JPS59188965A - Original reading element - Google Patents

Original reading element

Info

Publication number
JPS59188965A
JPS59188965A JP58063364A JP6336483A JPS59188965A JP S59188965 A JPS59188965 A JP S59188965A JP 58063364 A JP58063364 A JP 58063364A JP 6336483 A JP6336483 A JP 6336483A JP S59188965 A JPS59188965 A JP S59188965A
Authority
JP
Japan
Prior art keywords
layer
microcrystalline
amorphous
amorphous silicon
adopting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58063364A
Other languages
Japanese (ja)
Inventor
Mario Fuse
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58063364A priority Critical patent/JPS59188965A/en
Publication of JPS59188965A publication Critical patent/JPS59188965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Abstract

PURPOSE:To contrive to improve the characteristic of spectral sensitivity by adopting the structure wherein a microcrystalline Si layer is interposed between an amorphous Si layer and a clear electrode layer. CONSTITUTION:As a second photocondutor, the microcrystalline Si 5 of a fixed thickness is formed by interposition between an amorphous Si layer 1 and a clear electrode layer 2 as photoconductors. By adopting such a structure, the absorbing region for a short wavelength light stretches from the neighborhood of the layer 2 in the layer 1 to the direction of the center of the layer 1, and accordingly electron-hole pairs generated by the absorption in this absorbing region become difficult to receive the influence by the trapping level existent in the interface between the layers 2 and 1. With respect to a long wavelength light, since the absorption coefficient of the microcrystalline Si is larger than that of the amorphous Si, the photo absorption efficiency for the long wavelength light improves by adopting this structure. While, in the region of a visible wavelength, the layer functions as the preventing film against light reflection together with the film 2.

Description

【発明の詳細な説明】 この発明は光導電体−に非晶質シリコン(アセコンIC
センサが用いられているが、該シリコンICセンサはセ
ンサ長が20am乃至30m+と短いことから光路長の
長い縮小光学系を必要とし、装置の小型化を図る上で問
題になっていた。
DETAILED DESCRIPTION OF THE INVENTION This invention uses amorphous silicon (Acecon IC) as a photoconductor.
However, since the silicon IC sensor has a short sensor length of 20 am to 30 m+, it requires a reduction optical system with a long optical path length, which has been a problem in miniaturizing the device.

そこで最近は、縮小光学系を必要としない、すなわち原
稿幅と同じ長さを有する長尺の薄膜センサの開発が試み
られている。その代表的な構成全第1図に示す。すなわ
ち同センナは光導電体1に非晶質シリコン(a−8t:
H)を用い、これを酸化インジウムスズ(Indium
−Tin 0xide :略称ITO)等の透明電極2
と画素数に対応した数に分割形成した金属電極3とでは
さんだサンドイッチ型の構成をとっている。なお、4は
ガラス、セラミック等の基板である。
Therefore, recently, attempts have been made to develop a long thin film sensor that does not require a reduction optical system, that is, has the same length as the original width. Its typical configuration is shown in FIG. That is, the same senna uses amorphous silicon (a-8t:
H) and indium tin oxide (Indium tin oxide).
- Transparent electrode 2 such as Tin Oxide (abbreviated as ITO)
It has a sandwich type structure sandwiched between the metal electrode 3 and the metal electrode 3 which is divided into a number corresponding to the number of pixels. Note that 4 is a substrate made of glass, ceramic, or the like.

