JPS59193190A - Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal - Google Patents

Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal

Info

Publication number
JPS59193190A
JPS59193190A JP58065685A JP6568583A JPS59193190A JP S59193190 A JPS59193190 A JP S59193190A JP 58065685 A JP58065685 A JP 58065685A JP 6568583 A JP6568583 A JP 6568583A JP S59193190 A JPS59193190 A JP S59193190A
Authority
JP
Japan
Prior art keywords
fluorine
aluminum
precipitate
coal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58065685A
Other languages
Japanese (ja)
Inventor
Ataru Wakabayashi
若林 中
Shoichi Nojima
野島 正一
Kunihiko Yokota
邦彦 横田
Junji Fujitani
藤谷 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP58065685A priority Critical patent/JPS59193190A/en
Publication of JPS59193190A publication Critical patent/JPS59193190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove efficiently fluorine by removing the fluorine which is not bonded with boron by calcium then decomposing a fluoroboric acid by addition of an aluminum compd. in a range of 2.5-4.5pH. CONSTITUTION:Waste water of stack gas desulfurization in thermal power of coal is introduced into a neutralizing tank 1 where calcium hydroxide is added to the water to adjust pH to 7-9 and to precipitate fluorine as calcium fluoride. The precipitate is separated by a separating means 2 and is then introduced into a reaction vessel 3. A pH adjusting agent such as a hydrochloric acid and an aluminum compd. are added to the water in the tank 3 to adjust and maintain the pH of the waste water to and at 2.5-4.5. The decomposition reaction of a fluoroboric acid by aluminum ion is progressed in the vessel 3. The outflow liquid contg. the precipitate from the tank 4 is introduced into a settling tank 5 where the precipitate is settled and separated. The treated water from the tank 5 contains the fluorine in the concn. below the regulated value and is released as it is like 6.

Description

【発明の詳細な説明】 本発明は石炭火力排煙脱硫装置からの排水中に含まれる
フッ素の除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing fluorine contained in waste water from a coal-fired flue gas desulfurization equipment.

石油危機以来1石炭の重要性が見直され。Since the oil crisis, the importance of coal has been reconsidered.

火力発電所においても石油火力から石炭火力への転換が
進められている。これに伴ない排煙脱硫装置からの排水
に高濃度のフッ素が含有する場合が多くなり従来の石油
火力の場合と異った処理が必要となっている。排水中の
フッ素は水質汚濁防止法によって規制され。
Thermal power plants are also converting from oil-fired power to coal-fired power. As a result, wastewater from flue gas desulfurization equipment often contains high concentrations of fluorine, necessitating treatment that is different from that for conventional oil-fired power plants. Fluorine in wastewater is regulated by the Water Pollution Control Law.

フッ素として15PPm(mV′l)以下まで処理して
排出すべく義務づけられている。
It is mandatory to treat and discharge fluorine to a level of 15 PPm (mV'l) or less.

フッ素含有水の処理方法としては活性アルミナ吸着法、
イオン交換法τ凝集沈殿法などがあるが、石炭火力排煙
脱硫排水には高濃度のSSや塩類を含むことから、カル
シウムとの反応によって難溶性のフッ化カルシウムを生
成させ、その後アルミニウム凝集−沈殿にょ9沈降分離
する方法が一般に用いられている。
Activated alumina adsorption method is used as a treatment method for fluorine-containing water.
There are methods such as ion exchange method and coagulation-precipitation method, but since coal-fired flue gas desulfurization wastewater contains high concentrations of SS and salts, hardly soluble calcium fluoride is produced by reaction with calcium, and then aluminum coagulation is used. A method of precipitation separation is commonly used.

しかしながら石炭火力では炭種により多少異なるが、多
くの場合ホウ素を含み、これがフッ素と安定なフルオロ
ホウ酸を形成することから上記処理法を行なっても処理
水中のフッ素濃度が十分逓減せず完全な処理法とは言え
ない。
However, coal-fired power plants often contain boron, which varies somewhat depending on the type of coal, and this forms stable fluoroboric acid with fluorine, so even if the above treatment method is performed, the fluorine concentration in the treated water will not be sufficiently reduced and the treatment will not be complete. It cannot be called a law.

フルオロホウ酸は電子部品製造工業、有機合成工業、金
属表面処理工業などの工場から主に排出され、その処理
法についてもいくつか見い出されている。例えばカルシ
ウム塩との反応を起こさせるため加熱(105〜175
℃)する方法、電解処理する方法、アルミニウム化合物
を添加してフルオロホウ酸を分解してフッ化アルミ化合
物とした後、沈殿分離する方法などが提案されている。
Fluoroboric acid is mainly discharged from factories such as electronic parts manufacturing industry, organic synthesis industry, and metal surface treatment industry, and several methods for its treatment have been discovered. For example, heating (105 to 175
℃), an electrolytic treatment method, and a method in which an aluminum compound is added to decompose fluoroboric acid to form an aluminum fluoride compound, followed by precipitation separation.

