JPS59190607A - Contactless measuring device for measuring shape of body - Google Patents

Contactless measuring device for measuring shape of body

Info

Publication number
JPS59190607A
JPS59190607A JP6621683A JP6621683A JPS59190607A JP S59190607 A JPS59190607 A JP S59190607A JP 6621683 A JP6621683 A JP 6621683A JP 6621683 A JP6621683 A JP 6621683A JP S59190607 A JPS59190607 A JP S59190607A
Authority
JP
Japan
Prior art keywords
displacement meter
axis
angle
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6621683A
Other languages
Japanese (ja)
Other versions
JPH022082B2 (en
Inventor
Yusuke Takagi
勇輔 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6621683A priority Critical patent/JPS59190607A/en
Publication of JPS59190607A publication Critical patent/JPS59190607A/en
Publication of JPH022082B2 publication Critical patent/JPH022082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To shorten the measuring time, by providing an operation control mechanism, which drives and controls the driving amount and the attaching angle of a three-dimensional driving mechanism of a displacement gage, and crossing the axis of the rotary center of an angle changing mechanism and the extended line of the optical axis of emitted light. CONSTITUTION:A displacement gage 40 is attached to a cross head 22 over a body to be measured 1, which is placed on a base table 20. The cross head 22 is slidden in an arm 23 of a three-dimensional driving mechanism and driven right and left by a motor 26. Therefore, the displacement gage 40 can be moved in the direction of the x axis. Driving in the direction of the (y) axis is performed by a longitudinal feed screw 28 and a gear box 30. The entire driving mechanism on a base table 32 is driven in the direction of the axis by a motor 31. Meanwhile, an angle changing mechanism 21 rotates an arm 34 around a rotating central shaft 33, which is in parallel with the (x) axis. An angle changing mechanism 21', which is attached to the lower end of the arm 34 turns the displacement gage 40 around a rotating central shaft 33', which is in parallel with the (z) axis.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は物体形状の非接触測定装置に係り、特に形状測
定時の演算時間を短縮するのに好適な物体形状をレーザ
ー光等を利用した光学的変位計によシ非接触で測定する
ようにした非接触測定装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a non-contact measurement device for measuring the shape of an object, and in particular, an optical method using laser light or the like to measure the shape of an object, which is suitable for shortening calculation time during shape measurement. The present invention relates to a non-contact measurement device that uses a target displacement meter to perform non-contact measurement.

〔発明の背景〕[Background of the invention]

近年、オグトエレクトロニクスの発展に伴い、レーザー
光等の光学的手段により非接触で物体形状の測定を行う
装置が開発されている。従来、このような装置としては
倣い計測装置が主流であるので、以下、その−例を第1
図を用いて説明する。
BACKGROUND ART In recent years, with the development of ogive electronics, devices have been developed that measure the shape of objects in a non-contact manner using optical means such as laser light. Conventionally, the mainstream of such devices has been the scanning measuring device, so below we will introduce an example of it in the first section.
This will be explained using figures.

第1図は従来の形状測定装置の側面図で、被測定物体1
の外部に駆動テーブル2を配置し、駆動テーブル2を駆
動機構3,3′によって3次元的(図示のX、y、z軸
方向)に駆動するようにしである。駆動テーブル2上に
は、レーザー光等の光源4.半透鏡5.レンズ6.7.
振動ピンホール8および受光器9からなる光学系が配置
しである。また、振動ピンホール8を振動させるための
発振器10、受光器9の出力を増幅する増幅器11、増
幅器11の出力を用いて演算を行って駆動機構3,3′
を制御する演算制御回路12とよりなる演算制御装置が
設けである。
Figure 1 is a side view of a conventional shape measuring device.
A drive table 2 is disposed outside the drive table 2, and the drive table 2 is driven three-dimensionally (X, y, and z-axis directions shown in the figure) by drive mechanisms 3 and 3'. On the drive table 2 is a light source 4 such as a laser beam. Semi-transparent mirror 5. Lens 6.7.
An optical system consisting of a vibrating pinhole 8 and a light receiver 9 is arranged. Further, an oscillator 10 for vibrating the vibration pinhole 8, an amplifier 11 for amplifying the output of the light receiver 9, and an operation using the output of the amplifier 11 are used to calculate the drive mechanism 3, 3'.
An arithmetic and control device consisting of an arithmetic and control circuit 12 is provided.

いま、被測定物体1とレンズ6との距離yがレンズ6の
焦点距離Aに等しいとすると、反射光は第1図に示しで
あるように振動ピンホール8の振幅の中心に熱点を結ぶ
ので、受光器9の出力は、第1図の場合の変位と出力と
の関係の説明図である第2図に示すように、加振周波数
fの2倍の周波数2fのものとなる。また、距離yがA
に一致しない場合には、出力周波数はfとなるとともに
、距離yの遠近によって位相が同相ないし逆相となる。
Now, assuming that the distance y between the object to be measured 1 and the lens 6 is equal to the focal length A of the lens 6, the reflected light connects a hot point at the center of the amplitude of the vibration pinhole 8, as shown in FIG. Therefore, the output of the light receiver 9 has a frequency 2f, which is twice the excitation frequency f, as shown in FIG. 2, which is an explanatory diagram of the relationship between displacement and output in the case of FIG. 1. Also, the distance y is A
If they do not match, the output frequency becomes f, and the phases become in-phase or anti-phase depending on the distance y.

