JPS59184463A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS59184463A
JPS59184463A JP58055017A JP5501783A JPS59184463A JP S59184463 A JPS59184463 A JP S59184463A JP 58055017 A JP58055017 A JP 58055017A JP 5501783 A JP5501783 A JP 5501783A JP S59184463 A JPS59184463 A JP S59184463A
Authority
JP
Japan
Prior art keywords
electrode
layer
catalyst layer
electrolyte layer
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055017A
Other languages
Japanese (ja)
Inventor
Katsuichi Koizumi
小泉 勝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58055017A priority Critical patent/JPS59184463A/en
Publication of JPS59184463A publication Critical patent/JPS59184463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase three phase interface where electrode reaction arises and improve cell performance by carrying a plurality of electrode catalyst layers on an electrode substrate. CONSTITUTION:Electrode catalyst layers 7 are carried on the side of an electrolyte layer 2 and on the side of a gas flow path 5 of an electrode substrate 6. Phosphoric acid of the electrolyte layer 2 penetrates an electrode catalyst layer 7A as shown in the arrow a0 and a fuel gas penetrates the electrode layer 7A as shown in the arrow b0. Thereby, three phase interface is produced and electrode reaction arises. Phosphoric acid which has reacted in the electrode catalyst layer 7A transfers to the gas flow path 5 and reaches a electrode catalyst layer 7B. In the catalyst layer 7B, again a fuel gas b1 and phosphoric acid a1 which has passed the layer 7A react. Since the electrode catalyst layers 7 are carried on the two sides of the electrolyte layer 2 and the gas flow path 5 of the electrode substrate 6, three phase interface where electrode reaction arises is increased and cell performance is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係シ、特に扁圧下における電池性能
、寿命およびパルプ圧を向上させることのできる燃料電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell, and particularly to a fuel cell capable of improving cell performance, life and pulp pressure under compression.

〔従来技術〕[Prior art]

従来の燃料電池は第1図に示すように2枚の相対向する
電極10間に電解質2を配してなる単位電池が、多数の
平行したガス流路を有するセパレータ3を介して複数個
積層して構成されている。
In a conventional fuel cell, as shown in FIG. 1, a plurality of unit cells each having an electrolyte 2 disposed between two opposing electrodes 10 are stacked together with a separator 3 interposed therebetween having a large number of parallel gas flow channels. It is configured as follows.

このガス流路にはマニホールド4を介して燃料ガスが供
給および排気されるようになっている。この種の電極委
構成する電極基板にはガス拡散を高めて電池反応を向上
させるため、炭素繊維などの多孔質材料を使用している
。この電極基板のどちらか一方の面に電極触媒を担持さ
せてこれを電極とし、この電極触媒を担持させた該電極
基板の面側に電解質を配設して単位電池を構成している
Fuel gas is supplied to and exhausted from this gas flow path via a manifold 4. Porous materials such as carbon fibers are used for electrode substrates constituting this type of electrode board in order to enhance gas diffusion and improve battery reactions. An electrode catalyst is supported on either side of the electrode substrate to serve as an electrode, and an electrolyte is provided on the side of the electrode substrate on which the electrode catalyst is supported, thereby forming a unit cell.

この触媒が担持されていない該電極基板の他方の面には
燃料ガスが流れるようになっている。
Fuel gas is allowed to flow through the other surface of the electrode substrate on which the catalyst is not supported.