しかし、排水の加熱や電解処理法については装置の材質
問題や、伝熱、電、極面へのスケールトラブルなど運転
管理に大幅な繁雑化を伴なう。一方、アルミニウム化合
物を使用する方法も高価なアルミニウム化合物を多量に
必要とすること、又、最終的にフッ素を水酸化アルミニ
ウムと共に沈殿させるため多量の難脱水性の汚泥が発生
するという欠点がある。
However, heating of wastewater and electrolytic treatment methods involve significant complexity in operational management, including problems with the material of the equipment, problems with heat transfer, electricity, and scaling on pole surfaces. On the other hand, the method using an aluminum compound also requires a large amount of expensive aluminum compound, and has the disadvantage that a large amount of sludge that is difficult to drain is generated because fluorine is ultimately precipitated together with aluminum hydroxide.

発明者らはホウ素を含む石炭火力排煙脱硫排水からのフ
ッ素除去法としてアルミニウム化合物を使用する方法に
ついて鋭意検討した結果、アルミニウム化合物を添加後
、pHを特定の範囲に保持することによって最も効果的
にフルオロホウ酸を分解でき、且つ上記欠点であるアル
ミニウム化合物添加量及び汚泥発生量についても最少限
にできることを見い出し本発明に至った。
The inventors conducted extensive research on the method of using aluminum compounds to remove fluoride from coal-fired flue gas desulfurization wastewater containing boron, and found that the most effective method is to maintain the pH within a specific range after adding an aluminum compound. The inventors have discovered that it is possible to decompose fluoroboric acid, and to minimize the above-mentioned drawbacks of the amount of aluminum compound added and the amount of sludge generated, leading to the present invention.

すなわち本発明はフッ素除去を妨害しているフルオロホ
ウ酸がアルミニウム化合物添加によって処理する場合に
はpH2,5〜4,5の範囲で最も効率良くフッ素が除
去されこれによって、反応時間の短縮化とアルミニウム
化合物の使用量低減化が可能となることの知見に基〈も
のである。
That is, in the present invention, when fluoroboric acid, which obstructs fluoride removal, is treated by adding an aluminum compound, fluorine is most efficiently removed in the pH range of 2.5 to 4.5, thereby shortening the reaction time and removing aluminum. This is based on the knowledge that it is possible to reduce the amount of the compound used.

本発明は 侮) 石炭火力排煙脱硫装置から排出される排水を水酸
化カルシウムでp117〜9に調整後、沈殿物を分離す
る第1I程。
The present invention is not limited to) Step 1 of separating the precipitate after adjusting the wastewater discharged from the coal-fired flue gas desulfurization equipment to a pH of 117 to 9 with calcium hydroxide.

(b)  第1工程流出液に流出液中の残存フッ素に対
しA17F(重量比〕で1,5以上のアルミニウム化合
物を添加し、pHを2,5〜4.5に保持する第2工程
(b) A second step of adding an aluminum compound having an A17F (weight ratio) of 1.5 or more to the residual fluorine in the first step effluent to maintain the pH at 2.5 to 4.5.

(c)第2工程流出液を水酸化カルシウムでpJ+ 7
〜8.5に調整後、沈殿物を分離する第3工程。、 (d)  第3工程で分離した沈殿物を第1工程に移送
する第4工程。
(c) The effluent of the second step was adjusted to pJ+7 with calcium hydroxide.
After adjusting to ~8.5, the third step is to separate the precipitate. (d) A fourth step of transferring the precipitate separated in the third step to the first step.

以上の各工程から成る石炭火力排煙脱硫排水中のフッ素
の除去法である。
This is a method for removing fluorine from coal-fired power flue gas desulfurization wastewater, which consists of the above steps.

以下、添句図に従い、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying figures.

11面  は本発明の1例を示すフローシートである。Page 11 is a flow sheet showing one example of the present invention.

通常の石炭火力排煙脱硫排水はホウ素fy;10〜50
ppm、  フッ、1500〜1,500ppm %ア
ルミニウム200〜700 ppm程度含壕れ、大部分
がF≧711(重量濃度)の関係がある。フッ素は大部
分がホウ素及びアルミニウムと安定な錯体を形成してい
るが、アルミニウムと錯体を形成しているフッ素は水酸
化カルシウムでの中和によって簡檗にフッ化カルシウム
として除去できる。従って寸ず排水を中和槽1に導入し
、水酸化カルシウムを添加してpHt 7〜9とする。
Normal coal-fired flue gas desulfurization wastewater contains boron fy; 10-50
ppm, fluorine, 1,500 to 1,500 ppm, aluminum content of about 200 to 700 ppm, and most of them have a relationship of F≧711 (weight concentration). Fluorine mostly forms stable complexes with boron and aluminum, but fluorine complexed with aluminum can be easily removed as calcium fluoride by neutralization with calcium hydroxide. Therefore, the drained water is introduced into the neutralization tank 1, and calcium hydroxide is added thereto to adjust the pH to 7 to 9.

