JPS59189255A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS59189255A
JPS59189255A JP59057863A JP5786384A JPS59189255A JP S59189255 A JPS59189255 A JP S59189255A JP 59057863 A JP59057863 A JP 59057863A JP 5786384 A JP5786384 A JP 5786384A JP S59189255 A JPS59189255 A JP S59189255A
Authority
JP
Japan
Prior art keywords
capacity
compressor
cooling
heating
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59057863A
Other languages
Japanese (ja)
Other versions
JPS6334377B2 (en
Inventor
二郎 柚田
秀夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59057863A priority Critical patent/JPS59189255A/en
Publication of JPS59189255A publication Critical patent/JPS59189255A/en
Publication of JPS6334377B2 publication Critical patent/JPS6334377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は能力制御圧縮機を有するヒートポンプ式空気調
和機に関するもので、その目的とするところは、冷房運
転時の空気調和機の立上がりを良好にすると共に、冷房
負荷および暖房負荷に対応して圧縮機の能力を効率よく
制御しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type air conditioner having a capacity control compressor, and its purpose is to improve the start-up of the air conditioner during cooling operation, and to reduce the cooling load and The aim is to efficiently control the capacity of the compressor in response to the heating load.

最近、ヒートポンプ式空気調和機の省エネルギを図る手
段として冷房あるいは暖房負荷に応じて空気調和機の能
力を制御するため、圧縮機の能力を制御しようとする方
法が検討されている。例えば、ヒートポンプ式空気調和
機で室内を空気調和する様な地区では一般に暖房負荷よ
り冷房負荷の方が低く、これに対応して冷房運転時は圧
縮機を低能力運転、暖房運転時には高能力運転するよう
に制御し、空気調和機の冷暖房能力を負荷に対応させ、
特に冷房運転時の効率の向上を図ったものがあるが、冷
房運転時には圧縮機が低能力運転するため、起動時の立
上がりが遅い欠点があった。
Recently, methods of controlling the capacity of a compressor have been studied in order to control the capacity of the air conditioner according to the cooling or heating load as a means of saving energy in heat pump type air conditioners. For example, in areas where indoor air conditioning is done using heat pump air conditioners, the cooling load is generally lower than the heating load, so the compressor is operated at low capacity during cooling operation and at high capacity during heating operation. The air conditioner's heating and cooling capacity is controlled to match the load.
In particular, some systems have been designed to improve efficiency during cooling operation, but because the compressor operates at low capacity during cooling operation, they have the disadvantage of slow start-up.

この欠点をおぎなう為に圧縮機の起動暗所定時間、その
圧縮機を高能力運転するものがあるが、常に所定時間高
能力運転する制御では、起動時の負荷の低い場合、空調
機の能力が大きすぎ効率の低い運転をよぎ寿くされてい
た。
In order to overcome this drawback, there are systems that operate the compressor at high capacity for a predetermined period of time when the compressor is turned on. It was too large and had to be operated inefficiently.

第1図に圧縮機の能力Qに対する空気調和機のエネルギ
効率ERRを示すように、Qが小さくなればEERは」
二外し、高効率運転ができる。すな3 、、、−1 わち圧縮機は負荷に応じて低能力運転する事により空気
調和機の効率が上昇する。
As shown in Figure 1, which shows the energy efficiency ERR of the air conditioner with respect to the compressor capacity Q, as Q becomes smaller, the EER increases.
Highly efficient operation can be achieved by removing two parts. In other words, the efficiency of the air conditioner increases by operating the compressor at a low capacity depending on the load.

本発明は以」−の様な従来技術の改良であり、立上がり
が速く、しかも高効率な制御を行なう空気調和機を提供
するものである。
The present invention is an improvement on the prior art as described below, and provides an air conditioner that starts up quickly and performs highly efficient control.

第2図は本発明空気調和機の一実施例でセパソー1〜型
空気調和機に応用したものである。
FIG. 2 shows an embodiment of the air conditioner of the present invention, which is applied to a Sepasaw 1-type air conditioner.