このように構成された従来の燃料電池においては、第2
図に示すように、セパレータ3に形成されたカス流路5
を流れる燃料ガスは、矢印aで示すように電極基板6を
通シ触媒層7に達し、ここで電解質層2のリン酸すとガ
スが接触し三相界面ができて電池反応が起きる。ここで
電解質層2にあるリン酸すは電池反応のために触媒層7
内にとどまらず、点線で示すように電極基板6にまでし
み込んでしまうため、電極のぬれという現象が起き三相
界面ができにくくなる。更に燃料ガスと一緒にblに示
すようにリン酸が外部へ排出されるだめ、電解質層2内
のリン酸の絶対量が少くなってしまう。これらの結果ガ
スクロスが起きやすくなシ、パルプ圧の低下、更には電
池性能の低下をきたすという欠点があった。
In the conventional fuel cell configured in this way, the second
As shown in the figure, a waste channel 5 formed in the separator 3
The fuel gas flowing through the electrode substrate 6 reaches the catalyst layer 7 as shown by the arrow a, and when the electrolyte layer 2 is phosphoricated here, the gases come into contact with each other to form a three-phase interface and a cell reaction occurs. Here, the phosphoric acid in the electrolyte layer 2 is used as the catalyst layer 7 for the battery reaction.
The liquid does not remain in the interior but also penetrates into the electrode substrate 6 as shown by the dotted line, causing a phenomenon of electrode wetting and making it difficult to form a three-phase interface. Furthermore, since phosphoric acid is discharged to the outside together with the fuel gas as shown in bl, the absolute amount of phosphoric acid in the electrolyte layer 2 decreases. As a result, there are disadvantages in that gas cross is likely to occur, pulp pressure decreases, and battery performance further deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的とするところは、電池性能の高い、寿命の長い、高圧
化およびパルプ圧に耐えることのできる燃料電池を提供
するにちる。
The present invention has been made in view of the above points, and its purpose is to provide a fuel cell that has high cell performance, has a long life, and can withstand high pressure and pulp pressure.

〔発明の概要〕[Summary of the invention]

本発明は電極−電解質層−電極の三層によって構成され
る電池本体と、この電池本体の両側に前記電極に接して
設けた燃料ガス供給用ガス路が形成された一対のセパレ
ータとからなる単位電池を複数個積層してなる燃料電池
において、前記電極が電極基板と複数の電極触媒層とか
ら彦シ、シかもそのうち1つの電極触媒層が前記電解質
層に接しさせることにより、所期の目的を達成するよう
になしだものである。
The present invention is a unit consisting of a battery body made up of three layers: electrode-electrolyte layer-electrode, and a pair of separators in which fuel gas supply gas paths are formed on both sides of the battery body in contact with the electrodes. In a fuel cell formed by stacking a plurality of cells, the electrode may be separated from an electrode substrate and a plurality of electrode catalyst layers, and one of the electrode catalyst layers may be brought into contact with the electrolyte layer to achieve the intended purpose. It is a must to achieve this.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係る燃料電池の一実施例を図面を参照して
説明する。同一部分は各図面を通じて同一番号で表示し
である。
An embodiment of the fuel cell according to the present invention will be described below with reference to the drawings. Identical parts are designated by the same numbers throughout the drawings.

第3図は本実施例の一部分を拡大した断面図である。電
極基板6の電解質層2の側とガス流路5の側との両面に
は電極触媒層7が担持されている。
FIG. 3 is a partially enlarged sectional view of this embodiment. An electrode catalyst layer 7 is supported on both sides of the electrode substrate 6, on the electrolyte layer 2 side and the gas flow path 5 side.

この場合この触媒層7の厚みはガス流路5側より電解質
層2側の方を厚くした方がよい。このように構成された
隣接する2組の電極の間には電解質層2が挾持されてお
り、この2組の電極が燃料ガス流路5が形成されたセパ
レータ3を介して一組の単位電池を構成している。
In this case, the catalyst layer 7 is preferably thicker on the electrolyte layer 2 side than on the gas flow path 5 side. An electrolyte layer 2 is sandwiched between two adjacent sets of electrodes configured in this way, and these two sets of electrodes are connected to one set of unit cells via a separator 3 in which a fuel gas flow path 5 is formed. It consists of

