, by repeating the above-described forward and reverse cycles alternately, the liquefied gas in the storage tank 18 can be continuously pumped to the outside. Incidentally, if the switching period of both of the above-mentioned cycles is sufficiently long, the exhaust gas pipes 9 and 9' shown in FIG. 4 can be omitted.

第5図は断熱容器の他の例を示す。この例では、上部開
口28および下部開口24を適当数有する断熱パイプ2
5の内側の下部開口24の上方に隣接して第1加熱器H
1例えば電熱ヒーターを取付け、この断熱パイプを第1
断熱容器ll内にその縦II!iII線に清って好まし
くは第1断熱容器11の中心部に固定し、さらに断熱パ
イプの外周と第1断熱容器11の内側との間の液化ガス
面上に断熱フロー)12を上下運動自在に浮べる。この
例では、断熱パイプ25内に取付けた第1加熱器Hに通
電、加熱すると、そこで液化ガスの気化が起り、気化し
たガスは断熱パイプ25の内側を通って第1断熱容器1
1の上部に導かれ、上部開口z8から液化ガスの液面上
の空間に供給され、断熱フロート12を介して液化ガス
を下方に押下げる。第2断熱容器11′もこれと同様に
構成する。第5図の断熱フロートは、第2a図の断熱フ
ロートと同様に加圧ガスの冷却、再凝縮を防止し、液化
ガス中への加圧ガスの溶は込みを防止するほか、断熱容
器内の加熱器に加えられた?h、力をポンプの動力とし
て有効に利用できるようにする。
FIG. 5 shows another example of a heat insulating container. In this example, an insulated pipe 2 having an appropriate number of upper openings 28 and lower openings 24 is used.
The first heater H is adjacent to the upper part of the lower opening 24 inside the
1 For example, install an electric heater and connect this insulated pipe to the
The vertical II inside the insulated container ll! It is preferably fixed at the center of the first insulated container 11 according to the III line, and furthermore, the insulated flow (12) is movable up and down on the liquefied gas surface between the outer periphery of the insulated pipe and the inside of the first insulated container 11. Floating on. In this example, when the first heater H installed inside the insulated pipe 25 is energized and heated, the liquefied gas is vaporized there, and the vaporized gas passes through the inside of the insulated pipe 25 to the first insulated container 1.
1, is supplied from the upper opening z8 to the space above the liquid level of the liquefied gas, and presses the liquefied gas downward via the heat insulating float 12. The second heat insulating container 11' is also constructed in the same manner. The adiabatic float shown in Fig. 5, like the adiabatic float shown in Fig. 2a, prevents the pressurized gas from cooling and recondensing, and prevents the pressurized gas from dissolving into the liquefied gas. Added to heater? h. Force can be used effectively as power for the pump.

上述のように、本発明を1対の第1および第2の断熱容
器を設けた連続作動ポンプの例について説明したか、1
個の@1λj断熱容器を設けて液化ガスを断熱的に圧送
することも可能であり、また新旧に応じて8個以上の密
tW’i IfJi熱容器を設けることも可能である。
As mentioned above, the present invention has been described in terms of an example of a continuously operating pump having a pair of first and second insulated containers;
It is also possible to provide liquefied gas adiabatically by providing 1 λj heat insulating containers, and it is also possible to provide 8 or more dense tW'i IfJi thermal containers depending on whether the container is new or old.

