JPS59182972A - Production of grain oriented silicon steel sheet having excellent iron loss characteristic - Google Patents

Production of grain oriented silicon steel sheet having excellent iron loss characteristic

Info

Publication number
JPS59182972A
JPS59182972A JP58057916A JP5791683A JPS59182972A JP S59182972 A JPS59182972 A JP S59182972A JP 58057916 A JP58057916 A JP 58057916A JP 5791683 A JP5791683 A JP 5791683A JP S59182972 A JPS59182972 A JP S59182972A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
iron loss
forsterite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58057916A
Other languages
Japanese (ja)
Other versions
JPH025819B2 (en
Inventor
Masao Iguchi
征夫 井口
Shigeko Ikeda
池田 成子
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58057916A priority Critical patent/JPS59182972A/en
Publication of JPS59182972A publication Critical patent/JPS59182972A/en
Publication of JPH025819B2 publication Critical patent/JPH025819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Abstract

PURPOSE:To improve considerably the iron loss characteristic by coating a prescribed amt. of a dilute aq. soln. of a Ca compd. on the surface of a grain oriented silicon steel sheet formed thereon with a forsterite insulating film and annealing the sheet at a prescribed temp. in a non-oxidizing atmosphere. CONSTITUTION:A grain oriented silicon steel sheet contg. 2-4wt% Si is subjected to final finish annealing to develop secondary recrystallized grain of {100} <001> orientation and to form a forsterite insulating film. An aq. soln. contg. 0.001-1wt% (in terms of Ca) Ca compd. is coated at a rate of 0.01-10g/m<2> on the surface of the steel sheet formed with such film. The steel sheet is then subjected to an annealing treatment at 500-1,000 deg.C in a non-oxidizing atmosphere. The sulfide of Ca is preferentially formed right under the above-described insulating film. The iron loss characteristic is thus considerably improved.

Description

【発明の詳細な説明】 この発明は、鉄損特性の優れた一方向性けい素鋼板の製
造方法に関し、とくに該鋼板の純化促進による鉄損特性
の改善を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a unidirectional silicon steel sheet with excellent iron loss characteristics, and in particular aims at improving the iron loss characteristics by promoting purification of the steel sheet.

一方向性けい素鋼板は、主として変圧器その他の電気機
器の鉄心とし【利用され、その磁気特性1・。
Unidirectional silicon steel sheets are mainly used as cores for transformers and other electrical equipment, and their magnetic properties are 1.

にすぐれること、すなわちB□。値で代表される磁束密
度が高く、かつ鉄損WuH。が低いことが要求される。
Being excellent at B□. The magnetic flux density represented by the value is high and the iron loss WuH. is required to be low.

このような一方向性けい素鋼板の磁気特性を向上させる
ためには、第IK鋼板中の2次再結晶粒1のく001〉
軸を圧延方向に高度に揃える必要があり、第2には最終
成品中に残存する不純物や析出物をできるだけ減少させ
る必要がある。
In order to improve the magnetic properties of such a unidirectional silicon steel sheet, the secondary recrystallized grains 1 in the IK steel sheet must be
It is necessary to align the axes to a high degree in the rolling direction, and secondly, it is necessary to reduce as much as possible impurities and precipitates remaining in the final product.

まず第1の2次再結晶粒の(0 0 1)軸を圧延方向
に揃える方法については、N.P.Gossによる2 
、。
First, regarding the method of aligning the (0 0 1) axis of the first secondary recrystallized grains in the rolling direction, N. P. 2 by Goss
,.

段冷延の基本的製造方法が提案されて以来、その1製造
方法あるいはインヒビターの種類などにおびただしい改
善が重ねられ、磁束密度および鉄損は年を追って改良さ
れてきた。その中でもとくに代表的なものとしては、A
eN析出相を利用する持分−9昭40−15644号公
報およびsbとSeまたはSとをインヒビターとして利
用する特公昭51−18469号公報にそれぞれ開示の
方法があり、これらの方法によれば磁束密度B0゜が1
.89 T以上、鉄損W  が1゜05〜1゜00 ’
w/kgの製品が得られ1,11%0 るよ5になった。しかしながら近年のエネルギーコスト
高騰による省エネルギーの立場からは、磁気特性向上に
対するこれまでにない厳しい要求をまだ十分満足してい
るとは云えない。
Since the basic manufacturing method of multi-stage cold rolling was proposed, numerous improvements have been made in the manufacturing method and the types of inhibitors, and the magnetic flux density and iron loss have been improved over the years. Among them, the most representative one is A.
There are methods disclosed in Japanese Patent Publication No. 15644/1972, which utilizes eN precipitated phase, and Japanese Patent Publication No. 18469/1982, which utilizes sb and Se or S as inhibitors. According to these methods, the magnetic flux density B0° is 1
.. 89 T or more, iron loss W is 1°05 to 1°00'
w/kg of product was obtained, resulting in a rate of 1.11% 0 to 5. However, from the standpoint of energy conservation due to the recent rise in energy costs, it cannot be said that the ever more stringent requirements for improved magnetic properties have been fully satisfied.