このように構成された単位電池の機能を第4図について
説明する。電解質層2のリン酸は矢印aoに示す如く電
極触媒層7Aに、また燃料ガスは矢印boに示す如く電
極触媒層7Aに浸入し、三相界面が出来て電極反応が起
こる。さらに電極触媒層7Aで反応したリン酸は7A層
内にとどまらず、さらにガス流路5側に移行して電極触
媒層7Bに達し、ここで再び燃料ガスbl と7A層を
通過したリン酸a1とで電極反応が起こる。このように
電極基板6の電解質層2側とガス流路5側の両方の面に
電極触媒層7を担持することにより、電極反応が起こる
三相界面の場が増大して電池性能が向上する。さらに電
解質層2にあるリン酸の有効利用ができ、リン酸の消失
を少くすることができて、燃料ガスが矢印b2のように
対極側に移動するというガスクロスが防止でき、パルプ
圧が向上することにより電池の寿命を長くすることがで
きる。また電池の運転条件が高圧になると、電解質層2
のリン酸は7B層に移行し、ガスはb2の方向へ移行す
る力が大となるので、上記説明のように電極基板6の両
方の面に電極触媒7を担持させれば、さらに電池性能の
向上や長寿命化を図るのに有利である。
The function of the unit battery constructed in this way will be explained with reference to FIG. The phosphoric acid in the electrolyte layer 2 enters the electrode catalyst layer 7A as shown by the arrow ao, and the fuel gas enters the electrode catalyst layer 7A as shown by the arrow bo, creating a three-phase interface and causing an electrode reaction. Furthermore, the phosphoric acid that has reacted in the electrode catalyst layer 7A does not remain in the layer 7A, but further migrates to the gas flow path 5 side and reaches the electrode catalyst layer 7B, where the phosphoric acid a1 that has passed through the fuel gas bl and the layer 7A again. An electrode reaction occurs. By supporting the electrode catalyst layer 7 on both the electrolyte layer 2 side and the gas flow path 5 side of the electrode substrate 6 in this way, the field at the three-phase interface where electrode reactions occur is increased, improving battery performance. . In addition, the phosphoric acid in the electrolyte layer 2 can be used effectively, reducing the loss of phosphoric acid, preventing gas cross-flow in which fuel gas moves to the opposite electrode as shown by arrow b2, and improving pulp pressure. By doing so, the life of the battery can be extended. Furthermore, when the operating conditions of the battery become high pressure, the electrolyte layer 2
The phosphoric acid moves to the 7B layer, and the force of the gas moving in the b2 direction becomes large. Therefore, if the electrode catalyst 7 is supported on both surfaces of the electrode substrate 6 as explained above, the battery performance can be further improved. This is advantageous for improving the performance and extending the service life.

第5図は本発明の別の実施例の部分拡大断面図で、第4
図に示す実施例と異る点は、電極基板6の電解質層2側
とガス流路5側との両方の面に電極触媒層7を担持させ
ずに、電解質層2側の面にのみ電極触媒層7を担持させ
、この触媒層を担持していない他方の面には、同様に片
面にのみ触媒層7を担持している別の電極基板6を該触
媒層面を介して重ね合わせた点である。この実施例では
電極基板の両方の面に電極触媒層を担持する必要がなく
、片面に電極触媒層を担持した2枚の電極基板を重ね合
わせるだけでよい。また電極触媒層7が電解質層2を中
央部に位置させることにより三相界面を増大させるとと
もに、電極基板6の異った種類、例えば材料、気孔率の
異ったものの組合わせなどにより、燃料ガスの拡散を高
めることや、発水性の異なったものの組合せなどにより
、リン酸による電極がぬれる現象などを防止できるとい
う効果がある。
FIG. 5 is a partially enlarged cross-sectional view of another embodiment of the present invention;
The difference from the embodiment shown in the figure is that the electrode catalyst layer 7 is not supported on both the electrolyte layer 2 side and the gas flow path 5 side of the electrode substrate 6, and the electrode is only supported on the electrolyte layer 2 side. A point in which a catalyst layer 7 is supported, and another electrode substrate 6, which similarly supports a catalyst layer 7 only on one side, is superimposed on the other surface that does not support this catalyst layer via the catalyst layer surface. It is. In this embodiment, it is not necessary to support an electrode catalyst layer on both sides of the electrode substrate, and it is sufficient to simply stack two electrode substrates each having an electrode catalyst layer supported on one side. In addition, by positioning the electrolyte layer 2 in the center of the electrode catalyst layer 7, the three-phase interface is increased, and by combining different types of the electrode substrate 6, for example, materials with different porosity, the fuel By increasing gas diffusion and combining materials with different water-generating properties, it is possible to prevent the electrode from getting wet due to phosphoric acid.

