JPS59190100A - Control system of attitude of artificial satellite - Google Patents

Control system of attitude of artificial satellite

Info

Publication number
JPS59190100A
JPS59190100A JP58064811A JP6481183A JPS59190100A JP S59190100 A JPS59190100 A JP S59190100A JP 58064811 A JP58064811 A JP 58064811A JP 6481183 A JP6481183 A JP 6481183A JP S59190100 A JPS59190100 A JP S59190100A
Authority
JP
Japan
Prior art keywords
angular velocity
axis
artificial satellite
attitude
sun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58064811A
Other languages
Japanese (ja)
Inventor
上杉 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58064811A priority Critical patent/JPS59190100A/en
Publication of JPS59190100A publication Critical patent/JPS59190100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は−!1IIIIを太陽に指向し、その軸(以
下指向軸と称す)同シに一定速度で回転する(以下スピ
ンと称す)人工衛星の姿勢制御方式に関するものである
[Detailed Description of the Invention] This invention is -! The present invention relates to an attitude control system for an artificial satellite which is oriented toward the sun and rotates at a constant speed (hereinafter referred to as spin) on the same axis (hereinafter referred to as the pointing axis).

従来この極の姿勢制御を実施するために、指向軸につい
ては9回転角速度を検出する速に制御。
Conventionally, in order to perform attitude control of this pole, the orientation axis was controlled at a speed that detected nine rotational angular velocities.

(]) 指向軸以外の24!111については1回転角とその回
転速度を検出する比例微分制御の制御@理が用いられて
いる。
(]) Regarding 24!111 other than the directional axis, proportional differential control control @ which detects one rotation angle and its rotation speed is used.

この制御論理を行うための従来の装置例を之・1図に示
す。衛星の機械@′t−X、Y、  Zとし、その2を
検出するためには、x、y、zと検出軸の方向が平行に
なるように3つの角速度検出器fl)、 f2)及び(
3)が配置されている。+4) tI′i人工衛星の指
向の目標である太陽。(5)は、軸Zが太陽指向するた
めのX、  Y回シの太陽に対する相対回転角−AX、
AYを検出する方向検出器である。
An example of a conventional device for performing this control logic is shown in FIG. The satellite's machines @'t-X, Y, Z, and in order to detect them, three angular velocity detectors fl), f2) and (
3) is located. +4) The sun, which is the pointing target of the tI′i satellite. (5) is the relative rotation angle with respect to the sun of X and Y times for the axis Z to point toward the sun, -AX,
This is a direction detector that detects AY.

オ1図に対応した従来の人工衛星の制8論理部の構成例
を1・2図に示す通りであって。
Figures 1 and 2 show examples of the configuration of the control logic section of a conventional artificial satellite corresponding to Figure 1.

図において(6)はX回り、(7)はY回シ、(8)は
Z凹シに関する制御論理を示し。
In the figure, (6) shows the control logic for X rotation, (7) for Y rotation, and (8) for Z rotation.

TX= px 、AX 十DX 、 WX      
 (1)TY=PY、AY十DY、WY       
 (2)で計算される制御トルクTX、 TYをX、Y
回シに(2) 与えることで2が太陽の方向指向する制御を実施できる
。またZ回シに TZ−J)Z 、  (Z −ZO)       i
31で計算される制御トルクZをZ回シに与えることで
、xOの回転速度でZ回りにスピンする制御全笑施でき
る。
TX = px, AX 1DX, WX
(1) TY=PY, AY1DY, WY
The control torques TX and TY calculated in (2) are X, Y
By giving (2) to the rotation, 2 can control the direction of the sun. Also, Z times TZ-J)Z, (Z-ZO) i
By applying the control torque Z calculated in step 31 to Z rotation, complete control to spin around Z at a rotational speed of xO can be performed.