ここでフリーのフッ素及びアルミニウムと錯体を形成し
ているフッ素はフッ化カルシウムとして沈殿する。
Here, free fluorine and fluorine complexed with aluminum precipitate as calcium fluoride.

この場合、アルミニウムも水酸化物として同時に沈殿す
るから、続く分離手段2での沈殿物の分離が容易となる
。又、品り〉子凝集剤を添加すると一層効果的に分離で
きる。分離手段は通常使用される濾過、浮上分離遠心分
離など任意の方法が採用できる。分離手段2がらの流出
液は反応槽3に導入される。この流出液中のフッ素は主
にフルオロボウ酸の形で存在している。反応槽3ではp
l(調整剤およびアルミニウム化合物を添加し、排水の
phi k25〜4.5の範囲に調整保持する。pHi
14整剤には塩酸、硫酸などの酸が使用できる。添加す
るアルミニウム化合物上しては硫酸アルミニウム、塩化
アルミニウム、ポリ塩化アルミニウムなどが使用できる
が硫酸アルミニウムの場合、pJ+調整剤なしでpH2
,5〜4.5となる場合もあり又、後段の中和槽4での
生成沈殿の分離性も良好なことがらより効果的である。
In this case, since aluminum is also precipitated as hydroxide at the same time, the subsequent separation of the precipitate by the separation means 2 becomes easy. Furthermore, if a coagulant is added, the separation can be made more effective. As the separation means, any commonly used methods such as filtration, flotation separation and centrifugation can be used. The effluent from the separation means 2 is introduced into the reaction tank 3. Fluorine in this effluent is mainly present in the form of fluoroboric acid. In reaction tank 3, p
l (Add a regulator and an aluminum compound to adjust and maintain the pH of wastewater in the range of 25 to 4.5.pHi
14. Acids such as hydrochloric acid and sulfuric acid can be used for the adjustment agent. As for the aluminum compound to be added, aluminum sulfate, aluminum chloride, polyaluminum chloride, etc. can be used, but in the case of aluminum sulfate, the pH is 2.
, 5 to 4.5, and the separability of the produced precipitate in the neutralization tank 4 at the subsequent stage is also good, making it more effective.

反応槽3では以下の(1)〜(3)に示すようなアルミ
ニウムイオンによるフルオロボウ酸の分解反応が進行す
る。
In the reaction tank 3, decomposition reactions of fluoroboric acid by aluminum ions proceed as shown in (1) to (3) below.

3BF7+4#”+9H20−+4NF3+38(OH
)3+9H+ (1)BF30H−+#3++2H20
→#F3+B (OH+ 3+2H”       (
2)3 BF、、 (OH); +2Al” + 3 
H20→2AIF3+3 B (OH) 3+3H+(
3)この分解反応に示すようにアルミニウムはAt3十
の形で溶解している必要がある。pH4,、5〜10で
は水酸化アルミニウムフロックとなり溶解しないため、
又、I)+11.0以上では溶解してもアルミン酸イオ
ン(AIO□)の形となっているのでいずれも効果はな
い。従って45以下のpHが必要である。壕だ後述する
本発明者の実施例から明らかなように、このアルミニウ
ムイオンによる分解反応はpHが高いほど速く進行する
が、pH4,5以上ではアルミニウムイオンが溶解でき
ないだめpH2,5〜4,5の範囲で顕著な効果が現れ
ることによる。すなわち、フルオロホウ酸分解速度とア
ルミニウムイオン溶解度の両面からこのpH範囲が最も
有効な範囲として設定されたものである。
3BF7+4#”+9H20-+4NF3+38(OH
)3+9H+ (1)BF30H-+#3++2H20
→#F3+B (OH+ 3+2H” (
2) 3 BF,, (OH); +2Al” + 3
H20→2AIF3+3 B (OH) 3+3H+(
3) As shown in this decomposition reaction, aluminum must be dissolved in the form of At30. At pH 4, 5 to 10, aluminum hydroxide flocs and does not dissolve.
Moreover, if I) is higher than +11.0, even if it is dissolved, it remains in the form of aluminate ion (AIO□), so there is no effect in either case. Therefore, a pH of 45 or lower is required. As is clear from the inventor's examples described later, this decomposition reaction by aluminum ions progresses faster at higher pH, but at pH 4.5 or higher, aluminum ions cannot be dissolved, and at pH 2.5 to 4.5. This is because significant effects appear within the range of . That is, this pH range was set as the most effective range from both the fluoroboric acid decomposition rate and aluminum ion solubility.