1は室外ユニット、2は室内ユニットであり、室外ユニ
ット1は圧縮機3、圧縮機3を駆動するモータ4、冷暖
切換弁5、室外熱交換器6、この室外熱交換器6に通風
する室外ファン7、及び減圧装置8を有する。室内ユニ
ット2には室内熱交換器9、この室内熱交換器9に室内
空気を通風する室内ファン10、室温検知器10.及び
調節器11が設けられている。これらの圧縮機3、冷暖
房切換弁5、室外熱交換器6、減圧装置8、室内熱交換
器9などを配管にて接続しヒートポンプ式冷媒回路が形
成され、室内熱交換器9で吸熱又は加熱が行なわれ室内
を冷房又は暖房をする。この切換が冷暖切換弁5で行な
われる。前記圧縮機3の能力制御は前記モータ4の回転
速度を変化することに」:り可能であり、このモータ4
の回転速度はその電源の電圧及び周波数を変化する」1
により制御され、それらは制御装置12により制御され
る。Aii:商用電源(ここでは3+旧でこれを一次電
源として前記制御装置12ば6つのダイオードD1.D
2.D3.D4.D5.D6とチョークコイルCH1、
コンデンサC1よりなる整流回路Bにより整流され直流
電源に変換し、速度信号回路Eにおいて発牛した速度信
号によりチョッパ制御回路Fにてチョッパ回路Cのトラ
ンジスタTrを駆動し、前記直流電源の電圧を制御し、
それをチョークコイルCH2とコンデンサC2で平滑に
し、この調整平滑化された直流電源を、ブリッジインバ
ータ制御回路Gに入力[−1直流”電圧に相当する周波
数を発生し、前記チョッパ回路Cに接続されたプリンジ
インバータ回路りの1−ランジスタTr2. Tr、 
Reference numeral 1 indicates an outdoor unit, and 2 indicates an indoor unit. It has a fan 7 and a pressure reducing device 8. The indoor unit 2 includes an indoor heat exchanger 9, an indoor fan 10 that circulates indoor air through the indoor heat exchanger 9, and a room temperature detector 10. and a regulator 11 are provided. A heat pump type refrigerant circuit is formed by connecting these compressor 3, heating/cooling switching valve 5, outdoor heat exchanger 6, pressure reducing device 8, indoor heat exchanger 9, etc. with piping, and the indoor heat exchanger 9 absorbs or heats heat. This is done to cool or heat the room. This switching is performed by the heating/cooling switching valve 5. The capacity of the compressor 3 can be controlled by changing the rotational speed of the motor 4.
The rotational speed of the motor changes the voltage and frequency of its power supply."1
and they are controlled by a control device 12. Aii: Commercial power supply (here, 3 + old), which is used as the primary power supply and the control device 12 has six diodes D1.D.
2. D3. D4. D5. D6 and choke coil CH1,
It is rectified by a rectifier circuit B consisting of a capacitor C1 and converted into a DC power supply, and a speed signal generated in a speed signal circuit E drives a transistor Tr of a chopper circuit C in a chopper control circuit F to control the voltage of the DC power supply. death,
It is smoothed by a choke coil CH2 and a capacitor C2, and this adjusted and smoothed DC power is input to a bridge inverter control circuit G to generate a frequency corresponding to a voltage of "-1 DC", which is connected to the chopper circuit C. 1-transistor Tr2.Tr of Prinzi inverter circuit,
.

Tr、 、 Tr5. Tr6. Tr、  を駆動し
3相の矩形波電源を発生させモータ4に電源を供給する
。1−ランジスクTr2. Tr3. Tr4. Tr
5. Tr6. Tr、  をそれぞれ5 、−+−−
・ 並列に接続されたダイオードD71 D81 D91 
DIolDll、D12は各トランジスタがOFFとな
った時のモータ4からの逆起電圧を通過させるものであ
り、各トランジスタの保護の役目をする。Hは冷暖切換
信号器であり、その信号を速度信号回路Fに入力すると
共に、前記冷暖切換弁5に入力し、冷暖房の切換えを行
なう。工は起動制御器であり起動制御信号を前記速度信
号回路Fに入力する。
Tr, , Tr5. Tr6. Tr, is driven to generate three-phase rectangular wave power and supply power to the motor 4. 1-Landisc Tr2. Tr3. Tr4. Tr
5. Tr6. Tr, respectively 5, −+−−
・ Diodes D71 D81 D91 connected in parallel
DIolDll and D12 pass the back electromotive voltage from the motor 4 when each transistor is turned off, and serve to protect each transistor. H is a heating/cooling switching signal device, and its signal is input to the speed signal circuit F and also to the heating/cooling switching valve 5 to switch between heating and cooling. A starting controller inputs a starting control signal to the speed signal circuit F.

