JPS59192904A - Device for measuring film thickness - Google Patents

Device for measuring film thickness

Info

Publication number
JPS59192904A
JPS59192904A JP6544683A JP6544683A JPS59192904A JP S59192904 A JPS59192904 A JP S59192904A JP 6544683 A JP6544683 A JP 6544683A JP 6544683 A JP6544683 A JP 6544683A JP S59192904 A JPS59192904 A JP S59192904A
Authority
JP
Japan
Prior art keywords
light
film thickness
polarized
film
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6544683A
Other languages
Japanese (ja)
Inventor
Shunji Sasabe
笹部 俊二
Yoshikazu Tanabe
義和 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6544683A priority Critical patent/JPS59192904A/en
Publication of JPS59192904A publication Critical patent/JPS59192904A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To improve an SN ratio and the measurement precision of film thickness by projecting light from a polarized laser light source upon a film to be measured through a beam splitter and an lambda/4 plate, and detecting interference reflected light by a sensor through a linear polarizing plate. CONSTITUTION:P Polarized light projected by the polarized laser oscillator 14 illuminates an SiO2 film 8 on the surface of a semiconductor wafer 5 through the polarized beam splitter (PBS)15, reflecting mirror 13, view spot glass 12, and lambda/4 plate 11. The interference reflected light travels backward and is reflected by the PBS15 and then detected by the photosensor 18 through the linear polarizing plate 16 and an interference filter 17. Its detection output is processed by a microcomputer 21 through an amplifier 19 and an AD converter 20 to calculate the film thickness. Noise light reflected by the PBS15 and view spot glass 12 is cut off by the linear polarizing plate 16 and the spectrum width is restricted by the interference filter 17, so the SN ratio is improved and the measurement precision of the film thickness is also improved.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は薄膜の膜厚を測定する装置に関し、特に偏光を
利用して測定精度の向上を図った膜厚測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a device for measuring the thickness of a thin film, and more particularly to a film thickness measuring device that uses polarized light to improve measurement accuracy.

〔背景技術〕[Background technology]

半導体装置の製造工程では、半導体ウヱーノ・表面に薄
膜を形成することが必須のものとされているが、この薄
膜の膜厚が半導体装置の特性に大きな影響を及ぼすこと
から、膜厚を高精度にコントロールする必要がある。こ
のため、例えばRFスパッタ法によるSin、膜の生成
圧おいて、従来ではスパッタ時間を管理することにより
膜厚をコントロールしているが、温度や真空度等の他の
要因も加わるために時間管理だけで高精度なコントロー
ルを行なうことは困難であり、またバッチ間の膜厚のば
らづきが大きいという問題もある。
In the manufacturing process of semiconductor devices, it is essential to form a thin film on the surface of the semiconductor, but since the thickness of this thin film has a large effect on the characteristics of the semiconductor device, the film thickness must be determined with high precision. need to be controlled. For this reason, for example, regarding the production pressure of a Sin film using RF sputtering, the film thickness is conventionally controlled by managing the sputtering time, but since other factors such as temperature and degree of vacuum are also added, time management is required. It is difficult to perform high-precision control with only one method, and there is also the problem of large variations in film thickness between batches.

このような問題を解決するために、薄膜の形成と同時に
膜厚を非接触で測定する膜厚測定装置が提案されている
。これは、例えばスパッタSin。
In order to solve such problems, a film thickness measuring device has been proposed that measures the film thickness in a non-contact manner at the same time as forming a thin film. This is, for example, sputtering Sin.

膜生成装置のチャンバの一部に透明な窓を設けておき、
チャンバ外に設置したレーザ発振器からのレーザ光をこ
の窓を通してチャンバ内の半導体ウェーハ表面に照射す
る一方、薄膜により生じたレーザ光の干渉光をチャンバ
外の別の箇所に設けたセンサにて検出し、これを解析し
て薄膜の膜厚を測定しようとするものである。
A transparent window is provided in a part of the chamber of the film generation device,
Laser light from a laser oscillator installed outside the chamber is irradiated onto the surface of the semiconductor wafer inside the chamber through this window, while interference light of the laser light generated by the thin film is detected by a sensor installed at another location outside the chamber. , this is analyzed to measure the thickness of the thin film.