添加するアルミニウム化合物の量は残存するフッ素濃度
に対し、アルミニウムとして重量比で1,5倍以上、又
、反応時間は10分以上あれば有効である。しかしなが
ら工業的規模で実施する場合には、分離手段2がらの流
出液中にはフッ化カルシウムなどの沈殿物がわずかに存
在するから、アルミニウム化合物の添加量が余り多くて
も、又反応時間が余り長くてもいずれもフッ化カルシウ
ムを再溶解させるのでその効果が小さくなる。従って添
加するアルミニウムの量はフッ素含有量に対し重量比で
1.5〜4倍、又、反応時間は10〜40分で充分であ
る。この再溶解はpHについても敏感であり、pH2,
5以下では溶解速度が増加し望寸しくない。
It is effective if the amount of the aluminum compound added is at least 1.5 times the weight ratio of aluminum relative to the remaining fluorine concentration, and the reaction time is at least 10 minutes. However, when carried out on an industrial scale, since a small amount of precipitates such as calcium fluoride are present in the effluent from the separation means 2, even if the amount of aluminum compound added is too large, the reaction time may be If it is too long, the effect will be reduced because the calcium fluoride will be redissolved. Therefore, it is sufficient that the amount of aluminum added is 1.5 to 4 times the weight ratio of the fluorine content, and the reaction time is 10 to 40 minutes. This redissolution is also sensitive to pH, with pH 2,
If it is less than 5, the dissolution rate increases, which is not desirable.

攪拌はアルミニウム化合物が十分に混合されれば良いの
で特に強い攪拌は必要としない。
Particularly strong stirring is not required as long as the aluminum compound is sufficiently mixed.

又、反応温度は石炭火力排煙脱硫排水の温度(一般には
40〜50℃)で充分反応は進行するので特に加熱等必
要としない。反応槽1からの流出液は中和槽4に導入さ
れ、水酸化カルシウムの添加によってpH7〜8.5に
中和される。ここでフッ素はフッ化カルシウムとして沈
殿し同時に反応槽ろで添加されたアルミニウムも水酸化
アルミニウムフロックとなり沈殿する。
Further, since the reaction proceeds sufficiently at the temperature of coal-fired power flue gas desulfurization wastewater (generally 40 to 50°C), no particular heating is required. The effluent from reaction tank 1 is introduced into neutralization tank 4 and neutralized to pH 7-8.5 by addition of calcium hydroxide. Here, fluorine precipitates as calcium fluoride, and at the same time, aluminum added in the reaction tank also precipitates as aluminum hydroxide flocs.

中和槽4からの沈殿物を含む流出液を沈降槽5に導入し
、沈殿物を沈降分離する。沈降槽としてはシックナーな
どが使用できる。又高分子凝集剤の添加によって沈降促
進を図ることもできる。沈降槽5で沈降分離された沈殿
物は第1工程、即ち中和槽1に導入する排水中に戻して
再溶解するか、中和槽1又は分離手段2に導入し中和槽
1の沈殿物と共に分離除去する。沈降槽5からの処理水
は規制値以下のフッ素濃度であるからそのまま6で示す
ように放流する。
The effluent containing the precipitate from the neutralization tank 4 is introduced into the settling tank 5, and the precipitate is separated by sedimentation. A thickener or the like can be used as the settling tank. Further, sedimentation can be promoted by adding a polymer flocculant. The precipitate that has been sedimented and separated in the settling tank 5 is either returned to the waste water introduced into the neutralization tank 1 and redissolved in the first step, or introduced into the neutralization tank 1 or the separation means 2 and then settled in the neutralization tank 1. Separate and remove with other substances. Since the treated water from the sedimentation tank 5 has a fluorine concentration below the regulation value, it is discharged as is as shown at 6.

以上のように本発明は先ずカルシウムでホウ素と結合し
ていないフッ素を除去した後アルミニウム化合物添加に
よるフルオロホウ酸の分解反応を、H2,5〜4.5の
範囲で行なうことによってアルミニウム化合物添加量の
低減化9反応時間の短縮化、生成スラッジ量の低減化が
計れ、効率の良いフッ素除去が可能となる。
As described above, the present invention first removes fluorine that is not bonded to boron with calcium, and then performs a decomposition reaction of fluoroboric acid by adding an aluminum compound in a range of H2.5 to 4.5, thereby reducing the amount of aluminum compound added. Reduction 9 Reaction time can be shortened, the amount of sludge produced can be reduced, and fluorine can be removed efficiently.

次に本発明を実施例により以下(二詳細に説明する。Next, the present invention will be described in detail below using examples.

実施例1 硫酸3.000ppm、硝酸10.OOOppm、フッ
酸1,300ppmを含む酸水溶液に電源開発製フライ
アッシュを加え45℃で攪拌保持し、その後5A口紙で
口過しだ。白液を石炭火力排煙脱硫排水の模擬液として
以下の実施例に使用した。この模擬液はフッ素1,23
0ppm。
Example 1 Sulfuric acid 3.000 ppm, nitric acid 10. Fly ash manufactured by Electric Power Development Co., Ltd. was added to an acid aqueous solution containing 1,300 ppm of OOOppm and hydrofluoric acid, stirred and maintained at 45°C, and then passed through a 5A paper. The white liquor was used in the following examples as a simulating liquid for coal-fired power flue gas desulfurization wastewater. This simulated liquid contains fluorine 1,23
0ppm.