Jは差信号発生器であり室内空気温度を検知する@記室
温検知器10と室温の設定温度を指令する前記調節器1
1の差信号ΔEを発牛させ、速度信号回路Eに入力する
J is a difference signal generator, which includes the room temperature detector 10 that detects the indoor air temperature and the regulator 1 that commands the set temperature of the room temperature.
A difference signal ΔE of 1 is generated and input to the speed signal circuit E.

次に動作を説明する。暖房運転時、冷暖切換信号器Hか
らの信号により冷暖切換弁5を暖房運転に設定すると共
に速度信号回路Eに暖房運転の信号を入力する。また差
信号発生器Jより室内空気温度と室温設定温度の差信号
であるΔEが速度信号回路Eに入力される。第3図はこ
の差信号ΔEと速度信号回路Eからの速度信号Vs  
との関係を示す。すなわち暖房運転時には差信号ΔEの
変化6・・−ン に対し、速度信号Vsの値はVSLよりVSHiでの値
を出力する。差信号ΔEが設定値と室温の差が大きい程
犬きく彦り、これに苅し速度信号vs  はVSH−一
定に、寸た差信号ΔEが小さい領域ではvs= VSL
一定又は零となると共にヒステリシス特性を持つ。この
速度信号vsはモータ4及び圧縮機3の回転速度を設定
するものであり、最高速度及び最低速度を規定1〜で機
械的強度騒音振動及び効率の問題を解決すると共に、ヒ
ステリシス特性により圧縮機のひんばんな起動停止を防
止している。第4図は速度信号vsに対し圧縮機の回転
数度が変化する事に」:る圧縮機能力Qの特性であり、
vsが大きくなればQはほぼ比例的に大きくなる。どの
ような特性により、暖房運転の起動時及び通常運転時、
室温と室温設定温度との差信号ΔEにより圧縮機3の能
力は最小能力QL  より最大能力Q)+ 1での範囲
あるいは圧縮機の停止により運転制御される。
Next, the operation will be explained. During heating operation, the heating/cooling switching valve 5 is set to heating operation by a signal from the heating/cooling switching signal device H, and a heating operation signal is input to the speed signal circuit E. Further, a difference signal ΔE between the indoor air temperature and the set room temperature is input from the difference signal generator J to the speed signal circuit E. Figure 3 shows this difference signal ΔE and the speed signal Vs from the speed signal circuit E.
Indicates the relationship between That is, during heating operation, the value of the speed signal Vs is outputted from a value at VSHi rather than VSL in response to a change in the difference signal ΔE. The larger the difference between the set value and the room temperature is, the sharper the difference signal ΔE becomes, and the mowing speed signal vs is VSH - constant, and in the region where the difference signal ΔE is small, vs = VSL.
It is constant or zero and has hysteresis characteristics. This speed signal vs sets the rotational speed of the motor 4 and the compressor 3, and the maximum speed and minimum speed are set to 1 to 1 to solve problems of mechanical strength, noise, vibration, and efficiency, and the hysteresis characteristic of the compressor This prevents frequent startups and stops. Figure 4 shows the characteristics of the compression function force Q as the rotation speed of the compressor changes with respect to the speed signal VS.
As vs increases, Q increases almost proportionally. What characteristics determines when heating operation starts and during normal operation?
Based on the difference signal ΔE between the room temperature and the set room temperature, the capacity of the compressor 3 is controlled in a range from the minimum capacity QL to the maximum capacity Q)+1 or by stopping the compressor.

7 ベー・ 一般に起動時は室温と設定湿度との差は大きい為最大能
力Qiあるいは最大能力QHに近い能力で圧縮機は運転
され、以後起動時と同様に室温と設定温度との差により
、すなわち負荷に応じて圧縮機3の能力は制御される。
7. Generally, at the time of startup, the difference between the room temperature and the set humidity is large, so the compressor is operated at a capacity close to the maximum capacity Qi or the maximum capacity QH. The capacity of the compressor 3 is controlled according to the load.