したがって、これらの周波数と位相の検出結果にもとづ
いて距離yがAに等しくなるように駆動機構3,3′の
駆動制御を行えば、その、駆動量によって被測定物体1
の形状を倣い計測することができる。
Therefore, if the driving mechanisms 3 and 3' are controlled so that the distance y becomes equal to A based on the detection results of these frequencies and phases, the measured object 1 will be
The shape can be copied and measured.

しかし、この方式の形状測定装置には下記のような問題
点がある。
However, this type of shape measuring device has the following problems.

(1)測定時間が長い。これは、被測定物体1のX−y
断面の形状を測定する場合には、X軸方向の駆動にあわ
せて、常にy軸方向の駆動を行う必要があるからである
(1) Measurement time is long. This is the X-y of the object to be measured 1.
This is because when measuring the cross-sectional shape, it is necessary to always drive in the y-axis direction in conjunction with the drive in the x-axis direction.

(2)被測定物体1の表面の傾斜角が大きい場合には測
定ができない。これfd、被測定点における被測定物体
1の表面の法線と照射光軸とのなす角度α(第1図参照
)が大きくなると、受光器9に向かう反射光の光量が減
少するためである。
(2) If the inclination angle of the surface of the object to be measured 1 is large, measurement cannot be performed. This fd is because as the angle α between the normal to the surface of the object 1 to be measured and the irradiation optical axis at the point to be measured (see Fig. 1) increases, the amount of reflected light directed toward the light receiver 9 decreases. .

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、測定時間を短縮することができ、しかも、被
測定物体の表面の傾斜が急であっても形状測定を行うこ
とができる物体形状の非接触測定装置を提供することに
ある。
The present invention has been made in view of the above, and its purpose is to be able to shorten the measurement time and also to be able to perform shape measurement even if the surface of the object to be measured has a steep slope. An object of the present invention is to provide a non-contact measurement device for measuring the shape of an object.

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は、被測定物体の表面に照て3次元
的に駆動される変位計の取り付は角度を変化させる1つ
の角度変化機構と、上記変位占4による距離の測定値、
上記3次元駆動機構の駆動量および上記変位計の取り付
角度を入力して必要な演算を行うとともに上記3次元駆
動機構と」二記角度変化機構とを駆動制御する演算制御
機構とよりなり、上記角度変化機構の回転中心軸と上記
変位計からの照射光の光軸の延長線とは交差するように
構成した点にある。第2の特徴は、上記角度変化機構を
複数とし、そのうちの−1−記変位計に最も近い角度変
化機構の回転中心軸と上記変位側からの射熱光の光軸の
延長線とは交差するように構成し、上記3次元駆動機構
に最も近い角度変化機構の回転中心軸は上記3次元駆動
機構のいずれか1つの駆動軸に平行になるように構成し
た点にある。
The first feature of the present invention is that the displacement meter that is three-dimensionally driven against the surface of the object to be measured is mounted using one angle changing mechanism that changes the angle, and the distance measured by the displacement calculation 4. ,
an arithmetic control mechanism that performs necessary calculations by inputting the drive amount of the three-dimensional drive mechanism and the mounting angle of the displacement meter, and drives and controls the three-dimensional drive mechanism and the angle change mechanism described in "2"; The central axis of rotation of the angle changing mechanism and the extension of the optical axis of the irradiated light from the displacement meter are configured to intersect at a point. The second feature is that there is a plurality of angle change mechanisms, and the rotation center axis of the angle change mechanism closest to the displacement meter -1- among them intersects the extension line of the optical axis of the heat radiation from the displacement side. The rotation center axis of the angle changing mechanism closest to the three-dimensional drive mechanism is configured to be parallel to the drive axis of any one of the three-dimensional drive mechanisms.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第3図、第4図、第7図、第12図、第1
3図に示した実施例および第5図、第6図、第8図〜第
11図、第14図、第15図を用いて詳細に説明する。
The present invention will be described below as shown in FIGS. 3, 4, 7, 12, and 1.
This will be described in detail using the embodiment shown in FIG. 3 and FIGS. 5, 6, 8 to 11, 14, and 15.

第3図は本発明の非接触測定装置の一実施例を示す全体
構成図である。第3図において、2oは基台、1i−1
:基台2oの上方に置かれた被測定物体で、被測定物体
1の上方には、変位計40が2つの角ii化機構21.
21’を介してクロスヘッド22に取り付けられて位置
している。クロスヘッド22け、3次元駆動機構のアー
ム23に滑合させてあシ、ガイド部24、横送りネジ2
5およびモータ26によって左右に駆動されるので、変
位計40も図示のX軸方向に移動可能となっている。捷
だ、3次元駆動機構のy軸方向の、駆動は、モータ27
に結合しである縦方向送りネジ28とアーム29に滑合
させであるキヤボックス3oとによって行い、さらに、
モータ31は基台32に載置しである駆動機構全体を区
軸方向に、駆動する。
FIG. 3 is an overall configuration diagram showing an embodiment of the non-contact measuring device of the present invention. In Figure 3, 2o is the base, 1i-1
: An object to be measured placed above the base 2o. Above the object to be measured 1, there are two displacement meters 40 and two angulation mechanisms 21.
It is located attached to the crosshead 22 via 21'. 22 crossheads, a foot that slides onto the arm 23 of the three-dimensional drive mechanism, a guide section 24, and a horizontal feed screw 2
5 and the motor 26, the displacement meter 40 is also movable in the illustrated X-axis direction. The drive in the y-axis direction of the three-dimensional drive mechanism is by the motor 27.
This is done by a vertical feed screw 28 which is coupled to the arm 29 and a gear box 3o which is slidably fitted to the arm 29, and further,
The motor 31 is mounted on a base 32 and drives the entire drive mechanism in the axial direction.