次に、第2の最終成品中の不純物低減による磁1気特性
とくに鉄損特性の改善については、2次再結晶焼鈍後、
水素雰囲気中、1100〜1200°Cの温度で純化焼
鈍を施すことにより、鋼中に残存するC、Nなどの不純
物を除去し、またMnS 。
Next, regarding the improvement of magnetic properties, especially iron loss properties, by reducing impurities in the second final product, after secondary recrystallization annealing,
By performing purification annealing at a temperature of 1100 to 1200 °C in a hydrogen atmosphere, impurities such as C and N remaining in the steel are removed and MnS is removed.

MnSe 、 AeNなどの析出物を分解してS 、 
Seの形−、,1で気相中へ逸散させ、さらにはMnS
 、 MnSe 、 Ae208’などの状態でフォル
ステライ) (Mg2Si○4)被膜中あるいはフォル
ステライト質被膜直下の地鉄表面近傍に濃縮させたりし
て、鋼中からの除去を図る方法が一般的である。
By decomposing precipitates such as MnSe and AeN, S,
In the form of Se, , 1 is dissipated into the gas phase, and furthermore, MnS
, MnSe, Ae208', etc.) (Mg2Si○4) A common method is to remove it from the steel by concentrating it in the film or near the surface of the steel base directly under the forsterite film. .

しかしながらこの純化焼鈍処理による特性改善について
は、これまで単に現象論的な立場からの考察に止まり、
純化挙動について十分解明されているとは言えなかった
However, the improvement of properties by this purification annealing treatment has so far only been considered from a phenomenological standpoint.
It could not be said that the purification behavior was sufficiently elucidated.

そこで発明者らは、純化挙動の解明による特性、、。Therefore, the inventors developed the characteristics by elucidating the purification behavior.

の改善を目指し、純化焼鈍後あるいは純化焼鈍に続く熱
処理後のフォルステライト被膜直下の不純物および析出
物の生成分布状況の詳細な調査を主Mn : 0.07
%、およびS : 0.025%を含有する鋼塊を、1
840℃に加熱後熱延して2.4 mm厚の熱延板とし
たのち、900℃で均一化焼鈍し、ついで950℃の中
間焼鈍を含む2回の冷延を行なって0.8fi771厚
の最終板厚とした冷延鋼板に、820℃。
With the aim of improving Mn: 0.07, we conducted a detailed investigation of the formation distribution of impurities and precipitates directly under the forsterite coating after purification annealing or after heat treatment following purification annealing.
%, and S: 1 steel ingot containing 0.025%
After heating to 840°C and hot rolling to make a 2.4 mm thick hot rolled sheet, it was homogenized annealed at 900°C and then cold rolled twice including intermediate annealing at 950°C to a 0.8fi771 thickness. A cold rolled steel plate with a final thickness of 820°C.

湿水素中で脱炭・1次再結晶焼鈍を施し、ついでIMg
oを主成分とする焼鈍分離剤を鋼板表面に塗布してから
、窒素ガス中で700℃から1200℃までを5℃74
の昇温速度で昇温しで2次再結晶をさせたのち、水素雰
囲気中で1200℃、5時間の純化焼鈍したあと、さら
に窒素ガス中で900℃、10時間の焼鈍を施して得た
鋼板の、表面から10μm深さの抽出レプリカにおける
電子顕微鏡断面組織写真を示す。
After decarburization and primary recrystallization annealing in wet hydrogen, IMg
After applying an annealing separator mainly composed of
After secondary recrystallization by raising the temperature at a heating rate of An electron microscope cross-sectional structure photograph of a steel plate extracted from a depth of 10 μm from the surface is shown.