以上の様に制御される圧縮機3より吐出された高温高圧
の冷媒は冷暖切換Jf5を介して室内熱交換器9に流入
し放熱して室内を暖房し減圧装置8で減圧膨張し室外熱
交換器6で吸熱蒸発して冷暖切換弁5を介して圧縮機3
にもどる。
The high-temperature, high-pressure refrigerant discharged from the compressor 3 controlled as described above flows into the indoor heat exchanger 9 via the cooling/heating switch Jf5, radiates heat to heat the room, is depressurized and expanded by the pressure reducing device 8, and is exchanged for outdoor heat. It absorbs heat and evaporates in the compressor 3 through the cooling/heating switching valve 5.
Return to

次に冷房運転を説明する。Next, cooling operation will be explained.

冷暖切換信号器Hより冷房運転の信号が冷暖切換弁5に
入力され、この冷暖切換弁5が作動し前記冷媒回路が冷
房運転に切りかわると共に、前記信号が速度信号回路E
に入力される。差信号発生器Jからは暖房運転と同様に
室内空気温度と室温設定温度との差を検知しその差信号
ΔFが速度信号回路Eに入力される。この時暖房運転時
とはΔEの符号が逆となるが、速度信号回路E内で符号
を逆転させ、暖房運転と同様に室温と室温設定値との差
信号ΔEが大きくなれば速度信号vsが犬へく々る様に
制御されるが、ΔEが十分大きな領域では速度信号vs
がvs)!より低い値のvsM  の値、一定となる様
に制御される。この結果、冷房運転時の圧縮機3の最大
能力は第3の能力QM  となり暖房運転の最大能力Q
Hより低い値となる。
A cooling operation signal is input from the cooling/heating switching signal H to the cooling/heating switching valve 5, and the cooling/heating switching valve 5 is activated to switch the refrigerant circuit to cooling operation, and the signal is input to the speed signal circuit E.
is input. The difference signal generator J detects the difference between the indoor air temperature and the set room temperature, and the difference signal ΔF is input to the speed signal circuit E, as in the heating operation. At this time, the sign of ΔE is opposite to that during heating operation, but the sign is reversed in the speed signal circuit E, and as in heating operation, if the difference signal ΔE between the room temperature and the room temperature set value increases, the speed signal vs. It is controlled like a dog, but in a region where ΔE is large enough, the speed signal vs.
ga vs)! The lower vsM value is controlled to be constant. As a result, the maximum capacity of the compressor 3 during cooling operation becomes the third capacity QM, and the maximum capacity Q during heating operation.
The value is lower than H.

このように暖房運転と冷房運転時の負荷の差に対応して
圧縮機3の最大能力を規定し、冷房運転時の効率の向上
を図る。冷房運転の起動時、起動制御器1からの信号に
より所定時間速度信号vsは通常運転時の最高値である
vsMより高いVSH’tでの信号を発する事が1ll
l来る様に制御される。この結果、起動時の圧縮機3は
最大能力として前記暖房運転時の最大能力QH’tでの
能力を発揮することが出来る。この結果、室温と室温設
定値との差信号ΔEにより、最小値QLより最大値Q)
lまでの範囲で制御することができ、負荷の高い場合に
は最大能力Q)lで圧縮機3は運転されるため立」−が
りが非常に良好な空気調和機とする事ができるとともに
、起動時の負荷が低い場合には、その負荷9 −′<、
−ン に対応して圧縮機3の能力は低下しであるいは負荷がさ
らに低い場合には圧縮機を停止して制御され効率の良い
運転が可能となる。冷房運転時この様に制御される圧縮
機3により吐出された冷媒は冷暖切換弁5を通他室外熱
交換器6で放熱凝縮し減圧装置8で減圧膨張し室内熱交
換器9で室内空気を冷却し、再び冷暖切換弁5を介して
圧縮機3へ戻る。
In this way, the maximum capacity of the compressor 3 is defined in response to the difference in load during heating operation and cooling operation, thereby improving efficiency during cooling operation. When the cooling operation is started, the speed signal VS is generated for a predetermined period of time by a signal from the start controller 1, and a signal is generated at VSH't higher than the highest value VSM during normal operation.
It is controlled to come. As a result, the compressor 3 at startup can exhibit the maximum capacity QH't during the heating operation. As a result, due to the difference signal ΔE between the room temperature and the room temperature set value, the maximum value Q) is lower than the minimum value QL.
When the load is high, the compressor 3 is operated at the maximum capacity Q)l, making it possible to create an air conditioner with very good stand-up. If the load at startup is low, the load 9 −′<,
- The capacity of the compressor 3 decreases in response to the load, or if the load is even lower, the compressor is stopped and controlled, allowing efficient operation. During cooling operation, the refrigerant discharged by the compressor 3 controlled in this manner passes through the cooling/heating switching valve 5, is radiated and condensed in the outdoor heat exchanger 6, is decompressed and expanded in the pressure reducing device 8, and is converted to indoor air in the indoor heat exchanger 9. It is cooled and returned to the compressor 3 via the cooling/heating switching valve 5.