本発明ポンプは、圧送しようとする液化ガスを加圧する
際に、ピストンで機械的に加圧する代りに加圧ガスを使
用することにより、ピストンとシリング−との間の摺動
による摩擦の問題を除去することができ、信頼性を向上
することができる−また、本発明ポンプはピストンロッ
ド等を必要とし1.(いので、室温部からの熱侵入を無
くすことができ機械的振動のないポンプを構成すること
ができる。さらに加熱器により発生させた気化ガスを用
いる加圧方式を採用すると、低温部に全く可動部のない
ポンプを作ることができ、ポンプの信頼性を飛躍的に向
上することができる。
The pump of the present invention uses pressurized gas instead of mechanically pressurizing the piston when pressurizing the liquefied gas to be pumped, thereby solving the problem of friction caused by sliding between the piston and the sill. In addition, the pump of the present invention requires a piston rod, etc., and the reliability can be improved.1. (Because of this, it is possible to eliminate heat intrusion from the room temperature section and create a pump without mechanical vibrations. Furthermore, if a pressurization method that uses vaporized gas generated by a heater is adopted, there is no heat intrusion from the room temperature section. It is possible to create a pump without moving parts, and the reliability of the pump can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来ポンプの一例の断面図、 第2a図は本発明ポンプの一例の断面図、gZb図は第
2a図のポンプの三方弁の部分の拡大図、 第8図は第2a図に示す密閉断熱容器の他の例の断面図
、 第4図は本発明ポンプの他の例の断面図、第5図は第4
図に示す密閉断熱容器の他の例の断面図である。 1・・・駆動装置     2・・・ピストンロッド8
・・・ピストン     4・・・シリンダー1.1.
11’・・・断熱容器   12・・・断熱フロート1
B・・・貯槽 ■4・・・加圧ガス供給源(圧縮機) 15・・熱交換器     16.16’・・・三方弁
の第−口1.7.17’・・・三方弁の第二ロ18.1
8’・・・三方弁の第三口19・・・高圧バッファータ
ンク 2(〕・・・低圧バッファータンク 21・・・ベロー 22・・・断熱容器の上部の内面 23.24・・・開口     25・・・断熱パイプ
H、H’・・・加熱器    PM 、 PM’・・・
圧力計■3.■、′・・・三方弁。 特t′1゛出願人  高エネルギー物理学研究所長56
3− 第3図
Figure 1 is a sectional view of an example of a conventional pump, Figure 2a is a sectional view of an example of the pump of the present invention, Figure gZb is an enlarged view of the three-way valve part of the pump in Figure 2a, and Figure 8 is the same as Figure 2a. FIG. 4 is a sectional view of another example of the pump of the present invention, and FIG.
FIG. 3 is a sectional view of another example of the sealed and insulated container shown in the figure. 1... Drive device 2... Piston rod 8
...Piston 4...Cylinder 1.1.
11'...Insulated container 12...Insulated float 1
B... Storage tank ■4... Pressurized gas supply source (compressor) 15... Heat exchanger 16.16'... Three-way valve No. 1, 7, 17'... Three-way valve Second Ro 18.1
8'... Third port of three-way valve 19... High pressure buffer tank 2 ()... Low pressure buffer tank 21... Bellows 22... Inner surface of the upper part of the heat insulating container 23.24... Opening 25 ...Insulated pipes H, H'...Heater PM, PM'...
Pressure gauge■3. ■,′...Three-way valve. Special t'1゛Applicant High Energy Physics Research Institute Director 56
3- Figure 3

Claims (1)