一方、クロスヘッド22に取り付けである角度変化機構
21(/i、y軸と平行な回転中心軸33の周りにアー
ム34を回転させる。そして、このアーム34の下端に
角度変化機構21′が取勺伺けてあり、y軸と平行な回
転中心軸33′の周りに変位計40を回動させるように
しである。
On the other hand, the arm 34 is rotated around the rotation center axis 33 which is parallel to the angle change mechanism 21 (/i, y-axis) attached to the crosshead 22.The angle change mechanism 21' is attached to the lower end of this arm 34. The displacement meter 40 is rotated around a rotation center axis 33' parallel to the y-axis.

したがって、変位計40は、X2y、y軸の3軸方向に
移動可能であるとともに、角度変化機構21’、21’
によってy軸およびy軸に平行な回転軸の周D(i=回
転可能となっている。
Therefore, the displacement meter 40 is movable in the three axial directions of the X2y and y axes, and the angle changing mechanisms 21', 21'
Accordingly, the circumference D of the y-axis and the rotation axis parallel to the y-axis (i=rotation is possible.

第4図は第3図の変位計40の概略構造とアーム34へ
の取り付は状況を示した図である。レーザー光等の光の
41から射出された光線は、照射レンズ42を通って被
測定物体1の表面」二の測定点Pを照射し、P点からの
拡散反射光は、照射光軸45とβなる角度を有する軸線
上に配置した集光レンズ43によって集光され、受光器
44で検出される。距離の測定は、被測定物体1と変位
計40との距離りが変化すると(第4図では被測定物体
1と回転中心軸33′との距離t Lとしである。)、
受光器44の受光面上の入射位置が変化する原理を用い
て行うようにしである。たたし、受光面の大きさ等の制
約から、測定できる距離には限界があり、その上、下限
はLmax、上限はJJ yninとなる。また、本実
施例では、アーム34に対して変位計40を回動駆動さ
せる角度変化機構21′の回転中心軸33′が照射光軸
45と交差するように変位計40を取っ付は部46を介
して結合しである。
FIG. 4 is a diagram showing a schematic structure of the displacement meter 40 shown in FIG. 3 and how it is attached to the arm 34. A light beam emitted from the laser beam 41 passes through the irradiation lens 42 and irradiates the second measurement point P on the surface of the object to be measured 1, and the diffusely reflected light from the point P is directed toward the irradiation optical axis 45. The light is focused by a condensing lens 43 arranged on an axis having an angle β, and detected by a light receiver 44. The distance is measured when the distance between the measured object 1 and the displacement meter 40 changes (in FIG. 4, the distance t L between the measured object 1 and the rotation center axis 33').
This is done using the principle that the incident position on the light receiving surface of the light receiver 44 changes. However, there is a limit to the distance that can be measured due to constraints such as the size of the light receiving surface, and furthermore, the lower limit is Lmax and the upper limit is JJ ynin. In addition, in this embodiment, the displacement meter 40 is attached to the portion 46 such that the rotation center axis 33' of the angle change mechanism 21' that rotationally drives the displacement meter 40 with respect to the arm 34 intersects the irradiation optical axis 45. It is connected via.

第5図、第6図はそれぞれ変位計40の照射角αの測定
限度を示した図である。αの値1dV被測定物体1の表
面の照射点における法線nと照射光軸45とのなす角と
定義する。第5図、第6図がらαの値が過大(第5図〕
もしくは過小(第6図ンとなった場合は、受光光軸の方
向の拡散反射の光量が減少するため、受光器44で検出
できなくなることがわかる。この照射角αの上限および
下限はそれぞれα。a工、αminとしである。
FIGS. 5 and 6 are diagrams showing measurement limits of the irradiation angle α of the displacement meter 40, respectively. The value of α is defined as 1 dV as the angle between the normal n at the irradiation point on the surface of the object to be measured 1 and the irradiation optical axis 45. As shown in Figures 5 and 6, the value of α is excessive (Figure 5)
Or, if it becomes too small (as shown in Figure 6), the amount of diffusely reflected light in the direction of the receiving optical axis decreases, so it can no longer be detected by the light receiver 44.The upper and lower limits of this illumination angle α are α, respectively. .a engineering, αmin and so on.

第7図は本発明の非接触測定装置の演算制御機構の一実
施例を示すブロック図である。変位計御装置51に入力
される。また、X、y、Z軸方向の駆動量を測定する磁
気スクール52がらの位置情報は、増幅器53を経て演
算制御装置51へ入力される。さらに、角度変化機構2
1.21’のロータリーエンコーダ54からの角度情報
は、増幅器55を経て演算制御装置51に入力される。
FIG. 7 is a block diagram showing one embodiment of the arithmetic and control mechanism of the non-contact measuring device of the present invention. It is input to the displacement control device 51. Further, position information from the magnetic school 52 that measures the drive amount in the X, y, and Z axis directions is input to the arithmetic and control device 51 via the amplifier 53. Furthermore, the angle change mechanism 2
The angle information from the rotary encoder 54 of 1.21' is input to the arithmetic and control unit 51 via the amplifier 55.