以上の実施例において冷房運転起動時、圧縮機3は暖房
運転時の最大能力Q)Iまで制御範囲を拡大して制御さ
れるが、能力Qg ’1で能力を」二昇させずに能力Q
Mより Q+r iでの起動時の立」−かりに十分な適
当な値まで」−昇させる様にしてもよい。
In the above embodiment, when the cooling operation is started, the compressor 3 is controlled by expanding the control range to the maximum capacity Q)I during the heating operation, but at the capacity Qg '1, the capacity is not increased by '2' and the compressor 3 is controlled by the capacity Q
It may also be possible to raise Q+r from M to an appropriate value sufficient for the starting point at i.

また]−記実施例では圧縮機の能力を連続的に制御した
が、連続制御させない場合には少なくとも圧縮機の停止
、能力QL r能力QM+能力Q++の3段階の能力制
御あるいはとれよりも多段階の圧縮機の能力制御を行う
ものであればよい。
[Also] - In the embodiment described above, the capacity of the compressor was continuously controlled, but if continuous control is not performed, at least the compressor is stopped, the capacity is controlled in three stages of capacity QL r capacity QM + capacity Q++, or in more stages than these. Any type of compressor that controls the capacity of the compressor may be used.

前記の実施例から明らかなように、本発明のヒートポン
プ式空気調和機は能力制御圧縮機と冷暖10  、、、
  、 切換弁と熱源側熱交換器と減圧装置と利用側熱交換器と
を配管にて接続したピー1−ポンプ式冷媒回路を有し、
前記冷暖切換弁を作動させ暖房運転と冷房運転に切換え
、暖房運転時前記圧縮機を最小能力QLより最大能力Q
)lまでの制御範囲で、又冷房運転時前記圧縮機を前記
最小能力QLより最大能力QM(QM<QH)  まで
の制御範囲で、制御する制御装置を設けてなるものであ
り、冷房運転及び暖房運転の両運転状態において圧縮機
の能力制御を行ない、しかも暖房運転時より冷房運転時
の方がその最大能力を低くしてヒートポンプ式空気調和
機の負荷に見合った能ツノによりエネルギ損失の少ない
高効率なピーl−ポンプ式空気調和機を提供することが
できる。
As is clear from the above embodiments, the heat pump type air conditioner of the present invention has a capacity control compressor and a cooling/heating ratio of 10.
, It has a P1-pump type refrigerant circuit in which a switching valve, a heat source side heat exchanger, a pressure reducing device, and a user side heat exchanger are connected by piping,
The cooling/heating switching valve is operated to switch between heating operation and cooling operation, and during heating operation, the compressor is changed from the minimum capacity QL to the maximum capacity Q.
)l, and a control device for controlling the compressor in a control range from the minimum capacity QL to the maximum capacity QM (QM<QH) during cooling operation. The capacity of the compressor is controlled in both heating and heating operation states, and the maximum capacity is lower during cooling operation than during heating operation to match the load of the heat pump air conditioner, resulting in less energy loss. A highly efficient peel-pump air conditioner can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧縮機能力とエネルギ効率の関係を示す特性図
、第2図は本発明ヒートポンプ式空気調和機の一実施例
の回路図、第3図は一]二記ヒートポンプ式空気調和機
の速度信号回路の特性図、第4図は」二相ヒートポンプ
式空気調和機の速度信号と11  /ニー、+ 圧縮機能力の関係特性図である。 3・・・・・・圧縮機(能力制御圧縮機)、5・・・・
・冷暖切換4F、6・・・・・・室外熱交換器(熱源側
熱交換器)、8・・・・・・減圧装置、9・・・・・・
室内熱交換器(利用側熱交換器)、12・・・・・・制
御装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 3E 第4区
Fig. 1 is a characteristic diagram showing the relationship between compression function and energy efficiency, Fig. 2 is a circuit diagram of an embodiment of the heat pump type air conditioner of the present invention, and Fig. 3 is a diagram of the heat pump type air conditioner described in 1) and 2). FIG. 4, a characteristic diagram of the speed signal circuit, is a characteristic diagram showing the relationship between the speed signal and the compression function of a two-phase heat pump type air conditioner. 3... Compressor (capacity control compressor), 5...
・Cooling/heating switching 4F, 6... Outdoor heat exchanger (heat source side heat exchanger), 8... Pressure reduction device, 9...
Indoor heat exchanger (user side heat exchanger), 12... Control device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 3E Ward 4