【特許請求の範囲】 1 極低温の液化ガスを圧送するに肖り、(1)液化ガ
ス中に浸漬した密閉断熱容器内の液化カス面上の空間を
占める冷温の加圧ガスの容積を増大し、これにより前記
容器内の液化ガスを押下げて前記容器の下部から液化ガ
スを外部に圧送し、 (2)  次いで前記容器内の前記加圧ガスの容積を減
少し、これによりi夜化ガスの圧送を止めると共に前記
容器内に液化ガスを吸込み、(3)かかる(1)および
(2)の操作を交互に行うことを特徴とする液化ガス圧
送方法。 区 前記加圧ガスが前記液化ガスと四種のガスである特
許請求の範囲の第1項に記載の方法。 & 前記加圧ガスが前記液化ガスより沸点の低いガスで
ある特許請求の範囲の第1項に記載の方法。 侃 低温ガス直接駆動式の液化ガスポンプにおいて、 液化ガス吸入管(pl、p工′)および液化ガス圧送管
(p2.p2つを下部に設けた1対の第1および第2の
密閉断熱容器(11,11’)と、前記容器(11,1
1つ内の液化ガス面上の空間を占める冷温の加圧ガスの
容積を増減する手段(14,15,V8.V8’)(H
,Hつとを具え、前記吸入管(p□、p、りに弁(v、
、v、’)を設け、前記圧送管(p2.p2つに弁(v
8. v2’)を設げ、 前記加圧ガス容積増減手段により前記第1容器(11)
内の前記加圧ガスの容積を増大し、これにより液化ガス
を押下げて前記弁(■2)を経て液化ガスを外部に圧送
し、これと同時に前記第2容器(11つ内の前記加圧ガ
スの容積を減少し、これにより前記弁(V□つを経て前
記第2容器(11つ内に液化ガスを吸込むサイクルと、
前記加圧ガス容積増減手段を切換えて前記第1容器(1
1)内の前記加圧ガスの容積を減少し、これにより前記
弁(V□)を経て前記第1容器(11)内に液化ガスを
吸込み、これと同時に前記第2容器(11’)内の前記
加圧ガスの容積を増大し、これにより前記弁(V2’)
を経て液化ガスを外部に圧送するサイクルとを、交互に
連続的に行うことができるように構成した ことを特徴とする液化ガスポンプ。 氏 前記加圧ガス容積増減手段が、 外部の加圧ガス供給分(14)と、 前記加圧ガス供給源(14)から前記容器(1]、 、
 11つの一方に供給される加圧ガスと前記容器(11
,11’)の他方から排出される加圧ガスとを熱交換さ
せるための熱交換器(15)とを具え、 前記加圧ガス供給源(ト0と前記熱交換器(15)との
間に1対の第1および第2の三方弁(v8.v8’)を
設け、前記三方弁はそれぞれ前記加圧ガス供給源(14
)の吐出側からの肯(P6)と、前記第1および第2の
容器(11,IP)に加圧ガスを給排する管(P、。 P4つと、前記加圧ガス供給源(14)の吸入側への管
P8  とに連結し、前記加圧ガス供給源(14)の吐
出側から前記容器(11,11’)の一方に加圧ガスを
供給すると同時に前記容器(11,11’)の他方から
加圧ガスを排出するように加圧ガスの流れ方向を交互に
切り換えできるように構成した特許請求の範囲の第4項
に記載のポンプ。 & 前記加圧ガス供給源が圧縮機である特許請求の範囲
の第5項に記載のポンプ。 ?、 前記断熱容器(11,11’)内の液化ガス面上
にそれぞれ断熱フロー)(12,12’)を上下運動自
在に浮べることにより前記第1および第2の断熱容器(
11,11’)を構成した特許請求の範囲の第4〜6項
のいずれか一つの項に記載のポンプ。 8 前記断熱容器(11)内の前記断熱フロート(12
)を、ベロー(21)を介して前記断熱容器(11)の
上部の内面(22)に上下運動自在に連結した特許請求
の範囲の第7項に記載のポンプ。 9 前記加圧ガス容積増減手段が、前記第1および第2
の断熱容器(11,11’)のそれぞれの下部に設けた
第1および第2の加熱器(H。 H/ )である特許請求の範囲の第4項に記載のポンプ
。 10、  上部開口(28)および下部開口(24)を
有する断熱パイプ(25)の前記下部開口(24)の上
方に隣接させて前記加熱器(H)を取付け、この断熱パ
イプを前記断熱容器(11)内にその縦軸線に涜って固
定し、さらに前記断熱パイプ(25)の外周とWit記
容器(11)の内面へとの間の液化ガス面上に断熱フロ
ート(26)を上下運動自在に浮べることにより前記第
1および第2の断熱容器(11、11’ )を構成した
特許請求の範囲の第9項に、j記載のポンプ゛。 11、  前記断熱パイプ(24)を前記断熱容器(1
1)の中心部に固定した特許61°1求のわ7囲の第1
0項に記載のポンプ。 12、  前記加圧ガスが前記液化ガスと同種のガスで
ある特許請求の範囲の第4〜11項のいずれか一つの項
に記載のポンプ。 18  前記加圧ガスが前記液化ガスより沸点の低いガ
スである特許請求の範囲の第4〜8項のいずれか一つの
項に記載のポンプ。
[Scope of Claims] 1. In order to pump extremely low temperature liquefied gas, (1) increase the volume of cold pressurized gas that occupies the space above the surface of liquefied scum in a sealed insulated container immersed in liquefied gas; (2) Then, the volume of the pressurized gas in the container is reduced, thereby causing the A method for pressurizing liquefied gas, comprising: stopping gas pressure feeding and sucking liquefied gas into the container; and (3) performing operations (1) and (2) alternately. The method according to claim 1, wherein the pressurized gas is the liquefied gas and four types of gas. & The method according to claim 1, wherein the pressurized gas is a gas having a lower boiling point than the liquefied gas.侃 In a low-temperature gas direct drive type liquefied gas pump, a pair of first and second sealed and insulated containers (with two liquefied gas suction pipes (pl, p) and two liquefied gas pressure feeding pipes (p2.p) installed at the bottom) are used. 11, 11') and the container (11, 1
means (14, 15, V8.V8') (H
, H, and the suction pipe (p□, p, and the valve (v,
, v, '), and a valve (v,
8. v2'), and the first container (11) is provided with the pressurized gas volume increasing/decreasing means.
The volume of the pressurized gas in the container is increased, thereby pushing down the liquefied gas to forcefully send the liquefied gas to the outside through the valve (2), and at the same time, the volume of the pressurized gas in the second container (11) is increased. a cycle of reducing the volume of pressurized gas, thereby sucking liquefied gas into the second container (11) via the valve (V□);