演算制御装置51では、これらの情報にもとついて被測
定物体1上の照射点Pの座標(X+ y+ Z)を演算
するとともに、その結果を表示装置56に表示する。さ
らに、距離りおよび照射角αに関して、後述の比較6I
t算を行い、そのん呆にもとづいてX、y、Z軸方向の
駆動モータ26,27゜31および角度変化機構21.
.21.’の駆動モータ57,57”(第3図、第4図
には図示省略)の駆動制御を行う。
The arithmetic and control device 51 calculates the coordinates (X+y+Z) of the irradiation point P on the object to be measured 1 based on this information, and displays the result on the display device 56. Furthermore, regarding distance and illumination angle α, comparison 6I described below
t is calculated, and based on the calculation, the drive motors 26, 27° 31 in the X, y, and Z axis directions and the angle changing mechanism 21.
.. 21. The drive motors 57, 57'' (not shown in FIGS. 3 and 4) are controlled.

次に、実施例の効果について説明する。1ず、変位計4
0の利用による効果について説ツ]する。
Next, the effects of the embodiment will be explained. 1. Displacement meter 4
Explain the effects of using 0].

第8図は変位計40の駆動方法を説明するための図で、
図示のように、変位計40に対して被測定物体lが右下
シの断面形状を有している場合は、距離の測定可能な範
囲L min −L+。、Xが広いので、被測定面の傾
斜が緩やかな場合には、変位計40をX軸方向に駆動す
るだけで形状の測定値が得られる。このため、従来例に
比較してy軸方向の駆動の回数減少にともなう測定時間
の短縮をはかることができる。なお、各測定点において
は、距離の測定値りとL maxおよびL minとの
比較演算を行い、Lの値が測定可能範囲全逸脱しないよ
うな制御を行う。
FIG. 8 is a diagram for explaining the driving method of the displacement meter 40,
As shown in the figure, when the measured object l has a cross-sectional shape of the lower right side with respect to the displacement meter 40, the measurable distance range L min -L+. , Therefore, compared to the conventional example, the measurement time can be shortened due to the reduction in the number of drives in the y-axis direction. In addition, at each measurement point, a comparison calculation is performed between the measured distance value and L max and L min, and control is performed so that the value of L does not completely deviate from the measurable range.

次に、角度変化機構21.21’を設けたことによる効
果を第9図を用いて説明する。図中■の場合は、照射点
Pにおける法線j]と照射光軸45とのなす角αは、変
位計40の角度の測定可能範囲αmin〜αm8工内に
あるが、破線で示す■の場合は、上記範囲を外れてしま
う。この場合は、Oに示すように、角度変化機構21あ
るいは21’(第3図参照)を用いて変位計40を回動
させ、αの値が上記範囲内になるようにする。したがっ
て、各測定点におけるαの測定値とαminおよびα。
Next, the effect of providing the angle changing mechanism 21, 21' will be explained using FIG. 9. In the case of ■ in the figure, the angle α between the normal j] at the irradiation point P and the irradiation optical axis 45 is within the measurable angle range of αmin to αm8 of the displacement meter 40, but in the case of ■ shown by the broken line, In this case, it falls outside the above range. In this case, as shown in O, the displacement meter 40 is rotated using the angle changing mechanism 21 or 21' (see FIG. 3) so that the value of α falls within the above range. Therefore, the measured value of α and αmin and α at each measurement point.

8K とを比較演算し、αが測定可能範囲を逸脱する傾
向を示したら、その都度角度変化機構20あるいは20
′を作動させる。こわによシ任意形状の断面の被測定物
体1の形状測定を行うことが次に、変位計40側の回転
駆動機構21′の回転中心軸33′と照射光軸45の延
長線とを交差させたことによる効果について説明する。
8K, and if α shows a tendency to deviate from the measurable range, the angle change mechanism 20 or 20
’ is activated. To avoid this fear, to measure the shape of the object 1 to be measured having an arbitrary cross-section, the rotation center axis 33' of the rotational drive mechanism 21' on the displacement meter 40 side intersects the extension line of the irradiation optical axis 45. I will explain the effects of doing so.

なお、簡単のため、ここでは回転中心軸33′がZ軸に
平行な場合について議論する。第10図はこの場合の説
明図で、被測物体1」二の照射点Pの座標(XI yl
 z)は、照射光軸45の延長線と回転中心軸33′と
の交点Qの座標(XI r Yl +Z+)e用いれば
、下式で表わされる。
For simplicity, the case where the rotation center axis 33' is parallel to the Z-axis will be discussed here. Fig. 10 is an explanatory diagram of this case, and shows the coordinates (XI yl
z) is expressed by the following formula using the coordinates (XI r Yl +Z+)e of the intersection point Q between the extension of the irradiation optical axis 45 and the rotation center axis 33'.

X””Xl+LCO3θ、      ・・・−(1)
Y ”” Y + + Lsinθ<       −
−=  (2)z = z 、           
  ・・・・・ (3)ここに、L;線分PQの長さ θd;照射光軸45とX軸とのなす角 一方、第11図は回転中心ll1l133′と照射光軸
45の延長線とが交差していない場合の説明図で、この
場合は、照射光軸45と回転中心軸33′との距離を1
1とし、照射光軸45を含みz11]に垂直な平面と回
転中心軸33′との交点Qの座標を(XI r yl 
 +  zI  )とすれば、P点の座標(XIy、Z
)は下式で示される。
X””Xl+LCO3θ, ...-(1)
Y ”” Y + + Lsinθ<-
−= (2) z = z,
(3) Here, L; length θd of line segment PQ; angle between the irradiation optical axis 45 and the X-axis; on the other hand, FIG. This is an explanatory diagram for the case where the two do not intersect. In this case, the distance between the irradiation optical axis 45 and the rotation center axis 33' is set to 1.
1, and the coordinates of the intersection Q of the plane containing the irradiation optical axis 45 and perpendicular to z11] and the rotation center axis 33' are (XI r yl
+ zI ), then the coordinates of point P (XIy, Z
) is shown by the following formula.