この測定装置によれば、時々刻々と変化される膜厚を直
ちに測定できるため、各ウェーハ間における薄膜膜厚の
ばらつきを防止できるという効果が得られる。しかしな
がら、チャンバ内において生ずるプラズマの光や窓のガ
ラスにおける反射光等、前述の干渉光以外の光が雑音と
してセンサに入力されることを防止することが難かしい
ため、S/N比が悪くなって高精度な測定を行なうこと
が困難であり、場合によっては測定が不可能になること
もある。
According to this measuring device, since the film thickness, which changes from time to time, can be immediately measured, it is possible to prevent variations in the thin film thickness between each wafer. However, it is difficult to prevent light other than the above-mentioned interference light from entering the sensor as noise, such as plasma light generated in the chamber and light reflected from the window glass, resulting in a poor S/N ratio. Therefore, it is difficult to perform highly accurate measurements, and in some cases, measurements may be impossible.

〔発明の目的〕 本発明の目的は膜厚の測定時における雑音としての光が
センサに入力されることを防止し、これにより膜厚の測
定精度を向上することができる膜厚測定装置を提供する
ことにある。
[Object of the Invention] An object of the present invention is to provide a film thickness measuring device that can prevent light as noise from being input to the sensor during film thickness measurement, thereby improving film thickness measurement accuracy. It's about doing.

また本発明の他の目的は膜厚の測定精度を向上すること
により膜厚の均一化を図り、半導体装置の信頼性の向上
に寄与することができる膜厚測定装置を提供することに
ある。
Another object of the present invention is to provide a film thickness measuring device that can make the film thickness uniform by improving the film thickness measurement accuracy and contribute to improving the reliability of semiconductor devices.

不発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of non-invention are:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、偏光レーザ発振器を光源としてこの光源と被
測定膜との間にビームスブリックと1/4人板を介装す
る一方、被測定膜からの干渉反射光を検出するセンナの
前に直線偏光板を設置することにより、被測定膜に照射
されて反射された光だけを確実に検出でき、これにより
S/N比を向上して膜厚の測定精度の向上を達成するも
のである。
In other words, a polarized laser oscillator is used as a light source, and a beam subric and a quarter plate are interposed between the light source and the film to be measured, while a linear polarizing plate is placed in front of the sensor that detects the interference reflected light from the film to be measured. By installing this, it is possible to reliably detect only the light that is irradiated onto the film to be measured and reflected, thereby improving the S/N ratio and achieving an improvement in the measurement accuracy of the film thickness.

〔実施例〕〔Example〕

図は本発明の膜厚測定装置の一実施例を示し、所謂RF
スパッタ法による薄膜形成装置に適用した例である。図
において、薄膜形成袋装置1は、チャンバ2内に下部電
極3と上部電極4を有しており、半導体ウェーハ5は下
部電極3上に載置し、上部電極4との間に所定の高周波
電力が印加されるようにしている。また、チャンバ1に
はガス供給口6と排気ロアが開設され、チャンバ2内を
所要のガス雰囲気の低圧状態に保持できる。したがって
、チャンバ2内をこの状態に保ちながら両電極3,4間
に高周波電力を供給すれば、両電極間にプラズマが発生
し、活性化された原子によりスパッタ薄膜、例えばSi
n、膜8が半導体ウェーハ5表面に形成される。
The figure shows an embodiment of the film thickness measuring device of the present invention, which is a so-called RF
This is an example applied to a thin film forming apparatus using a sputtering method. In the figure, a thin film forming bag device 1 has a lower electrode 3 and an upper electrode 4 in a chamber 2, a semiconductor wafer 5 is placed on the lower electrode 3, and a predetermined high frequency Power is applied. Further, the chamber 1 is provided with a gas supply port 6 and an exhaust lower, so that the inside of the chamber 2 can be maintained in a low pressure state with a required gas atmosphere. Therefore, if high frequency power is supplied between both electrodes 3 and 4 while maintaining the inside of chamber 2 in this state, plasma is generated between both electrodes, and the activated atoms create a sputtered thin film, for example, Si.
n, a film 8 is formed on the surface of the semiconductor wafer 5.