Claims (1)

【特許請求の範囲】[Claims] 能力制御圧縮機と冷暖切換弁と熱源側熱交換器と減圧装
置と利用側熱交換器とを配管にて接続したヒートポンプ
式冷媒回路を有し、前記冷暖切換弁を作動させ暖房運転
と冷房運転に切換え、暖房運転時前記圧縮機を最小能力
QLから最大能力喝までの制御範囲で、又冷房運転時前
記圧縮機を前記最小能力Q、から第3の能力QM (Q
M < Q)I )までの制御範囲で、制御する制御装
置を設けてなるヒートポンプ式空気調和機。
It has a heat pump type refrigerant circuit in which a capacity control compressor, a cooling/heating switching valve, a heat source side heat exchanger, a pressure reducing device, and a user side heat exchanger are connected via piping, and the heating/cooling switching valve is operated to perform heating operation and cooling operation. During heating operation, the compressor is controlled within a control range from the minimum capacity QL to the maximum capacity, and during cooling operation, the compressor is controlled within the control range from the minimum capacity Q to the third capacity QM (Q
A heat pump type air conditioner equipped with a control device that controls in a control range up to M < Q) I).
JP59057863A 1984-03-26 1984-03-26 Heat pump type air conditioner Granted JPS59189255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057863A JPS59189255A (en) 1984-03-26 1984-03-26 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057863A JPS59189255A (en) 1984-03-26 1984-03-26 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS59189255A true JPS59189255A (en) 1984-10-26
JPS6334377B2 JPS6334377B2 (en) 1988-07-11

Family

ID=13067831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057863A Granted JPS59189255A (en) 1984-03-26 1984-03-26 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS59189255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927486B2 (en) 1999-10-07 2005-08-09 Rohm Co., Ltd. Photo-interrupter and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927486B2 (en) 1999-10-07 2005-08-09 Rohm Co., Ltd. Photo-interrupter and semiconductor device using the same

Also Published As

Publication number Publication date
JPS6334377B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
JPS5934935B2 (en) heat source device
JPH0136040Y2 (en)
JP4289718B2 (en) Power supply
JPS59189255A (en) Heat pump type air conditioner
JPH023093Y2 (en)
JP3361458B2 (en) Air conditioner
JPS6262276B2 (en)
JP3375230B2 (en) Air conditioner
WO2017183274A1 (en) Electric motor drive device and refrigeration cycle device
JPS6213951A (en) Air conditioner
JPH0317165Y2 (en)
JPH0623879Y2 (en) Air conditioner
JPS6121343B2 (en)
JP2000055437A (en) Air conditioner
JP3297356B2 (en) Air conditioner
JP2000014153A (en) Power supply device
JPH0639981B2 (en) Air conditioner
JPH04190050A (en) Control device for condensor cooling fan
JPS6211259B2 (en)
JPS6358063A (en) Refrigeration cycle device
JPS6315715Y2 (en)
JPH05231745A (en) Engine driven type cooling and heating device
JPH0315981Y2 (en)
JPS6240091A (en) Air conditioner
JPS6225641Y2 (en)