x = x 、 −1−LCO3θa+hsinθd 
  ”’  (4)y= Y + 十Lsinθd7−
 h cosθd−(5)2−21         
   ・・・ (6)(1)式と(4)式、(“2)式
と(5)式を比較すれば明らかなように、本発明の実施
例のように、回転中心軸33′と照射光軸45の延長線
とを交差させた場合には、照射点Pの座標の計算式が簡
単になる。
x = x, -1-LCO3θa+hsinθd
”' (4) y= Y + 10Lsinθd7−
h cosθd-(5)2-21
(6) As is clear from comparing equations (1) and (4), and equations (2) and (5), as in the embodiment of the present invention, the rotation center axis 33' and When the extension line of the irradiation optical axis 45 intersects with the extension line of the irradiation optical axis 45, the formula for calculating the coordinates of the irradiation point P becomes simple.

したがって、演算制御装置51内での計算時間が減少し
、形状測定に要する時間を短縮することができる。
Therefore, the calculation time within the arithmetic and control device 51 is reduced, and the time required for shape measurement can be shortened.

次に、3次元駆動機構側の角度変化機構20の回転中心
軸33を3次元1駆動機構のいずれか1つの駆動軸と平
行にした場合の効果について説明する。第12図1番1
3図は第3図の角度変化機構21.2]、’の詳細構造
図で、第12図は正面図、第13図は側面図である。角
度変化機構21の回転中心軸33と3次元駆動機構への
取り伺はアーム58の中心線との交点凡の座標(X2 
+ 3’2 +z2)は、前述のQ点の座標(XI +
 Yj + zI)を用いて次式で表わすことができる
Next, the effect when the rotation center axis 33 of the angle changing mechanism 20 on the three-dimensional drive mechanism side is made parallel to the drive axis of any one of the three-dimensional drive mechanisms will be described. Figure 12 No. 1
3 is a detailed structural diagram of the angle changing mechanism 21.2],' of FIG. 3, FIG. 12 is a front view, and FIG. 13 is a side view. The rotation center axis 33 of the angle change mechanism 21 and the three-dimensional drive mechanism can be accessed from the coordinates (X2) of the intersection with the center line of the arm 58.
+3'2 +z2) is the coordinate (XI +
It can be expressed by the following formula using Yj + zI).

XI−x2−11・・・・(7) Yl = Y2−A2CO3Qa+/:3sinθn 
 ・=  (8)zI =Z2+t2sinθn +l
 3 COF、θa  −(9)ここに、t、  l 
t2 + A3  ;図示の各アームの長さ Qn;角度変化機構21 の回転角 一方、第14図、第15図はそれぞれ回転中心軸33が
X軸と角度θSをなす場合の第12図。
XI-x2-11...(7) Yl = Y2-A2CO3Qa+/:3sinθn
・= (8)zI =Z2+t2sinθn +l
3 COF, θa − (9) where, t, l
t2 + A3; Length Qn of each arm shown; Rotation angle of angle changing mechanism 21 On the other hand, FIGS. 14 and 15 are respectively FIGS.

第13図に和尚する図で、この場合のQ点とR1点の座
標の間には次の関係式が成立する。
In the diagram shown in FIG. 13, the following relational expression holds between the coordinates of point Q and point R1 in this case.

xl=x2−IHcO3θ B−A2sinθ s  
             ・−QO)Y ] = Y
 2  十ス’−1sinill  3−(72cos
θ R−j!、3sinθ 、、)COSθ 8・・・
 (II) z1= Z 2 +t2sin On +t3cosθ
n       ・(121(7)式と(10)式、(
8)式と01)式、(9)式と32+式を比較すれば、
第12図、第13図に示す本発明の実施例のように、3
次元駆動機構側の角度変化機構21の回転中心軸33を
3次元駆動機構の1つの軸と平行になるように配設した
場合は、座標の計算式が非常に簡単になることがわかる
。したがって、この場合も演算制御装置51での計算時
間が減少し、形状測定に要する時間を短縮することがで
きる。
xl=x2-IHcO3θ B-A2sinθ s
・-QO)Y ] = Y
2 10s'-1sinill 3-(72cos
θ R-j! ,3sinθ,,)COSθ8...
(II) z1= Z 2 +t2sin On +t3cosθ
n ・(121 Equation (7) and Equation (10), (
Comparing formula 8) and formula 01), formula (9) and formula 32+, we get
As in the embodiment of the present invention shown in FIGS. 12 and 13, three
It can be seen that when the rotation center axis 33 of the angle change mechanism 21 on the dimensional drive mechanism side is arranged so as to be parallel to one axis of the three-dimensional drive mechanism, the formula for calculating the coordinates becomes very simple. Therefore, in this case as well, the calculation time in the arithmetic and control unit 51 is reduced, and the time required for shape measurement can be shortened.

以上述べたように、本発明の実施例によれば、距離の測
定可能範囲が広い変位計40を用いているので、駆動制
御の回数減少に加えて、演算制御装置51における計算
時間の短縮が期待され、形状計測時間を大幅に短縮でき
る。また、角度変化機構21,2]、’を介して変位計
40を3次元駆動機構に結合しであるので、被測定物体
1の形状に急激な変化があっても、変位計40の取付角
を変えることなく、形状測定を行うことができる。
As described above, according to the embodiment of the present invention, since the displacement meter 40 with a wide measurable distance range is used, in addition to reducing the number of drive controls, the calculation time in the arithmetic and control unit 51 can be reduced. This is expected to significantly reduce shape measurement time. In addition, since the displacement meter 40 is coupled to the three-dimensional drive mechanism via the angle change mechanisms 21, 2], ', the mounting angle of the displacement meter 40 can be adjusted even if there is a sudden change in the shape of the object to be measured 1. Shape measurement can be performed without changing the

さらに、角度変化機構21′の回転中心軸33′が変位
計40の照射光軸45の延長線と交差するようにしであ
るので、これによっても演算時間の短縮金はかることが
できる。
Further, since the rotation center axis 33' of the angle changing mechanism 21' intersects with the extension of the irradiation optical axis 45 of the displacement meter 40, the calculation time can also be reduced.