一方、膜厚測定装置1oは前記半導体ウェーハ5の表面
に対向するチャンバ2の一部に穴9を形成し、かつこの
穴9に1/4人(4分の1波長)板11と保護用のビュ
ーボートガラス12を嵌着し、上部電極40間隙を通し
て半導体ウェーハ5の表面一部を透視できるようにして
いる。そして、このビューボートガラス12上には反射
ミラー13を4?や角度で設置すると共に、前記チャン
バ2の側方に配設した偏光レーザ発振器14から射出さ
れるレーザ光りをこの反射ミラー13で反射させた上で
ビー−ボートガラス12と1/4人板11を通してチャ
ンバ2内に導(ようにしている。前記偏光レーザ発振器
14は、本例ではP偏光を出力するように構成しており
、その前方位置にはプリズム状の偏光ビームスプリッタ
15を配置している。また、この偏光ビームスプリッタ
15の直角方向の側部にはS偏光を通過させる直線偏光
板16および前記レーザ光のスペクトルに合わせた干渉
フィルタ17を直列に配置し、更に光センサ18を配置
している。この光センサ18にはアン7’l 9 、 
A/D変換器2oおよびマイクロコンピュータ21を接
続し、光センサ18の検出信号に基づいて膜厚を演算で
きるようにしている。
On the other hand, the film thickness measuring device 1o has a hole 9 formed in a part of the chamber 2 facing the surface of the semiconductor wafer 5, and a 1/4 person (1/4 wavelength) plate 11 and a protective plate 11 in the hole 9. A view boat glass 12 is fitted so that a part of the surface of the semiconductor wafer 5 can be seen through the gap between the upper electrodes 40. Then, on this view boat glass 12, there are 4 reflection mirrors 13? At the same time, the laser beam emitted from the polarized laser oscillator 14 arranged on the side of the chamber 2 is reflected by the reflecting mirror 13, and then the be-boat glass 12 and the quarter board 11 are installed. In this example, the polarized laser oscillator 14 is configured to output P-polarized light, and a prismatic polarized beam splitter 15 is disposed in front of it. A linear polarizing plate 16 for passing S-polarized light and an interference filter 17 matching the spectrum of the laser beam are arranged in series on the side of the polarizing beam splitter 15 in the orthogonal direction, and an optical sensor 18 is further arranged. This optical sensor 18 has 7′l 9 ,
The A/D converter 2o and the microcomputer 21 are connected so that the film thickness can be calculated based on the detection signal of the optical sensor 18.

以上の構成によれば、偏光レーザ発振器14からのP偏
光は偏光ビームスプリッタ15を通り、反射ミラー13
にて反射された上でピー−ボートガラス12および1/
4人板11を通ってチャンバ2内に導かれる。このとき
、偏光ば1/4人板110作用によって円偏光とされ、
半導体ウェーハ5の表面に照射される。そして、ウェー
ハ5の表面に形成されつつあるSin、膜8の膜厚に応
じて干渉が生起される。この干渉を生起したウェーハ5
の反射光は逆の経路で1/4人板11.ビューボートガ
ラス12を通ってチャンバ外に導出される。このとき、
偏光は1/4人板11の作用によってS偏光とされ、反
射ミラー13によって反射され更に偏光ビームスプリッ
タエ5により側方へ向けて反射される。そして、直線偏
光板16および干渉フィルタ17を通った上で光センサ
18によって検出される。光センサ18は光強度に応じ
た信号を出力し、アンプ19 、 A/D変換器2゜お
よびマイクロコンピュータ21によって膜厚として出力
することになる。
According to the above configuration, the P-polarized light from the polarized laser oscillator 14 passes through the polarized beam splitter 15 and passes through the reflecting mirror 13.
pea boat glass 12 and 1/
It is guided into the chamber 2 through the four-person board 11. At this time, the polarized light becomes circularly polarized light by the action of the quarter plate 110,
The surface of the semiconductor wafer 5 is irradiated. Then, interference occurs depending on the thickness of the Sin film 8 that is being formed on the surface of the wafer 5. Wafer 5 that caused this interference
The reflected light passes through the opposite path to the 1/4 person board 11. It is led out of the chamber through the view boat glass 12. At this time,
The polarized light is converted into S-polarized light by the action of the quarter plate 11, reflected by the reflection mirror 13, and further reflected laterally by the polarization beam splitter 5. The light then passes through a linear polarizing plate 16 and an interference filter 17 and is detected by an optical sensor 18 . The optical sensor 18 outputs a signal corresponding to the light intensity, and the amplifier 19, A/D converter 2°, and microcomputer 21 output the signal as a film thickness.