第2図に上記従来のセンサの分光感度特性を示す。なお
、第2図において横軸は入射光の波長であり、縦軸は正
規化した分光感度である。同図によれば該センサの分光
感度は波長0.65μm付近が最も良く、その長波長側
および短波長側においては分光感度が悪くなっているこ
とがわかる。このうち長波長側での該分光感度の急激な
低下は非晶質シリコン層1における光吸収係数の減少に
よるものでアシ、短波長側での分光感度の低下は本−子
の受光面への入射フォトン数の減少、透明電極膜2間で
の干渉効果による非晶質シリコン層への入射フォトン数
の減少等による。しかし、特に短波長側での低下は上記
以外に透明電極2と非晶質シリコン層1との界面に存在
するトラップ準位の影響によるものも太きいと考えられ
る。なぜならば、非晶質シリコ/1の光吸収係数は結晶
シリコンと比べて上記短波長域において約1ケタ大きく
(後述の第4図参照)、光吸収は該非晶質シリコン層1
の透明電極2近傍でなされるために、そこで発生した電
子−正孔対は上記トラップ準位に大きく左右されるから
である。
FIG. 2 shows the spectral sensitivity characteristics of the above conventional sensor. In FIG. 2, the horizontal axis is the wavelength of incident light, and the vertical axis is the normalized spectral sensitivity. According to the figure, it can be seen that the spectral sensitivity of the sensor is best near a wavelength of 0.65 μm, and the spectral sensitivity is poor on the longer and shorter wavelength sides. Among these, the rapid decrease in spectral sensitivity on the long wavelength side is due to a decrease in the light absorption coefficient in the amorphous silicon layer 1, and the decrease in spectral sensitivity on the short wavelength side is due to the decrease in the light absorption coefficient of the amorphous silicon layer 1. This is due to a decrease in the number of incident photons, a decrease in the number of incident photons to the amorphous silicon layer due to the interference effect between the transparent electrode films 2, etc. However, it is considered that the decrease particularly on the short wavelength side is caused not only by the above but also by the effect of trap levels existing at the interface between the transparent electrode 2 and the amorphous silicon layer 1. This is because the light absorption coefficient of amorphous silicon/1 is approximately one order of magnitude larger than that of crystalline silicon in the short wavelength range (see Figure 4 below), and the light absorption coefficient of the amorphous silicon layer 1
This is because the electron-hole pairs generated there are largely influenced by the trap level because the electron-hole pairs are generated near the transparent electrode 2.

この発明は上記実情に鑑みてなされたものであシ、原稿
読取素子の分光感度特性を向上させることによシ、高精
度かつ高能率の原稿読取シを実現する原稿読取素子を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and aims to provide a document reading element that realizes highly accurate and highly efficient document reading by improving the spectral sensitivity characteristics of the document reading element. purpose.

すなわちこの発明は、光吸収係数が波長0.65μmJ
:υ低波長域で非晶質シリコンよシ小さく、波長0.6
5μmよシ長波長域で該非晶質シリコンよシ大きい微結
晶シリコン(m1cro crystal 5ilic
on;μe−81)を前記非晶質シリコンとともに光導
電体として用いるようにしたものでアシ、さらに詳しく
は基板上に所定画素数に対応するように分割形成した金
属電極の上から光導電体として上記非晶質シリコンを着
膜した後、この上面にさらに光導電体として上記微結晶
シリコンを例えば100X〜100OXの厚さに着膜し
、さらにこの上層にITO等の透明電極を着膜形成する
ようにしたものである。このような構成とすることによ
り、上記低波長域における透明電極と非晶質シリコンと
の界面のトラップ効果の影響を緩和することができ、さ
らに上記長波長域における光吸収効率を向上させること
ができる。なお、上記微結晶シリコン層は透明電極同様
、干渉フィルタの役割も兼ねている。
That is, in this invention, the light absorption coefficient is 0.65 μmJ.
:υ Smaller than amorphous silicon in the low wavelength range, wavelength 0.6
Microcrystalline silicon (m1cro crystal 5ilic), which is larger than the amorphous silicon in the long wavelength range of 5 μm
μe-81) is used as a photoconductor together with the amorphous silicon. After depositing the above-mentioned amorphous silicon as a film, the above-mentioned microcrystalline silicon is further deposited as a photoconductor on the upper surface to a thickness of, for example, 100X to 100OX, and a transparent electrode such as ITO is further deposited on this upper layer. It was designed to do so. By adopting such a configuration, it is possible to alleviate the influence of the trap effect at the interface between the transparent electrode and the amorphous silicon in the above-mentioned low wavelength range, and further improve the light absorption efficiency in the above-mentioned long wavelength range. can. Note that, like the transparent electrode, the microcrystalline silicon layer also serves as an interference filter.