By switching the pressurized gas volume increasing/decreasing means,
1), thereby sucking the liquefied gas into the first container (11) through the valve (V□), and at the same time reducing the volume of the pressurized gas in the second container (11'). increasing the volume of said pressurized gas of said valve (V2'), thereby increasing said pressurized gas volume of said valve (V2').
A liquefied gas pump characterized in that it is configured to alternately and continuously perform a cycle of pumping liquefied gas to the outside through the liquefied gas pump. The pressurized gas volume increase/decrease means includes an external pressurized gas supply (14), and a pressurized gas supply source (14) from the container (1).
The pressurized gas supplied to one of the 11 and the container (11
. is provided with a pair of first and second three-way valves (v8.v8'), and each of the three-way valves is connected to the pressurized gas supply source (14).
) from the discharge side (P6), pipes (P, P4) for supplying and discharging pressurized gas to the first and second containers (11, IP), and the pressurized gas supply source (14) is connected to a pipe P8 to the suction side of the pressurized gas supply source (14), and simultaneously supplies pressurized gas from the discharge side of the pressurized gas supply source (14) to one of the containers (11, 11'). ) The pump according to claim 4, configured to be able to alternately switch the flow direction of the pressurized gas so that the pressurized gas is discharged from the other side of the pump. & The pressurized gas supply source is a compressor. The pump according to claim 5, wherein the adiabatic flows (12, 12') are floated vertically movably on the surface of the liquefied gas in the adiabatic container (11, 11'), respectively. The first and second insulated containers (
11, 11') according to any one of claims 4 to 6. 8 the insulating float (12) in the insulating container (11);
) is vertically movably connected to the inner surface (22) of the upper part of the heat insulating container (11) via a bellows (21). 9 The pressurized gas volume increase/decrease means
5. The pump according to claim 4, wherein the pump is a first and a second heater (H. 10. The heater (H) is installed above and adjacent to the lower opening (24) of an insulated pipe (25) having an upper opening (28) and a lower opening (24), and this insulated pipe is connected to the insulated container (24). 11) Fix the insulating float (26) along its longitudinal axis inside the pipe, and move the insulating float (26) up and down on the liquefied gas surface between the outer periphery of the insulated pipe (25) and the inner surface of the container (11). 9. The pump according to claim 9, wherein the first and second heat-insulating containers (11, 11') are configured to float freely. 11. Connect the insulated pipe (24) to the insulated container (1).
1) Patent 61°1 fixed in the center of the 7th circle
Pump according to item 0. 12. The pump according to any one of claims 4 to 11, wherein the pressurized gas is the same type of gas as the liquefied gas. 18. The pump according to any one of claims 4 to 8, wherein the pressurized gas is a gas having a lower boiling point than the liquefied gas.
JP6786383A 1983-04-19 1983-04-19 Liquidized gas pressure feed method and liquidized gas pump Pending JPS59194089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6786383A JPS59194089A (en) 1983-04-19 1983-04-19 Liquidized gas pressure feed method and liquidized gas pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6786383A JPS59194089A (en) 1983-04-19 1983-04-19 Liquidized gas pressure feed method and liquidized gas pump