なお、本発明は上記した実施例のみに限定されるもので
なく、変位計40.角度変化機構21゜21′および3
次元駆動機構の構成、配置には線種の変形側が考えられ
る。例えば、第3図の実施例では、角度変化機構が21
と21′の2つの場合を示しているが、角度変化機構は
21′1つたけであってもよい。また、変位計40の取
付角度は、第3図以外に、照射光軸45の周りに任意角
度回転させた取付角度であってもよく、これらによって
も上記とほぼ同一の効果が期待できる。
It should be noted that the present invention is not limited to the above-described embodiments, and may include the displacement meter 40. Angle change mechanism 21゜21' and 3
The configuration and arrangement of the dimensional drive mechanism may involve variations in line types. For example, in the embodiment of FIG. 3, the angle changing mechanism is 21
Although two cases are shown, 21' and 21', there may be only one angle changing mechanism 21'. Further, the mounting angle of the displacement meter 40 may be an angle other than that shown in FIG. 3, which may be rotated by an arbitrary angle around the irradiation optical axis 45, and substantially the same effect as described above can be expected with these.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、測定時間を短縮
することができ、しかも、被測定物体の表面の傾斜が急
であっても形状i11+1定を行うことができるという
効果がある。
As described above, according to the present invention, it is possible to shorten the measurement time, and even if the surface of the object to be measured has a steep slope, the shape i11+1 can be determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の形状測定装置の側面図、第2図は第1図
の形状測定装置を用いた場合の変位と出力との関係の説
明図、第3図は本発明の物体形状の非接触測定装置の−
・実施例を示す全体構成図、第4図は第3図の変位計の
概略構造とアームへの取シ付は状況を示した図、第5図
、第6図はそれぞれ変位計の照射角の測定限度を説明す
るだめの図、第7図は本発明の非接触測定装置の演算制
御機構の一実施例を示すブロック図、第8図、第9図は
それぞれ変位計の、駆動方法を説明するための図、第1
0図、第11図、第14図、第15図はそれぞれ本発明
の詳細な説明するための説明図、第12図は第3図の角
度変化機構の詳細構造を示す正面図、第13図は第12
図の側面図である。 1・・被測定物体、20・・基台、21.2’l’・・
・角度変化機構、22・・・クロスヘッド、23・・ア
ーム、24 ・ガイド部、25−・ネジ、26.27,
31゜57.57’  ・・モータ、28・・ネジ、2
9・・アーム、30・・・ギアボンクス、32・・・基
台、33゜33′・・・回転中心軸、34・・・アーム
、40・・変位計、41・・光源、42・・照射レンズ
、43・・・集光レンズ、44・受光器、45・・・照
射光軸、46・・・変位計取付部、51・・・演算制御
装置、52・・・磁気スケール、54・・・ロータリー
エンコーダ、56・・表示装置。 沼?図 止 $3図 纂4区 第5図 石6図 第7図 第8図 第q図
Fig. 1 is a side view of a conventional shape measuring device, Fig. 2 is an explanatory diagram of the relationship between displacement and output when the shape measuring device of Fig. 1 is used, and Fig. 3 is a side view of a conventional shape measuring device. - of contact measuring device
・The overall configuration diagram showing the example. Figure 4 shows the schematic structure of the displacement meter in Figure 3 and the mounting situation on the arm. Figures 5 and 6 show the irradiation angle of the displacement meter, respectively. FIG. 7 is a block diagram showing an embodiment of the arithmetic control mechanism of the non-contact measuring device of the present invention, and FIGS. 8 and 9 are diagrams showing the driving method of the displacement meter, respectively. Diagram for explanation, 1st
FIG. 0, FIG. 11, FIG. 14, and FIG. 15 are explanatory diagrams for explaining the present invention in detail, respectively. FIG. 12 is a front view showing the detailed structure of the angle changing mechanism of FIG. 3, and FIG. 13. is the 12th
FIG. 1. Object to be measured, 20. Base, 21.2'l'...
・Angle change mechanism, 22...Cross head, 23...Arm, 24 ・Guide part, 25-・Screw, 26.27,
31゜57.57'...Motor, 28...Screw, 2
9...Arm, 30...Gear box, 32...Base, 33°33'...Rotation center axis, 34...Arm, 40...Displacement meter, 41...Light source, 42...Irradiation Lens, 43... Condensing lens, 44... Light receiver, 45... Irradiation optical axis, 46... Displacement meter mounting part, 51... Arithmetic control unit, 52... Magnetic scale, 54...・Rotary encoder, 56...Display device. Swamp? Figure stop $3 Figure collection 4 Figure 5 Stone Figure 6 Figure 7 Figure 8 Figure q

Claims (1)