以下、この発明にかかる原稿読取素子を添付図面に示す
実施例にしたがって詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A document reading element according to the present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第3図にこの発明にかかる原稿読取素子の一実施例構成
を示す。なお、第1図に示した従来素子と同一構成要素
については同一符号を付して示しておシ、重複する説明
は省略する。
FIG. 3 shows the configuration of an embodiment of the document reading element according to the present invention. Components that are the same as those of the conventional device shown in FIG. 1 are designated by the same reference numerals, and redundant explanations will be omitted.

すなわち本実施例では光導電体としての非晶質シリコ/
層1と透明電極層2との間にさらに第2の光導電体とし
て所定厚さの微結晶シリコン5(μC−5i)1介在形
成した構成としている。微結晶シリコン5は平均結晶粒
径が100X以下の微結晶相とアモルファス相とが混合
されたものである。
In other words, in this example, amorphous silicon/
A microcrystalline silicon 5 (μC-5i) 1 with a predetermined thickness is further formed as a second photoconductor between the layer 1 and the transparent electrode layer 2. The microcrystalline silicon 5 is a mixture of a microcrystalline phase with an average crystal grain size of 100X or less and an amorphous phase.

第4図は入射光の波長と吸収係数との関係を非晶質シリ
コン(a −81)、微結晶シリコン(μC−81)、
結晶シリコン(結晶81 )についてそれぞれ示すもの
である。なお、第4図において実線が非晶質シリコンで
ア)、破線が微結晶シリコンであシ、一点鎖線が結晶シ
リコンであるQ 第4図に示すように、微結晶シリコンの吸収係数αは波
長λ(0,65μmの短波長領域では非晶質シリコンの
吸収係数よシ小さく、波長λ)0.65μmの長波長領
域では非晶質シリコンの吸収係数より大きい。
Figure 4 shows the relationship between the wavelength of incident light and the absorption coefficient for amorphous silicon (a-81), microcrystalline silicon (μC-81),
Each figure is shown for crystalline silicon (crystal 81). In Figure 4, the solid line is amorphous silicon, the broken line is microcrystalline silicon, and the dashed line is crystalline silicon.Q As shown in Figure 4, the absorption coefficient α of microcrystalline silicon is In the short wavelength region of λ (0.65 μm), the absorption coefficient is smaller than that of amorphous silicon, and in the long wavelength region of 0.65 μm (λ), it is larger than the absorption coefficient of amorphous silicon.

したがって第3図に示した本発明の構造をとることによ
p1上記短波長光の吸収領域は非品質シリコン層1内の
ITO透明電極2近傍から非晶質シリコン層1の中心部
方向へ広が9、該吸収領域での吸収によ多発生する電、
子−正孔対は前述した透明電極2と非晶質シリコン層l
+の界面に存在するトラップ準位の影響を受けにくくな
る。また一方、波長が0.7μm以上の長波長光に対し
ては第4図に示したように微結晶シリコンの吸収係数は
非晶質シリコンのそれよシも大きいため、本発明の構造
をとることにより長波長光の光吸収効率は向上する。し
かも、可視の波長領域である0、4μm〜0.7μmの
領域で、微結晶シリコンの屈折率nは非晶質シリコンの
それよ)小さく、本発明によるITO膜2、微結晶シリ
コン5、非晶質シリコンの屈折率nの間には n (ITO))n (μc −8:1 ))n (a
−8i:H)の関係が成り立って。いるため、微結晶シ
リコン層5は上記ITO膜2とともに光反射に対する防
止膜の働きをしている。
Therefore, by adopting the structure of the present invention shown in FIG. 9, the electric charge generated due to absorption in the absorption region,
The electron-hole pairs are formed by the transparent electrode 2 and the amorphous silicon layer l described above.
It becomes less susceptible to the influence of trap levels existing at the + interface. On the other hand, for long-wavelength light with a wavelength of 0.7 μm or more, the absorption coefficient of microcrystalline silicon is larger than that of amorphous silicon, as shown in FIG. 4, so the structure of the present invention is adopted. This improves the light absorption efficiency of long wavelength light. Moreover, in the visible wavelength region of 0.4 μm to 0.7 μm, the refractive index n of microcrystalline silicon is smaller than that of amorphous silicon, and the ITO film 2 according to the present invention, microcrystalline silicon 5, The refractive index n of crystalline silicon is n (ITO))n (μc -8:1))n (a
-8i:H) holds true. Therefore, the microcrystalline silicon layer 5, together with the ITO film 2, functions as a film for preventing light reflection.