Publications (1)

Publication Number Publication Date
JPS59194089A true JPS59194089A (en) 1984-11-02

Family

ID=13357189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6786383A Pending JPS59194089A (en) 1983-04-19 1983-04-19 Liquidized gas pressure feed method and liquidized gas pump

Country Status (1)

Country Link
JP (1) JPS59194089A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176772A (en) * 1984-09-20 1986-04-19 Toyo Seisakusho:Kk Gas pressure liquid feeding system for refrigerator
DE4107846A1 (en) * 1991-03-12 1992-09-17 Daimler Benz Ag Liquid gas pump for use with cryogenic hydrogen@ in vehicle - is acted on by pressure from nitrogen@ reservoir behind compression piston
JP2002147344A (en) * 1999-01-05 2002-05-22 Air Products & Chemicals Inc Reciprocating pump for liquid and method for forcibly feeding liquid
JP2010127184A (en) * 2008-11-27 2010-06-10 Ihi Plant Construction Co Ltd Lng utilizing compressor equipment
JP2015526686A (en) * 2012-07-27 2015-09-10 ヨーロピアン モレキュラー バイオロジー ラボラトリー Cooling Dewar with antifreeze coolant and reduced access to specimens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176772A (en) * 1984-09-20 1986-04-19 Toyo Seisakusho:Kk Gas pressure liquid feeding system for refrigerator
DE4107846A1 (en) * 1991-03-12 1992-09-17 Daimler Benz Ag Liquid gas pump for use with cryogenic hydrogen@ in vehicle - is acted on by pressure from nitrogen@ reservoir behind compression piston
JP2002147344A (en) * 1999-01-05 2002-05-22 Air Products & Chemicals Inc Reciprocating pump for liquid and method for forcibly feeding liquid
US6506030B1 (en) 1999-01-05 2003-01-14 Air Products And Chemicals, Inc. Reciprocating pumps with linear motor driver
JP2010127184A (en) * 2008-11-27 2010-06-10 Ihi Plant Construction Co Ltd Lng utilizing compressor equipment
JP2015526686A (en) * 2012-07-27 2015-09-10 ヨーロピアン モレキュラー バイオロジー ラボラトリー Cooling Dewar with antifreeze coolant and reduced access to specimens

Similar Documents

Publication Publication Date Title
JP4283994B2 (en) Reciprocating active magnetic regenerative refrigeration system
CN102027236B (en) Device and method for pumping a cryogenic fluid
JPH07283022A (en) Superconducting magnet and cold storage refrigerator therefor
JP6703195B2 (en) System for heating and cooling superconducting magnets
US20230046818A1 (en) Superconducting magnet device, and cooling method for superconducting magnet device
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
US6679066B1 (en) Cryogenic cooling system for superconductive electric machines
JPS59194089A (en) Liquidized gas pressure feed method and liquidized gas pump
CN114396825B (en) Two-cavity type heat conduction switch for extremely low temperature equipment and extremely low temperature equipment
JPH06281285A (en) Operating method of heat pump for low-temperature formation and heat pump
Zimm et al. Test results on a 50K magnetic refrigerator
JP3233811B2 (en) Magnetic refrigerator
JP3460093B2 (en) Cooling device using low temperature liquefied gas
WO2019029035A1 (en) Forced-convection liquid cooling method for magnet, and cooling system therefor
JP2023517817A (en) Compression equipment and filling stations containing such equipment
Crunkleton A new configuration for small-capacity liquid-helium-temperature cryocoolers
US3690113A (en) Gas cooling process and apparatus
JP3572087B2 (en) Magnetic refrigerator for cooling pressurized liquid helium
KR102639944B1 (en) Apparatus for testing liquefied hydrogen valve
CN110081644A (en) A kind of refrigeration machine of the open loop type superconducting transformer refrigerating method with phase separator and realization this method
JPH07294035A (en) Superconducting magnet apparatus
CN114382732B (en) Low-temperature hydrogen ejector
CN114322349B (en) Direct-current coupled regenerative refrigerator cooled cryogenic storage system
CN113606499A (en) Water chilling unit suitable for hydrogen filling station and use method thereof
JPH08189716A (en) Cool storage vessel type refrigerating machine