ホウ素20ppm、アルミニウム520 ppmを含み
、pH値は1.3であった。この模擬液に水酸化カルシ
ウムを加え、pal 8.0とし沈殿物を5A口紙で戸
別した。E液中のフッ素濃度は50ppmであった。こ
の白液に硫酸アルミニウムをA4/F−3,0となるよ
うに加え、必要に応じて塩酸を加え表−1に示す50〜
20までのpH値とした後、ジャーテスターで60 r
pmで攪拌しながら40℃で40分間保持した。その後
水酸化カルシウムを添加し、pH7〜8.5の中性領域
に中和後、高分子凝集剤を加え20分間沈降させ上澄液
のフッ素濃度を分析した。
It contained 20 ppm of boron, 520 ppm of aluminum, and had a pH value of 1.3. Calcium hydroxide was added to this simulated solution to give a pal of 8.0, and the precipitate was collected using 5A paper. The fluorine concentration in liquid E was 50 ppm. Add aluminum sulfate to this white liquor so that the ratio is A4/F-3,0, and add hydrochloric acid as necessary to give a ratio of 50 to 50 as shown in Table 1.
After a pH value of up to 20, 60 r in a jar tester
The temperature was maintained at 40° C. for 40 minutes while stirring at pm. Thereafter, calcium hydroxide was added to neutralize the pH to a neutral range of 7 to 8.5, and then a polymer flocculant was added and allowed to settle for 20 minutes, and the fluorine concentration of the supernatant was analyzed.

結果は表−1に示す通りであった。表に示すようにpH
2,5〜4.5、特に3〜3.5で特異的にフッ素濃度
の低下が見られた。しかしpH4,5以上ではほとんど
除去できず、又1)112.5以下ではその効果は小さ
く規制値である1 5 ppm以下にはならなかった。
The results were as shown in Table-1. pH as shown in the table
A specific decrease in fluorine concentration was observed between 2.5 and 4.5, especially between 3 and 3.5. However, at a pH of 4.5 or above, it could hardly be removed, and 1) at a pH below 112.5, the effect was so small that it did not reach the regulatory value of 15 ppm or below.

この結果からアルミニウムイオン(At34−)の形で
溶解していればpHが高いほどフルオロホウ酸の分解速
度は速いと言える。
From this result, it can be said that the higher the pH, the faster the decomposition rate of fluoroboric acid if it is dissolved in the form of aluminum ions (At34-).

尚、pH値 4及び4.5ではアルミニウムイオンの溶
解度の関係から水酸化アルミニウムの沈殿が多少生成し
た。
At pH values of 4 and 4.5, some amount of aluminum hydroxide precipitated was formed due to the solubility of aluminum ions.

実施例2 実施例1で使用した模擬液を水酸化カルシウム中和のみ
を行ない、口過して得たpH8,0、フッ素濃度50 
ppmの溶液を使用し、pH3,5、反応時間40分攪
拌速度60rpm、温度40℃で硫酸アルミニウム添加
量の影響を調べた。
Example 2 The simulated solution used in Example 1 was only neutralized with calcium hydroxide and passed through the mouth to obtain a pH of 8.0 and a fluorine concentration of 50.
ppm solution was used to investigate the influence of the amount of aluminum sulfate added at pH 3.5, reaction time 40 minutes, stirring speed 60 rpm, and temperature 40°C.

操作は実施例1と同じ方法で行なった。結果を表−2に
示す。表の結果から1.5倍以上のアルミニウム化合物
が必要であり、4倍以上に増加しても効果はほとんど変
らないことかわかる。又、アルミニウム量1.0倍では
反応時間を2時間にしても結果は24.0 pp’mと
、はとんど変わらなかった。
The operation was performed in the same manner as in Example 1. The results are shown in Table-2. From the results in the table, it can be seen that 1.5 times or more of the aluminum compound is required, and even if the amount is increased by 4 times or more, the effect hardly changes. Furthermore, even if the reaction time was increased to 2 hours when the amount of aluminum was 1.0 times the amount, the result was 24.0 pp'm, which was almost the same.

実施例3 実施例2と同様な方法でpH3,5、硫酸アルミニウム
添加量Al/F= 3. Q 、攪拌速度60rpm。
Example 3 In the same manner as in Example 2, the pH was 3.5 and the amount of aluminum sulfate added was Al/F=3. Q, stirring speed 60 rpm.

温度40℃で反応時間の影響を調べた。結果を表−3に
示す。反応時間は10分以上必要であるが40分以上反
応させてもその効果は変らないことがわかる。
The influence of reaction time was investigated at a temperature of 40°C. The results are shown in Table-3. It can be seen that the reaction time is required to be 10 minutes or more, but the effect remains unchanged even if the reaction is allowed to occur for 40 minutes or more.