し、たがって、本発明の構造すなわち非晶質シリコン層
と透明電極層との間に微結晶シリコン層を介在させる構
造をとることによシ、上記短波長域および長波長域にお
いても分光感度特性の向上を十分に期待することができ
る。
Therefore, by adopting the structure of the present invention, that is, a structure in which a microcrystalline silicon layer is interposed between an amorphous silicon layer and a transparent electrode layer, the spectral sensitivity can be improved even in the short wavelength range and long wavelength range. It can be fully expected that the characteristics will be improved.

次に第3図に示したこの発明にかかる原稿読取素子の7
1造方法を説明する。
Next, 7 of the document reading element according to the present invention shown in FIG.
The method for making one will be explained.

まずはじめに、ガラス等の絶縁基板才を上にクロム(C
r)を3000X程電子ビ一ム蒸着し、この後例えばフ
ォトリングラフィおよびエツチングによp t+ターン
形成を施すことによって所定画素数に対応した数に分割
した金属電極3を形成する。
First, place an insulating substrate such as glass on top of chromium (C).
The metal electrode 3 is divided into a number corresponding to a predetermined number of pixels by electron beam vapor deposition of about 3000X and then forming a pt+ turn by, for example, photolithography and etching.

次いでその上に光導電体1として非晶質シリコンをプラ
ズマCVD法によシ約1μm着膜する。なおこの着膜に
際しては、100%シランガス(5in4)を用いるも
のとし、S iH4流量10〜508CCM(標準cc
分)、RF(高周波: 13.56 MHz )パワー
5〜50W、圧力0.1〜0.5 Torr 、基板温
度250℃の条件で行なうのが好ましい。次に、真空状
態を保ったまま水素(H2)ガスを混入し、シランガス
および水素ガス(SiH4+ H2)を用いたプラズマ
CVD法によシ、上記形成した非晶質シリコン層1の上
に微結晶シリコン5を約100X〜10001着膜する
。なおこの着膜に際しては、1〜10チのシランガス(
Sin4)濃度にするとともに、ガス流量10〜100
 SCCMXRF (高周波:13.56MHz ) 
A’クワ−0〜200W1圧力帆1〜0.5 Torr
、基板温度250〜300℃の条件で行なうのが好まし
い。そして最後に、透明電極2をDC(直流)スパッタ
リング法によシ500〜20001着膜する。なおこの
際のターゲットには前記ITOを用いるものとする。
Next, amorphous silicon is deposited thereon to a thickness of about 1 μm as a photoconductor 1 by plasma CVD. For this film deposition, 100% silane gas (5 in 4) is used, and the SiH4 flow rate is 10 to 508 CCM (standard cc
It is preferable to carry out the process under the conditions of RF (high frequency: 13.56 MHz) power of 5 to 50 W, pressure of 0.1 to 0.5 Torr, and substrate temperature of 250°C. Next, hydrogen (H2) gas is mixed while maintaining the vacuum state, and microcrystals are formed on the amorphous silicon layer 1 formed above by a plasma CVD method using silane gas and hydrogen gas (SiH4 + H2). A film of approximately 100× to 1000× silicon 5 is deposited. In addition, when depositing this film, 1 to 10 inches of silane gas (
Sin4) concentration and gas flow rate of 10 to 100
SCCMXRF (High frequency: 13.56MHz)
A' Hoe - 0~200W1 Pressure sail 1~0.5 Torr
It is preferable to carry out the process at a substrate temperature of 250 to 300°C. Finally, a transparent electrode 2 of 500 to 20,001 layers is deposited by DC (direct current) sputtering. Note that the above-mentioned ITO is used as the target at this time.