【特許請求の範囲】 1、被測定物体の表面に照射した光の反射光を受光する
ことによって前記被測定物体との距離を測定する変位計
と、該変位計全3次元的に駆動する3次元駆動機構と、
前記変位計の取シ付は角度を変化させる1つの角度変化
機構と、前記変位計による距離の測定値、前記3次元1
駆動機構の駆動量および前記変位計の取シ付は角度を入
力して必要な演算を行うとともに前記3次元駆動機構と
前記角度変化機構とを駆動制御する演算制御機構とよシ
なり、前記角度変化機構の回転中心軸と前記変位計から
の照射光の光軸の延長線とは交差するように構成しであ
ることを特徴とする物体形状の非接触測定装置。 2、前記角度変化機構の回転中心軸と照射光の光軸の延
長線とは、照射光線の太さの範囲内で交差するように構
成しである特許請求の範囲第1項記載の物体形状の非接
触測定装置。 3、被測定物体の表面に照射した光の反射光を受光する
ことによって前記被測定物体との距離を測定する変位計
と、該変位計(i:3次元的に駆動する3次元駆動機構
と、前記変位計の取り利は角度を変化させる複数の角度
変化機構と、前記変位計による距離の測定値、前記3次
元駆動機構の駆動量および前記各変位計の取シ付は角度
を入力して必要な演算を行うとともに前記3次元駆動機
構と前記各角度変化機構とを駆動制御する演算制御機構
とよシなり、前記各角度変化機構のうち前記変位計に最
も近い角度変化機構の回転中心軸と前記変位計からの照
射光の光軸の延長線とは交差するように構成し、前記3
次元駆動機構に最も近い角度変化機構の回転中心軸は前
記3次元駆動機構のいずれか1つの駆動軸に平行になる
ように構成しであることを特徴とする物体形状の非接触
測定装置。 4、前記変位計に最も近い角度変化機構の回転中心軸と
照射光の光軸の延長線とは、照射光線の太さの範囲内で
交差するように構成しである特許請求の範囲第3項記載
の物体形状の非接触測定装置。
[Scope of Claims] 1. A displacement meter that measures the distance to the object to be measured by receiving the reflected light of the light irradiated onto the surface of the object to be measured, and 3. The displacement meter is driven in all three dimensions. dimensional drive mechanism,
The mounting of the displacement meter includes one angle changing mechanism that changes the angle, the distance measured by the displacement meter, and the three-dimensional one.
The amount of drive of the drive mechanism and the mounting of the displacement meter are determined by an arithmetic control mechanism that inputs an angle and performs necessary calculations, and also controls the drive of the three-dimensional drive mechanism and the angle change mechanism. A non-contact measuring device for measuring the shape of an object, characterized in that a rotation center axis of the changing mechanism and an extension of the optical axis of the irradiated light from the displacement meter are configured to intersect. 2. The object shape according to claim 1, wherein the rotation center axis of the angle changing mechanism and the extension line of the optical axis of the irradiation light are configured to intersect within the range of the thickness of the irradiation light. non-contact measuring device. 3. A displacement meter that measures the distance to the object to be measured by receiving the reflected light of the light irradiated on the surface of the object to be measured, and the displacement meter (i: a three-dimensional drive mechanism that drives three-dimensionally; , the takeoff of the displacement meter is determined by inputting a plurality of angle changing mechanisms that change angles, the measured value of distance by the displacement meter, the driving amount of the three-dimensional drive mechanism, and the mounting angle of each displacement meter. The center of rotation of the angle change mechanism closest to the displacement meter among the angle change mechanisms is The axis is configured such that the extension line of the optical axis of the irradiated light from the displacement meter intersects, and
A non-contact measuring device for measuring the shape of an object, characterized in that the rotation center axis of the angle changing mechanism closest to the dimensional drive mechanism is configured to be parallel to the drive axis of any one of the three-dimensional drive mechanisms. 4. The rotation center axis of the angle change mechanism closest to the displacement meter and the extension line of the optical axis of the irradiation light are configured to intersect within the range of the thickness of the irradiation light. A non-contact measuring device for measuring the shape of an object as described in 2.
JP6621683A 1983-04-13 1983-04-13 Contactless measuring device for measuring shape of body Granted JPS59190607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6621683A JPS59190607A (en) 1983-04-13 1983-04-13 Contactless measuring device for measuring shape of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6621683A JPS59190607A (en) 1983-04-13 1983-04-13 Contactless measuring device for measuring shape of body

Publications (2)

Publication Number Publication Date
JPS59190607A true JPS59190607A (en) 1984-10-29
JPH022082B2 JPH022082B2 (en) 1990-01-16

Family

ID=13309407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6621683A Granted JPS59190607A (en) 1983-04-13 1983-04-13 Contactless measuring device for measuring shape of body

Country Status (1)