同図において、0.5μm巾で108m長さの板状1・
1の巨大な析出物が観察されるが、この析出物は電子回
折、EDXによる成分分析の結果、MnSであることが
判明した。この析出物は、通常の方向性けい素鋼中の粒
成長抑制剤(インヒビター)としての微細なMnS析出
物と比較して、1OO−2001倍もの巨大な析出物で
あることが注目される。
In the same figure, a plate-shaped 1.
A huge precipitate No. 1 was observed, and as a result of component analysis by electron diffraction and EDX, this precipitate was found to be MnS. It is noted that this precipitate is 100-2001 times larger than the fine MnS precipitate as a grain growth inhibitor in normal grain-oriented silicon steel.

またこの巨大なMnSの析出物の析出温度範囲について
調べたところ、第2図に示したように800〜900℃
の温度範囲で焼鈍時間200分以上で優先析出すること
が明らかになった。
In addition, when we investigated the precipitation temperature range of this huge MnS precipitate, we found that it was 800 to 900℃ as shown in Figure 2.
It has become clear that preferential precipitation occurs when the annealing time is 200 minutes or more in the temperature range of .

さらにこの巨大MnS析出物の析出位置について・も調
べたところ、フォルステライト被膜直下の地鉄表面近傍
にのみ優先析出することが判明した。
Furthermore, when we investigated the precipitation position of this giant MnS precipitate, it was found that it preferentially precipitated only in the vicinity of the steel surface directly under the forsterite coating.

すなわち第8図に、第2図の材料についてMnSの表面
近傍での析出状況を示したとおり、MnSはフォルステ
ライト被膜直下20μm以内にのみ優先析出するという
新規の知見を得たのである。
That is, as shown in FIG. 8, which shows the precipitation of MnS near the surface of the material shown in FIG. 2, we have obtained a new finding that MnS preferentially precipitates only within 20 μm directly beneath the forsterite coating.

以上のような純化焼鈍処理による鋼板表面近傍の析出物
の挙動に関する調査結果に立脚して、発明者らは、この
ような表面近傍で析出する析出物、、。
Based on the above investigation results regarding the behavior of precipitates near the surface of a steel sheet due to purification annealing treatment, the inventors have determined that such precipitates precipitate near the surface.

を何らかの処理により、さらに表面近傍に優先的に析出
させる、すなわち第4図の模式図ら中の実線で示すよう
な析出状態にすれば製品の鉄損特性をさらに向上させる
ことができるのではないかと考え、その実現を目指して
多くの実験と検討を行5なった。
It may be possible to further improve the iron loss characteristics of the product by making it preferentially precipitate near the surface through some kind of treatment, that is, by creating a precipitation state as shown by the solid line in the schematic diagram of Figure 4. After thinking about it, we conducted many experiments and studies with the aim of realizing it.

その結果、方向性けい素鋼板の純化焼鈍後のフォルステ
ライト系絶縁被膜を形成させた鋼板表面に、Caを含む
化合物の希薄水溶液を塗布して非酸化性雰囲気中で焼鈍
することにより、磁気特性どくに鉄損特性の著しい向上
を実現できることを1新たに究明し、この発明を完成さ
せるに至ったのである。
As a result, by applying a dilute aqueous solution of a Ca-containing compound to the surface of a grain-oriented silicon steel sheet on which a forsterite-based insulating film was formed after purification annealing, and annealing it in a non-oxidizing atmosphere, magnetic properties were improved. They newly discovered that it is possible to realize a significant improvement in iron loss characteristics, leading to the completion of this invention.

すなわちこの発明は、Si : 2.0〜4.0%冬以
下単杭%梵示す)を含有する一方向性けい素鋼板用素材
を熱延し、ついで冷延と中間焼鈍とを適宜繰返して得ら
れる最終成品厚の冷延鋼板に、脱炭を兼ねた1次再結晶
焼鈍を施したのち焼鈍分離剤を塗布し、しかるのち最終
仕上げ焼鈍を施して(110)(001)方位の2次再
結晶粒を発達さ1.。
That is, the present invention hot-rolls a material for a unidirectional silicon steel sheet containing Si: 2.0 to 4.0% (indicated by 2.0% to 4.0%), and then cold rolling and intermediate annealing are repeated as appropriate. The resulting cold-rolled steel sheet with the final product thickness is subjected to primary recrystallization annealing that also serves as decarburization, then coated with an annealing separator, and then final finish annealed to obtain a secondary recrystallization in the (110) (001) orientation. Develop recrystallized grains1. .