ただし、上記微結晶シリコン5の膜厚は、透明電極2の
膜厚との相関関係による光反射防止効果および非晶質シ
リコン1の膜厚との相関関係による光吸収効率を考慮し
て、着目する波長の光の分光感度が最大になるよう、最
適化したほうが望ましい結果が得られることは勿論であ
る。
However, the film thickness of the microcrystalline silicon 5 is determined by considering the light reflection prevention effect due to the correlation with the film thickness of the transparent electrode 2 and the light absorption efficiency due to the correlation with the film thickness of the amorphous silicon 1. It goes without saying that more desirable results can be obtained by optimizing the spectral sensitivity of light at the desired wavelength to its maximum.

さて、このようにして製造した原稿読取素子について、
■TO透明電極2に一5vのバイアス電圧を印加して分
光感度を測定してみたところ、波長0.5μmの短波長
域において約40%、そして波長0.65μmの長波長
域において約20%分光感度が向上した。
Now, regarding the manuscript reading element manufactured in this way,
■When we applied a bias voltage of -5V to the TO transparent electrode 2 and measured the spectral sensitivity, it was approximately 40% in the short wavelength region of 0.5 μm, and approximately 20% in the long wavelength region of 0.65 μm. Spectral sensitivity has been improved.

なお、上述した製造方法においては、5IH4+H2ガ
スを用いたプラズマCVD法によって微結晶シリコン5
を形成するようにしたが、例えば5IH4+H2あるい
は5in4ガスの雰囲気中でのグロー放電分解法により
、あるいは不活性ガス(He 、 Ar 、 Kr。
In addition, in the above-mentioned manufacturing method, microcrystalline silicon 5
However, for example, by glow discharge decomposition method in an atmosphere of 5IH4+H2 or 5in4 gas, or by an inert gas (He, Ar, Kr, etc.).

Xs等)十H2の雰囲気中でシリコンをスパッタリング
すること等によって上記微結晶シリコン5を形成しても
よいことは勿論である。
Of course, the microcrystalline silicon 5 may be formed by sputtering silicon in an atmosphere of 10H2 (Xs, etc.).

また、本実施例においてはノンドープのl形の微結晶シ
リコンを用いたが、?ロン(B)、あるいはリン(P)
等をドーグしたp形あるいはn形の微結晶シリコンを用
いてもよいことは勿論である。他の構成要素の材料につ
いても同様であシ、高感度の分光度を得ることができる
ものであれば他のいかなる材料を用いてもよい。
Also, in this example, non-doped l-type microcrystalline silicon was used, but? Ron (B) or Lin (P)
It is of course possible to use p-type or n-type microcrystalline silicon prepared by doping. The same applies to the materials of the other components, and any other material may be used as long as it can provide a highly sensitive spectroscopic intensity.

以上説明したようにこの発明にかかる原稿読取素子によ
れば、分光感度特性を大幅に上昇させることができるこ
とから、高精度かつ高能率の原稿読取pを行なうことが
できる。
As described above, according to the document reading element according to the present invention, the spectral sensitivity characteristics can be significantly improved, so that highly accurate and highly efficient document reading p can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原稿読取素子の構成例を示す図、第2図
は第1図に示した従来の原稿読取素子の分光感度特性゛
を示す線図、第3図はこの発明にかかる原稿読取素子の
一実施例構成を示す図、第4図は非晶質シリコン、微結
晶シリコン等における光吸収係数と波長との関係を示す
線図でおる。 1・・・光導電体である非晶質シリコン、2・・・IT
O等の透明電極、3・・・金属電極、4・・・基板、5
・・・光導電体である微結晶シリコン。 第1図 第2図 逅 株 (μm) 第3図 第4図 1.4   16    1.8   20   22
フオトンエフノンへ−(eV)
FIG. 1 is a diagram showing an example of the configuration of a conventional document reading element, FIG. 2 is a diagram showing the spectral sensitivity characteristics of the conventional document reading element shown in FIG. 1, and FIG. 3 is a diagram showing a document according to the present invention. FIG. 4 is a diagram showing the structure of an embodiment of the reading element, and is a diagram showing the relationship between light absorption coefficient and wavelength in amorphous silicon, microcrystalline silicon, etc. 1...Amorphous silicon which is a photoconductor, 2...IT
Transparent electrode such as O, 3... Metal electrode, 4... Substrate, 5
...Microcrystalline silicon that is a photoconductor. Figure 1 Figure 2 Stock (μm) Figure 3 Figure 4 1.4 16 1.8 20 22
To photon efnon - (eV)