Country Link
JP (1) JPS59190607A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259109A (en) * 1985-05-13 1986-11-17 Matsushita Electric Ind Co Ltd Optical range finder
JPS6255502A (en) * 1985-09-04 1987-03-11 Toyota Auto Body Co Ltd Method of measuring shape of matter by three-dimensional measuring machine
US4721388A (en) * 1984-10-05 1988-01-26 Hitachi, Ltd. Method of measuring shape of object in non-contacting manner
US4778274A (en) * 1985-12-10 1988-10-18 Chuo Electric Manufacturing Co., Ltd. Noncontact measuring device for cylindrical, elongated objects bent into three-dimensional shapes
JPS63252211A (en) * 1986-12-19 1988-10-19 ホンメルヴエルケ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for measuring space with surface in noncontact manner
US4893933A (en) * 1987-09-30 1990-01-16 Armco Inc. Automatic BOF vessel remaining lining profiler and method
JPH0336907U (en) * 1989-08-21 1991-04-10
US5118192A (en) * 1990-07-11 1992-06-02 Robotic Vision Systems, Inc. System for 3-D inspection of objects
US5345687A (en) * 1990-07-25 1994-09-13 Fanuc, Ltd. Noncontact tracing control device
US5430547A (en) * 1992-04-07 1995-07-04 Honda Giken Kogyo Kabushiki Kaisha Non-contacting position detecting apparatus
KR100471273B1 (en) * 2002-11-08 2005-03-08 현대자동차주식회사 Portable 3 dimension coordinate system
JP2007046937A (en) * 2005-08-08 2007-02-22 Tokyo Seimitsu Co Ltd Profilometer and profilometry method
JP2007101229A (en) * 2005-09-30 2007-04-19 Konica Minolta Sensing Inc Method and system for 3-dimensional measurement and control method and device of manipulator
JP2007198791A (en) * 2006-01-24 2007-08-09 Mitsutoyo Corp Surface property measuring instrument
KR100867197B1 (en) * 2002-01-07 2008-11-06 삼성코닝정밀유리 주식회사 Apparatus for measuring thickness of multi-layer film coated glass
KR100887566B1 (en) 2007-06-07 2009-03-09 코리아테크노(주) Camera apparatus for use of photomask auto inspection equipment
KR101303050B1 (en) * 2009-07-15 2013-09-04 주식회사 포스코 Apparatus for inspecting surfaces and method for inspecting surfaces using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721388A (en) * 1984-10-05 1988-01-26 Hitachi, Ltd. Method of measuring shape of object in non-contacting manner
JPS61259109A (en) * 1985-05-13 1986-11-17 Matsushita Electric Ind Co Ltd Optical range finder
JPS6255502A (en) * 1985-09-04 1987-03-11 Toyota Auto Body Co Ltd Method of measuring shape of matter by three-dimensional measuring machine
US4778274A (en) * 1985-12-10 1988-10-18 Chuo Electric Manufacturing Co., Ltd. Noncontact measuring device for cylindrical, elongated objects bent into three-dimensional shapes
JPS63252211A (en) * 1986-12-19 1988-10-19 ホンメルヴエルケ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for measuring space with surface in noncontact manner
US4893933A (en) * 1987-09-30 1990-01-16 Armco Inc. Automatic BOF vessel remaining lining profiler and method
JPH0336907U (en) * 1989-08-21 1991-04-10
US5118192A (en) * 1990-07-11 1992-06-02 Robotic Vision Systems, Inc. System for 3-D inspection of objects
US5345687A (en) * 1990-07-25 1994-09-13 Fanuc, Ltd. Noncontact tracing control device
US5430547A (en) * 1992-04-07 1995-07-04 Honda Giken Kogyo Kabushiki Kaisha Non-contacting position detecting apparatus
KR100867197B1 (en) * 2002-01-07 2008-11-06 삼성코닝정밀유리 주식회사 Apparatus for measuring thickness of multi-layer film coated glass
KR100471273B1 (en) * 2002-11-08 2005-03-08 현대자동차주식회사 Portable 3 dimension coordinate system
JP2007046937A (en) * 2005-08-08 2007-02-22 Tokyo Seimitsu Co Ltd Profilometer and profilometry method
JP2007101229A (en) * 2005-09-30 2007-04-19 Konica Minolta Sensing Inc Method and system for 3-dimensional measurement and control method and device of manipulator
JP2007198791A (en) * 2006-01-24 2007-08-09 Mitsutoyo Corp Surface property measuring instrument
KR100887566B1 (en) 2007-06-07 2009-03-09 코리아테크노(주) Camera apparatus for use of photomask auto inspection equipment
KR101303050B1 (en) * 2009-07-15 2013-09-04 주식회사 포스코 Apparatus for inspecting surfaces and method for inspecting surfaces using it

Also Published As

Publication number Publication date
JPH022082B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
JPS59190607A (en) Contactless measuring device for measuring shape of body
CN104061878B (en) shape measuring apparatus
TW201839354A (en) An optical detecting apparatus for detecting a degree of freedom error of a shaft and a method thereof
JP3112989B2 (en) Device used for variable depth triangulation distance measuring device
JPS63500119A (en) Instruments for measuring surface morphology
CN108027257A (en) Optical profilometer and its application method
JP2005201656A (en) Method for measuring noncontact surface shape
JP5242940B2 (en) Non-contact shape measuring device
JP3768822B2 (en) 3D measuring device
JP2771546B2 (en) Hole inner surface measuring device
JP3930378B2 (en) Non-contact measuring method and non-contact measuring apparatus for gear tooth profile
JP3593161B2 (en) Measuring device for foreign matter position on rotating body
JPH01109058A (en) Contactless copy controller
JP3607821B2 (en) Inclination angle measuring machine
JPH0216965B2 (en)
JP2000046529A (en) Method and device for measuring shape of object with 3-dimensional curves
CN107121091A (en) A kind of profile scan measurement apparatus based on PSD
TWI247095B (en) Optical revolving spindle error measurement device
JPH09178439A (en) Three-dimensional shape measuring device
JPS61189405A (en) Non-contacting shape measuring instrument
JPH02272308A (en) Non-contact type shape measuring instrument
JPWO2019069926A1 (en) Surface shape measuring device, surface shape measuring method, structure manufacturing system, structure manufacturing method, and surface shape measuring program
JPS61207909A (en) Angle detecting method for angle variation mechanism of non-contact shape measuring instrument
JPH09189545A (en) Distance measuring device
JPS63187103A (en) Non-contact measurement of three-dimensional shape