第6図は本発明のさらに別の実施例を示す部分で 拡大断面部電極基板60片側の面に電極触媒層7を担持
させ、このようにした2枚の電極基板6の触媒層7を担
持していない面どうしを重ね合わせたものである。
FIG. 6 is an enlarged cross-sectional view showing still another embodiment of the present invention, in which an electrode catalyst layer 7 is supported on one side of an electrode substrate 60, and the catalyst layer 7 of two such electrode substrates 6 is supported. It is a superposition of unconventional surfaces.

上述のように本発明の実施例の何れの場合においても、
複数層の電極触媒が電極基板に担持されているので、触
媒層の厚さを厚くしてもひび割れを生ずることがない。
As mentioned above, in any of the embodiments of the present invention,
Since multiple layers of electrode catalyst are supported on the electrode substrate, cracks will not occur even if the thickness of the catalyst layer is increased.

第7図に示す如く触媒層の厚さを厚くすると電極電位が
向上することは、種種の実験の結果で判っている。この
ように電極触媒層の厚さをひび割れを生じさせることな
く厚くできるので、電池性能の向上を図ることができ電
池寿命を長くすることができる。
As shown in FIG. 7, it has been found from various experiments that increasing the thickness of the catalyst layer improves the electrode potential. In this way, the thickness of the electrode catalyst layer can be increased without causing cracks, so that the battery performance can be improved and the battery life can be extended.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、燃料電池の複数層の電極
触媒層を電極基板に担持させることにより厚くするとと
ができるようになったので、電池反応の場である三相界
面が増大して電池性能が向上し、また電極のガス流路側
に担持される触媒の・、       量により電極の
気孔率を制御することができる。
As described above, according to the present invention, it is possible to thicken the multiple electrode catalyst layers of a fuel cell by supporting them on the electrode substrate, thereby increasing the three-phase interface that is the site of cell reactions. This improves battery performance, and the porosity of the electrode can be controlled by controlling the amount of catalyst supported on the gas flow path side of the electrode.

さらにまたガスクロスの防止、バルブ圧の向上ができ、
特に高圧での電池運転時にはこれらの効果は特に大であ
る。
Furthermore, it can prevent gas cross and improve valve pressure.
These effects are particularly significant when the battery is operated at high pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池の構成を示す説明斜視図、第2
図は第1図の単位電池の一部拡大断面図、第3図、第4
図、第5図、第6図はそれぞれ本発明に係る燃料電池の
実施例における単位電池の構成を示す一部拡大断面図、
第7図は触媒層の厚さと電池電圧との関係を示す図であ
る。 1・・・電極、2・・・電解質層、3・・・セパレータ
、4・・・マニホールド、5・・・ガス流路、6・・・
電極基板、7采1図 第2図 第3図 可4図 、5 第5図 σ 第6図 罰′7図 社媒層厚さ
Figure 1 is an explanatory perspective view showing the configuration of a conventional fuel cell;
The figures are a partially enlarged sectional view of the unit battery in Figure 1, Figures 3 and 4.
5 and 6 are partially enlarged sectional views showing the structure of a unit cell in an embodiment of the fuel cell according to the present invention, respectively,
FIG. 7 is a diagram showing the relationship between the thickness of the catalyst layer and the battery voltage. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Electrolyte layer, 3... Separator, 4... Manifold, 5... Gas flow path, 6...
Electrode substrate, 7 buttons 1 Figure 2 Figure 3 Possible Figure 4, 5 Figure 5 σ Figure 6 Punishment Figure 7 Media layer thickness

Claims (1)