そして、かかる測定において、偏光レーザ発振器14か
ら出力されたレーザ光の一部が偏光ビームスプリッタ1
5やビューボートガラス12によって反射されることが
あり、この雑音光がウェーハ表面から反射されてきた測
定光に混入することも生ずるが、雑音光はP偏光のまま
であるため直線偏光板16を通過することはできず、セ
ンサ18に到達しない。同様にチャンバ2内において生
じるプラズマ光が測定光に混入するが、これらの光は直
線偏光状態にあり、したがって174人板1lを通って
チャンバ2外に出た時点で測定光とは偏光状態が相違さ
れた円偏光となり直線偏光板16によって遮断される。
In this measurement, a part of the laser beam output from the polarization laser oscillator 14 is transmitted to the polarization beam splitter 1.
5 and the view boat glass 12, and this noise light may be mixed into the measurement light reflected from the wafer surface. However, since the noise light remains P-polarized light, the linear polarizing plate 16 is It cannot pass through and will not reach the sensor 18. Similarly, the plasma light generated in chamber 2 mixes with the measurement light, but these lights are in a linearly polarized state, so when they pass through the 174-person board 1l and exit the chamber 2, the polarization state is different from that of the measurement light. The resulting circularly polarized light is blocked by the linear polarizing plate 16.

このとき、S成分が通過されることがあっても、干渉フ
ィルタ17によってスペクトル幅が制約されるためここ
で確実に遮断される。
At this time, even if the S component is passed, the spectrum width is restricted by the interference filter 17, so it is reliably blocked.

したがって、ウェーハ5表面の反射光(測定光)のみが
センサ18に到達され、それ以外の光は確実に遮断され
ることになるので、S/N比は極めて良好なものとなり
、膜厚の測定精度を格段に向上することができる。また
、膜厚の測定精度の向上に伴なって薄膜の均一化を実現
でき、これにより半導体装置の特性の安定化、信頼性の
向上を達成できる。
Therefore, only the reflected light (measuring light) from the surface of the wafer 5 reaches the sensor 18, and other light is reliably blocked, resulting in an extremely good S/N ratio and a measurement of film thickness. Accuracy can be significantly improved. Further, as the accuracy of measuring the film thickness is improved, it is possible to make the thin film uniform, thereby stabilizing the characteristics of the semiconductor device and improving its reliability.

〔効果〕〔effect〕

+11  偏光レーザ発振器のレーザ光を1/4人板を
通して被測定膜に照射させ、その反射光を再度1/4人
板を通し更に前記レーザ光と異なる偏光の直線偏光板を
通してセンサにより検出しているので、雑音としての反
射光やチャンバ内で発生される光が検出されることはな
く、膜厚の測定精度を極めて高いものにできる。
+11 Laser light from a polarized laser oscillator is irradiated onto the film to be measured through a 1/4-person plate, and the reflected light is passed through the 1/4-person plate again and then detected by a sensor through a linear polarizing plate with a polarization different from that of the laser beam. Therefore, reflected light as noise and light generated within the chamber are not detected, making it possible to achieve extremely high film thickness measurement accuracy.