せつつ有害不純物を除去すると共に、フォルステライト
系絶縁被膜を形成させる一連の工程よりなる一方向性け
い素鋼板の製造方法において、上記最終仕上げ焼鈍後に
、フォルステライト系絶縁被膜をそなえる鋼板の表面に
、Caを含む化1゜金物をCa換算で0.001〜1.
0%の範囲で含有する水溶液を、単位面積1 m2当り
0.01〜logの範囲において塗布し、ついで非酸化
性雰囲気中、500〜1000℃の範囲の温度で焼鈍処
理して、上記フォルステライト系絶縁被膜の直下にCa
の=、、。
In a method for manufacturing a unidirectional silicon steel sheet, which includes a series of steps of removing harmful impurities while forming a forsterite-based insulating film, after the final annealing, the surface of the steel sheet with a forsterite-based insulating film is coated with a forsterite-based insulating film. , 1° metal containing Ca is 0.001 to 1.
An aqueous solution containing in the range of 0% is applied in the range of 0.01 to log per unit area of 1 m2, and then annealed at a temperature in the range of 500 to 1000°C in a non-oxidizing atmosphere to form the forsterite. Ca directly under the system insulation film
=,,.

硫化物を優先生成させることをもって、上記目的1の達
成手段とするものである。
The purpose of achieving the above objective 1 is to generate sulfides preferentially.

以下この発明を由来するに至った実験結果に基づきこの
発明を具体的に説明する。
This invention will be specifically explained below based on the experimental results that led to this invention.

表1に示した種々の化合物を、0.01 moV、Bお
よびQ、l mol/6の割合で含む希薄水溶液中に、
フォルステライト絶縁被膜をそなえる一方向性けい素鋼
板を浸漬し、該鋼板の表面に0 、1 = 1 fl/
m”の範囲にわたって該水溶液を塗布したのち、窒素ガ
ス中で800℃、5時間の焼鈍を施した。得られ1、。
In a dilute aqueous solution containing various compounds shown in Table 1 in a ratio of 0.01 moV, B and Q, l mol/6,
A unidirectional silicon steel plate with a forsterite insulating film is immersed, and the surface of the steel plate is coated with 0, 1 = 1 fl/
After applying the aqueous solution over a range of 1.5 m'', annealing was performed at 800° C. for 5 hours in nitrogen gas. Obtained 1.

た各鋼板の磁気特性について調べた結果を、それぞれ比
較して表1に併記する。なおこのときの希薄水溶液の温
度は80℃、浸漬時間は10秒間であった。
The results of investigating the magnetic properties of each of the steel sheets are compared and listed in Table 1. Note that the temperature of the dilute aqueous solution at this time was 80° C., and the immersion time was 10 seconds.

表1 *飽和水溶液使用 (−):鉄損特性良好 △:鉄損特性やや不良 ×:鉄損特性不良 表1かられかるように、Caを含む化合物を純 1化焼
鈍後に塗布焼鈍した製品の磁気特性は、磁束密度Blo
Kついては他の化合物を塗布焼鈍した場合にくらべて同
程虞か若干良くなる程度であるが、鉄損W1’!/ii
 oは塗布濃度の如何にかかわらず良好な特性を示すこ
とが注目される。
Table 1 *Using a saturated aqueous solution (-): Good iron loss properties △: Slightly poor iron loss properties ×: Poor iron loss properties As seen from Table 1, compounds containing Ca were purified and coated annealed after annealing. The magnetic properties are magnetic flux density Blo
Regarding K, the risk is about the same or slightly better than when applying other compounds and annealing, but the iron loss W1'! /ii
It is noteworthy that o exhibits good characteristics regardless of the coating concentration.

次に表2に、C: 0.048%、Si : 8.28
%、Se ’:  0.017%、Sb :  0.0
28%、Mo :  0.018%およびMn : 0
.070%を含有する一方向性けい素鋼板用素材を2.
8mm厚に熱間圧延し、ついで900.、。
Next, in Table 2, C: 0.048%, Si: 8.28
%, Se': 0.017%, Sb: 0.0
28%, Mo: 0.018% and Mn: 0
.. 2. A material for unidirectional silicon steel sheet containing 0.070%.
It was hot rolled to a thickness of 8mm and then rolled to a thickness of 900mm. ,.