実施例4 実施例1で使用した模擬液に水酸化カルシウム中和のみ
を行ない口過して得たpH8,0、フッ素濃度50pp
mの溶液を使用し、pH3,5、Al/F= 3.0、
反応時間40分、攪拌速度60rpm%温度40℃の条
件でアルミニウム化合物としてポリ塩化アルミニウムを
使用した。
Example 4 The simulated solution used in Example 1 was subjected to only calcium hydroxide neutralization and passed through the mouth to obtain a pH of 8.0 and a fluorine concentration of 50 pp.
m solution, pH 3.5, Al/F = 3.0,
Polyaluminum chloride was used as the aluminum compound under conditions of a reaction time of 40 minutes, a stirring rate of 60 rpm%, and a temperature of 40°C.

その後水酸化カルシウムでpH7,1に中和し、高分子
凝集剤を加え20分沈降させた。
Thereafter, it was neutralized to pH 7.1 with calcium hydroxide, a polymer flocculant was added, and it was allowed to settle for 20 minutes.

上澄液中のフッ素のフッ素濃度は5.5 ppmと硫酸
アルミニウムの場合と同様な効果が得られたが、pH3
,5に調整する塩酸の量がlNHClで約5彪/を必要
であった。伺、硫酸アルミニウムの場合には塩酸は必要
としなかった。
The fluorine concentration in the supernatant liquid was 5.5 ppm, which was the same effect as with aluminum sulfate, but at pH 3.
, the amount of hydrochloric acid needed to adjust to 5 1N HCl was about 5 biao/l. In the case of aluminum sulfate, hydrochloric acid was not required.

実施例5 実施例1で使用した模擬液にホウ酸全ホウ素として25
1)l)m加え、更に2時間、45℃で保持した。この
模擬液に水酸化カルシウムを加え、pH8,0とし、て
沈殿物’fsA口紙でp別した。F液中のフッ素濃度は
85 ppmであった。このr液に硫酸アルミニウムを
A4/F−3,0となるように加え、pH3,5に調整
し、攪拌速度60 rpm、40℃で40分保持した。
Example 5 25% total boron boric acid was added to the simulated solution used in Example 1.
1)l)m was added, and the mixture was further maintained at 45°C for 2 hours. Calcium hydroxide was added to this simulated solution to adjust the pH to 8.0, and the precipitate was separated using fsA paper. The fluorine concentration in the F solution was 85 ppm. Aluminum sulfate was added to this r solution to give A4/F-3.0, the pH was adjusted to 3.5, and the mixture was maintained at 40° C. for 40 minutes at a stirring speed of 60 rpm.

その後水酸化カルシウムを加えpH7,5に中和し、高
分子凝集剤を加え20分間沈降させた。
Thereafter, calcium hydroxide was added to neutralize the pH to 7.5, and a polymer flocculant was added and allowed to settle for 20 minutes.

上澄液中のフッ素濃度は6.1 ppmであった。The fluorine concentration in the supernatant was 6.1 ppm.