(2)膜厚の測定精度が向上できるので、製造される膜
厚の均一化を図ることができ、これにより半導体装置の
特性の安定化、信頼性の向上を達成できる。
(2) Since the measurement accuracy of the film thickness can be improved, the thickness of the manufactured film can be made uniform, and thereby the characteristics of the semiconductor device can be stabilized and the reliability can be improved.

(3)膜厚の均一化を図ることができるので、半導体装
置の製造歩留を向上できる。
(3) Since the film thickness can be made uniform, the manufacturing yield of semiconductor devices can be improved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、偏光レーザ
発振器がS偏光を出力するように構成する一方、直線偏
光板がP偏光を通過できるように構成してもよい。また
、センサの分光感度特性がシャープにレーザ光に合致す
るものであれば干渉フィルタを省略することもできる。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the polarization laser oscillator may be configured to output S-polarized light, while the linear polarizing plate may be configured to allow P-polarized light to pass through. Furthermore, if the spectral sensitivity characteristics of the sensor sharply match the laser beam, the interference filter can be omitted.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体ウェーへの薄
膜形成技術に適用した場合について説明したが、それに
限定されるものではなく、たとえばエツチング装置等に
用いて膜厚を所要厚さにまで低減する際のコントロール
にも適用でき、更に半導体ウェーハ以上の表面に薄膜を
形成する技術にも適用できる。
The above explanation has mainly been about the application of the invention made by the present inventor to the field of application, which is the field of application of the invention, which is the technology for forming thin films on semiconductor wafers. It can also be used to control the reduction of film thickness to a required thickness, and can also be applied to techniques for forming thin films on surfaces larger than semiconductor wafers.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明装置の一実施例の構成図である。 1・・・薄膜形成装置、2・・・チャンバ、5・・・ウ
ェーハ、8・・・薄膜(Sin、膜)、10・・・膜厚
測定装置、11・・・174人板、12・・・ビューボ
ートガラス、14・・・偏光レーザ発振器、15・・・
偏光ビームスプリッタ、16・・・直線偏光板、17・
・・干渉フィルタ、18・・・光センサ、21・・・マ
イクロコンピュータ。
The figure is a configuration diagram of an embodiment of the device of the present invention. DESCRIPTION OF SYMBOLS 1... Thin film forming device, 2... Chamber, 5... Wafer, 8... Thin film (Sin, film), 10... Film thickness measuring device, 11... 174 person board, 12... ...View boat glass, 14...Polarized laser oscillator, 15...
Polarizing beam splitter, 16... linear polarizing plate, 17.
...Interference filter, 18... Optical sensor, 21... Microcomputer.

Claims (1)

【特許請求の範囲】 1、被測定膜に光を照射し、その反射干渉光を検出して
被測定膜の膜厚を測定する装置であって、P偏光又はS
偏光を射出する偏光レーザ発振器と、この偏光レーザ発
振器と前記被測定膜との間に配設した偏光ビームスプリ
ッタ及び174人板と、ビームスプリッタにより反射さ
れた前記被測定膜からの反射光路上に配設した直線偏光
板と、この直線偏光板の後側に設けた光センサを備える
ことを特徴とする膜厚測定装置。 2、前記反射光路の一部には偏光レーザ発振器のレーザ
光のスペクトル圧合致した干渉フィルタを配設してなる
特許請求の範囲第1項記載の膜厚測定装置。 3、直線偏光板は偏光レーザ発振器による偏光とは反対
の偏光を通過し得るよう構成してなる特許請求の範囲第
1項又は第2項記載の膜厚測定装置。
[Scope of Claims] 1. An apparatus for measuring the film thickness of a film to be measured by irradiating light onto a film to be measured and detecting the reflected interference light, the apparatus comprising P polarized light or S polarized light.
A polarized laser oscillator that emits polarized light, a polarized beam splitter and a plate arranged between the polarized laser oscillator and the film to be measured, and a light path reflected from the film to be measured that is reflected by the beam splitter. A film thickness measuring device comprising a linearly polarizing plate and an optical sensor provided on the rear side of the linearly polarizing plate. 2. The film thickness measuring device according to claim 1, wherein a part of the reflected optical path is provided with an interference filter that matches the spectrum of the laser light from the polarized laser oscillator. 3. The film thickness measuring device according to claim 1 or 2, wherein the linearly polarizing plate is configured to pass polarized light opposite to that of the polarized laser oscillator.
JP6544683A 1983-04-15 1983-04-15 Device for measuring film thickness Pending JPS59192904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6544683A JPS59192904A (en) 1983-04-15 1983-04-15 Device for measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6544683A JPS59192904A (en) 1983-04-15 1983-04-15 Device for measuring film thickness