’CX 8 n+inの均一化焼鈍の後、950℃X 
8 minの中間焼鈍をはさんで2回の冷間圧延を施し
て最終板厚0.8mmとした冷延鋼板に、湿水素雰囲気
中で820°C、8m1nO脱炭焼鈍を施し、ついでM
gOを主成分とする焼鈍分離剤を塗布してから、850
℃×50bの2次再結晶焼鈍および1180°CX51
1の純化焼鈍より成る仕上焼鈍を施したのち、この鋼板
の表面に、Caを0.001〜lO%の範囲で含有する
C aCe 2の水溶液をそれぞれ0.01〜20F−
の割合で塗布したあとN2ガス中で800℃、8時間の
焼鈍処理を施して得られた鋼板の、磁気1特性と被膜の
密着性とについて調べた結果をまとめて示す。
'After homogenization annealing of CX 8 n+in, 950℃X
A cold-rolled steel sheet was cold-rolled twice with an intermediate annealing of 8 min in between to give a final thickness of 0.8 mm, and then subjected to decarburization annealing at 820°C in a wet hydrogen atmosphere at 8 ml of 1nO, and then subjected to M
After applying an annealing separator mainly composed of gO, 850
Secondary recrystallization annealing at ℃×50b and 1180°CX51
After finishing finish annealing consisting of purification annealing in step 1, the surface of this steel sheet is treated with an aqueous solution of CaCe2 containing Ca in a range of 0.01 to 10%, respectively, from 0.01 to 20 F-.
The following summarizes the results of investigating the magnetic 1 characteristics and film adhesion of a steel plate obtained by coating the steel plate at a ratio of 1 and then annealing it in N2 gas at 800°C for 8 hours.

同表から明らかなように、仕上焼鈍後の鋼板衣1面にc
aとして0.001〜1.0%の範囲のCaC132の
水溶液を0.01−109//rIL2の割合、より好
ましくは0.005〜0.5%の範囲に相当するCaC
lI2の水溶液を0.07〜1.7 、!i’/m2の
割合で塗布して焼鈍する゛・と磁気特性とくに鉄損特性
が向上するのがわかる。
As is clear from the same table, C
an aqueous solution of CaC132 in the range of 0.001 to 1.0%, and a proportion of 0.01 to 109//rIL2, more preferably CaC in the range of 0.005 to 0.5%.
The aqueous solution of lI2 is 0.07~1.7,! It can be seen that the magnetic properties, especially the iron loss properties, are improved by applying and annealing at a ratio of i'/m2.

またこのときの被膜の密着性もCa量が0゜001〜1
.0%範囲では良好であることがわかる。
In addition, the adhesion of the film at this time was also determined when the amount of Ca was 0°001 to 1.
.. It can be seen that it is good in the 0% range.

この発明において使用するCa化合物としては、表1に
示したCa(Mg 、 CaHPO,”2H20、Ca
(NO3)2・4H,O,111C11(H2’PO,
)2・H,Oなどの他、Ca(CH3COO)2・H2
O。
The Ca compounds used in this invention include Ca (Mg, CaHPO, "2H20, Ca
(NO3)2・4H,O,111C11(H2'PO,
)2・H, O, etc., as well as Ca(CH3COO)2・H2
O.

CaB r 2 ・2H20およびca (c a H
s○7)、−4H20などが有利に適合し、これらをそ
れぞれ単独あるいは複合して使用することができる。
CaB r 2 ・2H20 and ca (ca H
s○7), -4H20, etc. are advantageously suitable, and these can be used alone or in combination.

またこのCa化合物含有水溶液の鋼板表面への 1−付
着方法は、とくに限定されるものではなく、従来公知の
いずれの方法例えば溶液中への浸漬あるいは電解処理な
どを用いることができる。
Further, the method for applying this Ca compound-containing aqueous solution to the surface of the steel sheet is not particularly limited, and any conventionally known method such as immersion in a solution or electrolytic treatment can be used.