表  −2 表  −3Table-2 Table-3

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1例を示すフローシートである。 図に於て、 1・・・中和槽   2・・・分離手段3・・・反応槽
   4・・中和槽 5・・沈降槽   6・・・放流 を夫々示す。 手続補正書 昭和58年 7月21.S 特許庁長官若杉和夫 殿 1事イ9℃表示昭和58年 特許願第 6!M85号3
 補正をする者 事件との関係  特許出願人 住所 神奈川県横浜市鶴見区鶴見中央二丁目12番1号
銘称)  (32a )千代田化工建設株式会社4代理
人 (3)「図    面」 (11明細書第7頁第9行目の 「保持する。」の後(二下記の文を加入する。 [第2図は処理のpHとフッ素濃度との関係を示したも
のである。図の結果からpH2,5〜45の範囲1ニフ
ッ素濃度が最も低い点が存在することが明らかである。 」 (2)同上第10頁第12行目の 「除去する。」の後に下記の文を加入する。 「沈降槽5で沈殿分離した沈殿物を第1工程に導入する
排水中(二溶解した場合には、排水中のA11F比が増
加し、第1工程のフッ素除去率が」二昇する。これ【二
よって第2工程で添加するアルミニウム化合物景の低減
化が刷れる。」(3)同上第16負の表−6の下に下記
の文を加入する。 「実施例6 実施例1の反応pHを60で処理した場合に生成した沈
殿物(第3工程で生成する沈殿物(二相光)を5A口紙
でp別した。得られた沈殿物を実施例1で作製した模擬
液に溶解させた後、水酸化カルシウムを加えpH8,0
とし、′沈殿物を5A口紙で日別した。白液中のフッ素
濃度は45ppmであった。この0液に硫酸アルミニウ
ムを、八J/F=3.0となるようC二加え、ジャーテ
スターで6Qrpmで攪拌しながら40°C,pH3,
[1で40分間保持した。その後水酸化カルシウムを添
加し+PH7,2+−中和後、高分子凝集剤を加え。 20分間沈降させた。上澄液のフッ素濃度は69ppm
と実施例1と同じ結果が得られた。 この結果から第5工程で生成する沈殿物を第1工程に導
入する排水中(二溶解させると第2工程で添加するアル
ミニウム化合物)7が少なくて済むことがわかる。] (4)明細」第6頁第5行及び第17頁第21)目、の
「図面」を 「第1図」と訂正する。 (5)同上第17頁′fA4行目の 「図」を 「第1図」と訂正する。 (61同」−第17頁@8行目の下に下記の文を加入す
る。 「第2図は処理水中のフッ素濃度とpHとの関係な示す
。」 (力出願時提出の図面を第1図とし、第2図を加入する
。 7添付用類の目録 (1)  図面(第2図)      1通(2)  
訂正図面(第1図)         1通第2図 反応PH
The drawing is a flow sheet showing one example of the present invention. In the figure, 1... Neutralization tank 2... Separation means 3... Reaction tank 4... Neutralization tank 5... Sedimentation tank 6... Discharge is shown respectively. Procedural amendment July 21, 1982. S. Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1st matter, 9°C display, 1982, Patent Application No. 6! M85 No. 3
Relationship with the case of the person making the amendment Patent applicant address: 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama, Kanagawa Prefecture) (32a) Chiyoda Corporation 4th Agent (3) “Drawings” (11 Specifications) After ``retain.'' on page 7, line 9 of the book, add the following sentence. [Figure 2 shows the relationship between the pH of the treatment and the fluorine concentration. From the results in the figure, It is clear that there is a point in the pH range of 2.5 to 45 where the concentration of nifluorine is the lowest.'' (2) Add the following sentence after ``Remove.'' on page 10, line 12 of the same. ``If the precipitate separated by precipitation in the sedimentation tank 5 is dissolved in the wastewater introduced into the first step, the A11F ratio in the wastewater increases, and the fluorine removal rate in the first step increases. Therefore, the appearance of the aluminum compound added in the second step can be reduced.'' (3) Add the following sentence under the 16th negative table-6 of the same example. ``Example 6 Reaction of Example 1 The precipitate produced when the treatment was carried out at pH 60 (the precipitate produced in the third step (two-phase light) was separated using 5A paper. The obtained precipitate was added to the simulated solution prepared in Example 1. After dissolving, add calcium hydroxide to pH 8.0.
The precipitate was separated daily using 5A paper. The fluorine concentration in the white liquor was 45 ppm. Add aluminum sulfate to this 0 liquid so that 8J/F = 3.0, and stir at 6Qrpm with a jar tester at 40°C, pH 3,
[Holded at 1 for 40 minutes. After that, calcium hydroxide was added to neutralize the pH to 7,2+, and then a polymer flocculant was added. Allowed to settle for 20 minutes. Fluorine concentration in supernatant liquid is 69 ppm
The same results as in Example 1 were obtained. From this result, it can be seen that the amount of the precipitate generated in the fifth step in the waste water introduced into the first step (if dissolved, the aluminum compound added in the second step) 7 can be reduced. ] (4) "Drawing" in page 6, line 5 of "Details" and page 17, line 21) is corrected to "Figure 1." (5) ``Figure'' in the 4th line of page 17'fA of the same page is corrected to ``Figure 1''. (61 same) - Add the following sentence under the 8th line on page 17. "Figure 2 shows the relationship between the fluorine concentration and pH in the treated water." and add Figure 2. 7 List of Attached Materials (1) Drawings (Figure 2) 1 copy (2)
Corrected drawing (Figure 1) 1 copy Figure 2 Reaction PH

Claims (1)

【特許請求の範囲】 1、  (a)  石炭火力排煙脱硫装置から排出され
る排水を水酸化カルシウムでp117〜9に調整後、沈
殿物を分離する第1工程:(b)  第1工程流出液に
流出液中の残存フッ素濃度に対しAI7/F重量比で1
5以上。 のアルミニウム化合物を添加し、pi k25〜4.5
に保持する第2工程; (c)第2工程流出液を水酸化カルシウムでpH7〜8
.5に調整後、沈殿物を分離する第3工程; (d)  第3工程で分離した沈殿物を第1工程に移送
する第4工程; 以上の各工程からなる石炭火力排煙脱硫杉1水中のフッ
素の除去方法。 2、 第2工程で添加する7ノしミニウムイヒ金物が硫
酸アルミニウムである特許請求の範囲第1項記載の排水
中のフッ素の除去法。 ろ、 第2工程で添加事るアルミニウム化合物の量が残
存フッ素濃度に対しM4重量比で15〜4倍である特許
請求の範囲第1.または2項記載の排水中のフッ素の除
去法。 4 第2工程での保持時間が10〜40分である特許請
求の範囲第1.2または6項記載の排水中のフッ素の除
去法。 5 第2工程におけるpI−1を6〜3.5に保持する
特許請求の範囲第1,2.ろまたは4項記載の排水中の
フッ素の除去法。 6 第4工程が第6エ程で分離した沈殿物を第1工程に
導入する排水中に移送する特許請求の範囲第1.2,3
.4あるいは5項記載の排水中のフッ素の除去法。
[Claims] 1. (a) First step of separating the precipitate after adjusting the wastewater discharged from the coal-fired flue gas desulfurization equipment to p117-9 with calcium hydroxide: (b) First step outflow The weight ratio of AI7/F to the residual fluorine concentration in the effluent is 1.
5 or more. of aluminum compound, pi k25~4.5
(c) Adjust the effluent from the second step to pH 7-8 with calcium hydroxide.
.. (d) A fourth step of transferring the precipitate separated in the third step to the first step; Coal-fired power flue gas desulfurization cedar 1 water consisting of each of the above steps How to remove fluorine. 2. The method for removing fluorine from wastewater according to claim 1, wherein the metal material added in the second step is aluminum sulfate. Claim 1. The amount of aluminum compound added in the second step is 15 to 4 times the weight ratio of M4 to the residual fluorine concentration. Or the method for removing fluorine in wastewater as described in Section 2. 4. The method for removing fluorine in waste water according to claim 1.2 or 6, wherein the holding time in the second step is 10 to 40 minutes. 5. Claims 1, 2. in which the pI-1 in the second step is maintained at 6 to 3.5. A method for removing fluorine from wastewater as described in Section 4. 6 Claims 1.2 and 3 in which the fourth step transfers the precipitate separated in the sixth step into the wastewater introduced into the first step.
.. The method for removing fluorine in wastewater according to item 4 or 5.
JP58065685A 1983-04-15 1983-04-15 Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal Pending JPS59193190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58065685A JPS59193190A (en) 1983-04-15 1983-04-15 Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58065685A JPS59193190A (en) 1983-04-15 1983-04-15 Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal

Publications (1)

Publication Number Publication Date
JPS59193190A true JPS59193190A (en) 1984-11-01

Family

ID=13294106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58065685A Pending JPS59193190A (en) 1983-04-15 1983-04-15 Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal

Country Status (1)

Country Link
JP (1) JPS59193190A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852479A (en) * 1995-01-09 1996-02-27 Chiyoda Corp Treatment of fluorine-containing waste water
JPH0910548A (en) * 1995-06-29 1997-01-14 Mitsubishi Heavy Ind Ltd Treatment of drain containing fluorine
FR2771727A1 (en) * 1997-11-28 1999-06-04 Sgs Thomson Microelectronics Defluoridation of waste water
JP2007000768A (en) * 2005-06-23 2007-01-11 Kurita Water Ind Ltd Fluorine-containing water treatment method and apparatus
WO2008067723A1 (en) * 2006-12-05 2008-06-12 Fada Xie Method and device for treating waste water congtaining fluorine by using limestone
JP2018131355A (en) * 2017-02-15 2018-08-23 住友大阪セメント株式会社 Method for manufacturing gypsum and method for manufacturing cement composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852479A (en) * 1995-01-09 1996-02-27 Chiyoda Corp Treatment of fluorine-containing waste water
JPH0910548A (en) * 1995-06-29 1997-01-14 Mitsubishi Heavy Ind Ltd Treatment of drain containing fluorine
FR2771727A1 (en) * 1997-11-28 1999-06-04 Sgs Thomson Microelectronics Defluoridation of waste water
US6436297B1 (en) 1997-11-28 2002-08-20 Stmicroelectronics S.A. Defluoridation of waste water
JP2007000768A (en) * 2005-06-23 2007-01-11 Kurita Water Ind Ltd Fluorine-containing water treatment method and apparatus
WO2008067723A1 (en) * 2006-12-05 2008-06-12 Fada Xie Method and device for treating waste water congtaining fluorine by using limestone
JP2018131355A (en) * 2017-02-15 2018-08-23 住友大阪セメント株式会社 Method for manufacturing gypsum and method for manufacturing cement composition

Similar Documents

Publication Publication Date Title
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
US4943377A (en) Method for removing dissolved heavy metals from waste oils, industrial wastewaters, or any polar solvent
US8182697B2 (en) Method and apparatus for treating selenium-containing wastewater
US5372726A (en) Compound for the treatment of water polluted with metal ions, process for its production and application
CN114133007A (en) Deep defluorination medicament and use method thereof
CN104445733A (en) Technology for removing thallium with lead and zinc smelting flue gas washing waste acid water
JPS59193190A (en) Removal of fluorine from waste water of stack gas desulfurization in thermal power of coal
JP4954131B2 (en) Treatment method of water containing borofluoride
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP2758607B2 (en) Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment
JP2010234306A (en) Selenium insolubilization method
CN209872651U (en) Treatment device for desulfurization wastewater quality-divided crystallization
EP1493716A1 (en) Method of wastewater treatment
JPS62125894A (en) Treatment of fluorine-containing waste water
JP3282648B2 (en) Treatment method for fluorine-containing wastewater
JP2001286875A (en) Method for treating arsenic-containing waste water
JPS5843282A (en) Treatment of waste water containing fluorine
WO2016113946A1 (en) Chromium-containing water treatment method
US20220017390A1 (en) Method for the precipitation of arsenic and heavy metals from acidic process water
JPS63258692A (en) Treatment of organic sewage
JP3739935B2 (en) Wastewater treatment method