Publications (1)

Publication Number Publication Date
JPS59192904A true JPS59192904A (en) 1984-11-01

Family

ID=13287365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6544683A Pending JPS59192904A (en) 1983-04-15 1983-04-15 Device for measuring film thickness

Country Status (1)

Country Link
JP (1) JPS59192904A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948259A (en) * 1989-01-14 1990-08-14 Leybold Aktiengesellschaft Method and apparatus for monitoring layer erosion in a dry-etching process
JPH0344842A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Manufacture of information carrying disk
JPH03164497A (en) * 1989-11-24 1991-07-16 Res Dev Corp Of Japan Epitaxial growth method of compound crystal
JPH0416704A (en) * 1990-05-10 1992-01-21 Matsushita Electric Ind Co Ltd Optical film thickness monitor and sputtering apparatus using the monitor
JPH04105915U (en) * 1991-02-21 1992-09-11 スズキ株式会社 oil strainer
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948259A (en) * 1989-01-14 1990-08-14 Leybold Aktiengesellschaft Method and apparatus for monitoring layer erosion in a dry-etching process
JPH0344842A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Manufacture of information carrying disk
JPH03164497A (en) * 1989-11-24 1991-07-16 Res Dev Corp Of Japan Epitaxial growth method of compound crystal
JPH0751478B2 (en) * 1989-11-24 1995-06-05 新技術事業団 Epitaxial growth method of compound crystal
JPH0416704A (en) * 1990-05-10 1992-01-21 Matsushita Electric Ind Co Ltd Optical film thickness monitor and sputtering apparatus using the monitor
JPH04105915U (en) * 1991-02-21 1992-09-11 スズキ株式会社 oil strainer
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor

Similar Documents

Publication Publication Date Title
US6797529B2 (en) Processing apparatus with measuring unit and method
JPH02140604A (en) Method and apparatus for measuring thickness of thin insulating film
US20070009010A1 (en) Wafer temperature measuring method and apparatus
JPS59192904A (en) Device for measuring film thickness
US4647205A (en) Method and interferometer for the measurement of short distances
US20030062337A1 (en) Shallow angle interference process and apparatus for determining real-time etching rate
JPH0640071B2 (en) Highly accurate humidity measurement method using the second derivative curve of water vapor absorption line
JPS60132327A (en) Thick film monitoring device for thin film
JPS62203335A (en) Etching monitor apparatus
JP2007040981A (en) Method and device for measuring wafer temperature
JPH0449643B2 (en)
JP3120438B2 (en) Film thickness measuring device
JPH03148118A (en) Semiconductor manufacturing apparatus
KR960019638A (en) Wafer temperature measuring device using two wavelength infrared laser interferometer
JPH05149708A (en) Method and device for deciding reference position for double-beam interferometer
KR0171006B1 (en) Non-contact real time metal film thickness measuring apparatus of semiconductor processing equipment and method thereof
JPH11101739A (en) Ellipsometry apparatus
JPH03237304A (en) Thin film manufacturing device
KR102167799B1 (en) Thickness measuring device
WO2004010094A1 (en) Emissivity corrected radiation pyrometer integral with a reflectometer and roughness sensor for remote measuring of true surface temperatures
JPH1062129A (en) Film thickness measuring method
JPS60257136A (en) Film thickness measuring device for photoresist
JP2970020B2 (en) Method of forming coating thin film
JPH10239028A (en) Etching depth measuring method and its device
JPH1125821A (en) Optical sensor device