従来の装置は上記の実JiIM例で述べたように(1)
。(2)(3)の3個の角速度検出器、及び1個の方向
検出器(4)で構成されておシ、高度な重量管理、信頼
性管理が要求される人工衛星において重量9部品数の増
加の問題がケじていた。これに対してこの発明は、角速
度検出器の検出軸の方向を慣性主軸からずれるように配
置することにより、その角速度検出器の出力が複数の慣
性上軸回シの角速度寵。
As mentioned in the actual JiIM example above, the conventional device (1)
. (2) It consists of the three angular velocity detectors in (3) and one direction detector (4), and has a weight of 9 parts in an artificial satellite that requires advanced weight management and reliability management. The problem of increasing numbers of people was becoming a problem. In contrast, in the present invention, the direction of the detection axis of the angular velocity detector is deviated from the principal axis of inertia, so that the output of the angular velocity detector is adjusted to the angular velocities of the plurality of inertial axes.

wy、wzの関数として表わされることをオリ用して。Based on the fact that it is expressed as a function of wy and wz.

指向軸の角速度検出器を1個削減するものである。This reduces the number of angular velocity detectors for the directional axis by one.

本発明による方式を1個角速度検出器を削減することが
できることから1人工衛星の重量の節約を行え9部品数
が減ることから信頼性が上がシ、高(3) 度な重量管理、信頼性管理が要求される人工衛星におい
て、従来の方式に比較して、その向上が図れる。
Since the method according to the present invention can reduce the number of angular velocity detectors by one, the weight of one artificial satellite can be saved, and the reliability can be improved by reducing the number of parts. For artificial satellites that require sexual management, this method can be improved compared to conventional methods.

動作の原理を人工衛星の運動方程式を用いて以下で述べ
る。人工衛星の慣性行列を ■に    IX   O0 (4) IYIYZ IYZO と慣性乗積項IYZを有するものとし、  IYZはそ
の生慣性モーメン) IX、 IY、 IZに比較して
十分小さく (1/10以下)とし、かつX、  Zの
主慣性モーメントIX、 IZは IXさI Z              (5)とす
る。ここで人工衛星の角速度ベクトルをW。
The principle of operation is described below using the equation of motion of an artificial satellite. Let the inertia matrix of the artificial satellite be IX O0 (4) IYIYZ IYZO and the inertia product term IYZ, where IYZ is its raw moment of inertia) sufficiently small compared to IX, IY, and IZ (1/10 or less) and the principal moments of inertia of X and Z are IX and IZ (5). Here, the angular velocity vector of the artificial satellite is W.

角運動量ベクトルをHとすれば、運動方程式を。If the angular momentum vector is H, then the equation of motion is.

オイラーの運動方程式を用いて WxT’f=σ             (6)(4
) と表わせるので、要素を用いて WXXIX、智X       =O WY    IY、WY + IYZ、WZ   Ow
z    IYZ、WY+ IZ、WZ    。
Using Euler's equation of motion, WxT'f=σ (6) (4
), so using the elements WXXIX, Wisdom X = O WY IY, WY + IYZ, WZ Ow
z IYZ, WY+ IZ, WZ.

であ90次式が得られる。The 90th order equation is obtained.

xyz(wy2−Wz2)+(IZ −■y)wz、w
y =  。
xyz(wy2-Wz2)+(IZ-■y)wz,w
y=.

ここで倣小項w? 、 wy’、 vvx 、、・・全
省略り、オ(5)式の関関係を用いれば1次の方程式が
得られる。
Is this the imitation subterm lol? , wy', vvx, . . . are all omitted and a first-order equation can be obtained by using the relation of Equation (5).

−IYZ、WZ2 + (IZ−IY)’mZ  、W
Y  =  Oi81の関係が得られ、Y回シの角速度
検出器の出力を知れば、X回りの角速度をオ・9式に基
づいて求めることができる。この方式はオ(9)式の関
係を利用(5) し、オ(6)式に示すような、慣性乗積IYZを有する
慣性行列の人工衛星に対して、指向軸以外のX。
-IYZ, WZ2 + (IZ-IY)'mZ, W
If the relationship Y=Oi81 is obtained and the output of the angular velocity detector for Y rotations is known, the angular velocity for X rotations can be determined based on Equation O.9. This method utilizes the relationship of Equation (9) (5), and for an artificial satellite with an inertia matrix having an inertia product IYZ as shown in Equation (6),

Yについてのみに角速度検出器を設け、Z回りの角速度
に対しては。オ(9)式に基づいた処理回路によシ検出
する方式である。
An angular velocity detector is provided only for Y, and for angular velocity around Z. This is a method of detection using a processing circuit based on Equation (9).