【特許請求の範囲】[Claims] 1、電解質層の両側に配置した一対の電極を有する電池
本体と、マニホールドに接続されこの電池本体の両側に
おいて前記電極に接して設けた燃料ガスを供給するガス
路が形成されている一対のセパレータとからなる単位電
池を、複数個積層した燃料電池において、前記各電極は
電極基板を介して複数の電解触媒層から構成され、かつ
そのうちの1つの電極触媒層が前記電解質層に接してい
ることを特徴とする燃料電池。
1. A battery body having a pair of electrodes arranged on both sides of an electrolyte layer, and a pair of separators connected to a manifold and formed with gas passages for supplying fuel gas, which are provided in contact with the electrodes on both sides of the battery body. In a fuel cell in which a plurality of unit cells are stacked, each electrode is composed of a plurality of electrocatalyst layers via an electrode substrate, and one of the electrode catalyst layers is in contact with the electrolyte layer. A fuel cell featuring:
JP58055017A 1983-04-01 1983-04-01 Fuel cell Pending JPS59184463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055017A JPS59184463A (en) 1983-04-01 1983-04-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055017A JPS59184463A (en) 1983-04-01 1983-04-01 Fuel cell

Publications (1)

Publication Number Publication Date
JPS59184463A true JPS59184463A (en) 1984-10-19

Family

ID=12986892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055017A Pending JPS59184463A (en) 1983-04-01 1983-04-01 Fuel cell

Country Status (1)

Country Link
JP (1) JPS59184463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965377A (en) * 1988-06-10 1990-10-23 Great Lakes Chemical Corporation Process of forming 2-(2-bromo-2-nitroethenyl)-furan
US5090990A (en) * 1988-06-10 1992-02-25 Great Lakes Chemical Corporation Industrial antimicrobial:uses for 2-(2-bromo-2-nitroethenyl)-furan
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
WO2011036749A1 (en) * 2009-09-24 2011-03-31 株式会社 東芝 Collector member, power generation device, and method for producing collector member for power generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965377A (en) * 1988-06-10 1990-10-23 Great Lakes Chemical Corporation Process of forming 2-(2-bromo-2-nitroethenyl)-furan
US5090990A (en) * 1988-06-10 1992-02-25 Great Lakes Chemical Corporation Industrial antimicrobial:uses for 2-(2-bromo-2-nitroethenyl)-furan
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
WO2011036749A1 (en) * 2009-09-24 2011-03-31 株式会社 東芝 Collector member, power generation device, and method for producing collector member for power generation device
JP5562968B2 (en) * 2009-09-24 2014-07-30 株式会社東芝 Current collecting member, power generation device, and method of manufacturing current collecting member for power generation device
US9972849B2 (en) 2009-09-24 2018-05-15 Kabushiki Kaisha Toshiba Collector member, power generator, and method of manufacturing collector member for power generator

Similar Documents

Publication Publication Date Title
JP4344484B2 (en) Solid polymer cell assembly
JP3050408B2 (en) End manifold assembly for an electrochemical fuel cell stack
US7569301B2 (en) Fuel cell
KR101388318B1 (en) Solid oxide fuel cell
JP5234879B2 (en) Fuel cell
JP5383051B2 (en) Fuel cell and fuel cell stack
JPH041469B2 (en)
US5085950A (en) Fuel cell
JP4383605B2 (en) Solid polymer electrolyte fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
US6203676B1 (en) Ionic conduction device
JPS59184463A (en) Fuel cell
JPS58155B2 (en) Nendoriyodenchikumitatetai
JP2001250568A (en) Collector panel for solid polymer fuel cell
US20030054216A1 (en) Fuel cell
JP2982559B2 (en) Fuel cell
JP2001126743A (en) Polymer electrolytic fuel cell
CA3026996C (en) Fuel cell stack and separator for fuel cell stack
JPH097616A (en) Solid electrolyte type fuel cell
JPH04121967A (en) Solid electrolyte type fuel cell
JP2773134B2 (en) Fuel cell
JP2003017091A (en) Solid polymer fuel cell
JPH04206361A (en) Fuel cell
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
US4975342A (en) Fuel cell