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に所定画素数に対応した数に分割形リコン
を着膜した後さらにこの上面に透明電極を晶シリコン層
を介在させたことを特徴とする原稿ある特許請求の範囲
第(1)項記載の原稿読取素子。
(1) A document characterized in that a divided silicon film is deposited on a substrate in a number corresponding to a predetermined number of pixels, and then a transparent electrode is interposed on the upper surface of the film with a crystalline silicon layer interposed therebetween. ) Document reading element described in section 2.
JP58063364A 1983-04-11 1983-04-11 Original reading element Pending JPS59188965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063364A JPS59188965A (en) 1983-04-11 1983-04-11 Original reading element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063364A JPS59188965A (en) 1983-04-11 1983-04-11 Original reading element

Publications (1)

Publication Number Publication Date
JPS59188965A true JPS59188965A (en) 1984-10-26

Family

ID=13227138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063364A Pending JPS59188965A (en) 1983-04-11 1983-04-11 Original reading element

Country Status (1)

Country Link
JP (1) JPS59188965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220568A (en) * 1987-03-10 1988-09-13 Mitsui Toatsu Chem Inc Photoelectric conversion element
US4937454A (en) * 1987-11-19 1990-06-26 Hitachi, Ltd. Radiation detector
US5184200A (en) * 1991-03-27 1993-02-02 Canon Kabushiki Kaisha Thin film semiconductor device with particular grain size

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187971A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Solar cell
JPS586164A (en) * 1981-07-03 1983-01-13 Fuji Photo Film Co Ltd Solid-state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187971A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Solar cell
JPS586164A (en) * 1981-07-03 1983-01-13 Fuji Photo Film Co Ltd Solid-state image pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220568A (en) * 1987-03-10 1988-09-13 Mitsui Toatsu Chem Inc Photoelectric conversion element
US4937454A (en) * 1987-11-19 1990-06-26 Hitachi, Ltd. Radiation detector
US5184200A (en) * 1991-03-27 1993-02-02 Canon Kabushiki Kaisha Thin film semiconductor device with particular grain size

Similar Documents

Publication Publication Date Title
EP0585055B1 (en) Wideband anti-reflection coating for indium antimonide photodetector device
US4412900A (en) Method of manufacturing photosensors
JPH0481353B2 (en)
JPS59143362A (en) Passivation film
JPS63122283A (en) Amorphous solar cell
JPS59188965A (en) Original reading element
JP3202574B2 (en) Optical writing type liquid crystal element
Ishioka et al. Single-tube color imager using hydrogenated amorphous silicon
JPH0652428B2 (en) Photoconductor
JP2904370B2 (en) Photodiode
JPS6211792B2 (en)
KR880002131B1 (en) Photo responsive device processing method
JP2809540B2 (en) Photoconductive liquid crystal light valve and method of manufacturing the same
US7053457B2 (en) Opto-electronic component
JP3020563B2 (en) Solid-state imaging device
JPH03184381A (en) Pin type optical sensor
JPH05291607A (en) Pin diode and contact image sensor using it
JPH05218483A (en) Photoelectric conversion device
JPH0226084A (en) Amorphous silicon photodiode
JP2951218B2 (en) Amorphous silicon germanium film and photovoltaic device using the same
JPH08153888A (en) Photoelectric converter and optical sensor employing it
JPH01192177A (en) Manufacture of photodetector
JPH06275831A (en) Thin-film transistor
JPS59112663A (en) Photodetector device
JPH0523072B2 (en)