この方式を用いれば、従来の方式で、  x、  y及
びZの角速度検出器が必要であったに対して、指向軸Z
用の速度検出器を1個削減することができる。
With this method, whereas the conventional method required angular velocity detectors for x, y, and Z,
The number of speed detectors used can be reduced by one.

以下第3図に示すこの発明の一実施例について説明する
An embodiment of the present invention shown in FIG. 3 will be described below.

第3図にお込て、衛星の慣性主軸X、 Y回りの角速度
wx、 wyを検出するため、 X、  Yと検出軸が
平行になるように、2つの角速度検出器(1)及び(2
)が配置されている。(4)は人工衛星の指向の目標で
ある太陽を示し、 f5)t:l:太陽に対する指向軸
の相対回転角AX、 AY i検出する方向検出器であ
る。
In Figure 3, in order to detect the angular velocities wx and wy around the satellite's principal axes of inertia X and Y, two angular velocity detectors (1) and (2) are installed so that the detection axes are parallel to X and Y.
) are placed. (4) indicates the sun, which is the pointing target of the artificial satellite; f5) t:l: A direction detector that detects the relative rotation angle AX, AY i of the pointing axis with respect to the sun.

第3図の装置を用いたこの発明による人工衛星の制御論
理部の構成例を第4図に示す。
FIG. 4 shows an example of the configuration of a control logic section of an artificial satellite according to the present invention using the device shown in FIG.

第4図において(6)はX同り、(7)はY回り、(9
)は(す は2同シについての制御論理を示す。ここで(6)。
In Figure 4, (6) is the same in X, (7) is in Y rotation, (9
) indicates the control logic for 2 and 2. Here, (6).

(7)は従来の方式による制御論理、(9)はこの発明
のいて推定し。それ回りの角速度検出器を省略した制御
論理である。
(7) is the control logic based on the conventional method, and (9) is estimated using the present invention. This is a control logic that omits the surrounding angular velocity detector.

以上のように従来角速度検出器が、  X、  Y及び
Zの3軸について必要であったのが、この発明によれば
1人工衛星の慣性行列に対して、第4式のように慣性乗
積項を設けることで指向軸に関する角速度を、他の軸回
りの角速度で推定できるということを利用し、指向軸に
ついての角速度検出器全省略できるという利点がある。
As described above, conventional angular velocity detectors were required for the three axes of X, Y, and Z, but according to the present invention, for the inertia matrix of one artificial satellite, the inertia product is calculated as shown in equation 4. By providing a term, the angular velocity regarding the directional axis can be estimated using the angular velocity around other axes, which has the advantage that the angular velocity detector for the directional axis can be omitted entirely.

なお1以上は9指向軸をZ軸の場合について述べてきた
が。:1M−f31式。オ(4)式に基づき適鮨な慣性
乗積項を選べば、  X、  Yが指向軸であるような
人工衛星に対しても適要できる。また同様な理由で。
Note that in the above sections, the case where the 9-direction axis is the Z axis has been described. :1M-f31 type. If an appropriate inertia product term is selected based on Equation (4), it can be applied to artificial satellites whose pointing axes are X and Y. Also for the same reason.

Zを指向する場合でも、慣性乗積項の設ける変数’fe
  IYZの換わりにIZXとすることも可能である。
Even when pointing to Z, the variable 'fe' provided by the inertia product term
It is also possible to use IZX instead of IYZ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の姿勢制(2)方式を示す図、第2(′
I) 図は、第1図の構成に関する制御論理図、第3図は、こ
の発明による姿勢制御方式を示す図、第4図は、第3図
の構成に関する制御論理図である。 図中、  x、  y、  Zu人工1uノ機械軸、 
WX、W’Y’WZは角速度、(4)は太陽、AX、A
Yは回転角、(5)は方向検出器、 (6)、 f71
は、  X、 Yの制御論理、(8)(9)はZの制御
論理を示す。 なお1図中同一あるいは相当部分には同一符号を付して
示しである。 代理人  大 岩 増 雄 (8)
Figure 1 shows the conventional posture system (2), and Figure 2 ('
I) FIG. 3 is a control logic diagram for the configuration shown in FIG. 1, FIG. 3 is a diagram showing an attitude control system according to the present invention, and FIG. 4 is a control logic diagram for the configuration shown in FIG. 3. In the figure, x, y, Zu artificial 1u mechanical axis,
WX, W'Y'WZ are angular velocity, (4) is the sun, AX, A
Y is rotation angle, (5) is direction detector, (6), f71
are the control logics of X and Y, and (8) and (9) are the control logics of Z. Note that in FIG. 1, the same or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa (8)

Claims (1)

【特許請求の範囲】[Claims] 機械的な基準となる直交軸のうちの一軸を太陽に指向し
9かつその軸回シに一定速度で回転することによル、慣
星空間に対する回転角速度を検b」する角速度検出器、
及び太陽に対する相対回転角を検出する方向検出器を用
いて9人工衛星の姿勢制御方式において1人工衛星本体
に搭載された姿勢速度検出器の検出軸をその人工衛星の
慣性玉軸からずらして配置したことを%徴とする人工衛
星の姿勢制御方式。
An angular velocity detector that detects the rotational angular velocity with respect to inertial space by pointing one axis of orthogonal axes that serve as a mechanical reference toward the sun and rotating around that axis at a constant speed;
In the attitude control system for nine artificial satellites using a direction detector that detects the relative rotation angle with respect to the sun, the detection axis of the attitude speed detector mounted on one artificial satellite body is shifted from the inertial ball axis of that artificial satellite. An attitude control method for artificial satellites that takes the percentage of
JP58064811A 1983-04-13 1983-04-13 Control system of attitude of artificial satellite Pending JPS59190100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064811A JPS59190100A (en) 1983-04-13 1983-04-13 Control system of attitude of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064811A JPS59190100A (en) 1983-04-13 1983-04-13 Control system of attitude of artificial satellite

Publications (1)

Publication Number Publication Date
JPS59190100A true JPS59190100A (en) 1984-10-27

Family

ID=13268997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064811A Pending JPS59190100A (en) 1983-04-13 1983-04-13 Control system of attitude of artificial satellite

Country Status (1)

Country Link
JP (1) JPS59190100A (en)

Similar Documents

Publication Publication Date Title
CN107600464B (en) Utilize the flywheel control capture sun and Direct to the sun method of star sensor information
US3741500A (en) A cmg fine attitude control system
CN107976903B (en) Enhanced double-power-order approach law sliding mode control method of quad-rotor unmanned aerial vehicle system
US4010921A (en) Spacecraft closed loop three-axis momentum unloading system
JP2002510816A (en) Continuous attitude control to avoid CMG array singularity
WO1999050144A2 (en) Singularity avoidance in a cmg satellite attitude control
US11273933B2 (en) Spacecraft attitude control strategy for reducing disturbance torques
US6648274B1 (en) Virtual reaction wheel array
Savage Strapdown system algorithms
Standish Jr Two differing definitions of the dynamical equinox and the mean obliquity
CN110109551A (en) Gesture identification method, device, equipment and storage medium
CN109774977A (en) A kind of time optimal satellite attitude rapid maneuver method based on quaternary number
CN109649693A (en) A kind of pure magnetic control spin Direct to the sun method
US10706818B2 (en) System and method for aligning sensor data to screen refresh rate
JPS59190100A (en) Control system of attitude of artificial satellite
Sawada et al. Shape estimation of IKAROS's solar power sail by images of monitor cameras
EP3643621B1 (en) Satellite attitude control system using eigen vector, non-linear dynamic inversion, and feedforward control
JP3696586B2 (en) Attitude angle detector
Kuhns et al. Singularity avoidance control laws for a multiple CMG spacecraft attitude control system
JP3172770B2 (en) Attitude control method for non-cooperative objects on orbit
JPS6387399A (en) Angular momentum vector varying system of artificial satellite
RU2610766C1 (en) Method to recover orientation of orbital space vehicle
JP2756554B2 (en) Inertial device
JPS5927199A (en) Automatic steering system of missile
GB1354350A (en) Attitude control system and method