さらにCa化合物塗布後の焼鈍温度は鋼板表面近傍のS
が拡散し始める温度すなわち500〜 2.。
Furthermore, the annealing temperature after applying the Ca compound is
The temperature at which the particles begin to diffuse, i.e. 500~2. .

1000℃の温度で行うこと゛が肝9であり、また焼・
鈍雰囲気は、酸化性雰囲気であると不純物が鋼中へ侵入
し鉄損が劣化するため非酸化性雰囲気とする必要がある
The most important thing is to do it at a temperature of 1000℃, and also to bake it.
The dull atmosphere needs to be a non-oxidizing atmosphere, since an oxidizing atmosphere will cause impurities to penetrate into the steel and deteriorate core loss.

なおこの発明の適用鋼種については、Slを2.0〜4
.0%程度含むいわゆるけい素鋼であればいずれでもよ
い。
In addition, regarding the applicable steel type of this invention, Sl is 2.0 to 4.
.. Any so-called silicon steel containing about 0% may be used.

次にこの発明の実施例について述べる。Next, embodiments of this invention will be described.

実施例 I C: 0.045%、 Si : 8.81%、 Mn
 : 0.065%、I1゜8e : 0.018%、
 8b : 0.025%およびMo : 0.014
%を含有する熱延板(2,8mm厚)を、900℃で均
一化焼鈍後、950℃の中間焼鈍を含む2回の冷延を行
なってo、smm厚の最終冷延板としたのち湿水素雰囲
気中で820℃で8分間の脱炭・11次再結晶焼鈍後、
MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、
ついで850℃、50時間の2次再結晶焼鈍、引続き水
素雰囲気中で1180℃、5時間の純化焼鈍を施した。
Example IC: 0.045%, Si: 8.81%, Mn
: 0.065%, I1゜8e: 0.018%,
8b: 0.025% and Mo: 0.014
After uniform annealing at 900°C, a hot-rolled sheet (2.8 mm thick) containing After decarburization and 11th recrystallization annealing at 820℃ in a wet hydrogen atmosphere for 8 minutes,
Applying an annealing separator mainly composed of MgO to the steel plate surface,
Next, secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1180°C for 5 hours in a hydrogen atmosphere.

ついでフォルステライト絶縁被膜を被成した鋼板の表面
、。
Next, the surface of the steel plate was coated with a forsterite insulating film.

に、Ca換算で0.02重量%を含むCaC1!!2の
希薄水。
, CaC1! contains 0.02% by weight in terms of Ca! ! 2 diluted water.

溶液を0.2097m”の割合に塗布したあと、窒素雰
囲気中で850℃、5時間の焼鈍を行なった。得られた
製品の磁気特性は次のとおりであった。
After applying the solution to a ratio of 0.2097 m'', annealing was performed at 850° C. for 5 hours in a nitrogen atmosphere. The magnetic properties of the obtained product were as follows.

B□。: 1.921 T Wly、o: 0.98 w/kg 汰速■−↓ C: 0.088%、 Si : 8.15%、 Mn
 : 0.068%。
B□. : 1.921 T Wly, o: 0.98 w/kg speed ■-↓ C: 0.088%, Si: 8.15%, Mn
: 0.068%.

S : 0.018%およびSb : 0.025%を
含有する熱延板(2−4mm厚)を、900 ℃で均−
化焼鈍後、1,1950℃の中間焼鈍を含む2回の冷延
を行なって0.8m、、厚の最終冷延板としたのち、湿
水素雰囲気中で820℃で8分間の脱炭・1次再結晶焼
鈍を施し、ついでMgOを主成分とする焼鈍分離剤を鋼
板表面に塗布したのち、750 T、から1200 ’
Cまで5℃力の昇温速度で昇温して2次再結晶焼鈍を施
し、引続き水素雰囲気中で1100℃、5時間の純化焼
鈍を施した。ついで得られた絶縁被膜付き鋼板の表面に
、ca(H2PO4)2・H2O(caに換算して0.
01 m激%)希薄水溶液を0.50,9/♂の/IK
+ 割合で塗布したあと、窒素雰囲気中で900°G、18
時間の焼鈍を行なった。得られた製品の磁気特性は次の
とおりであった。
A hot-rolled sheet (2-4 mm thick) containing 0.018% S and 0.025% Sb was uniformly rolled at 900°C.
After chemical annealing, cold rolling was performed twice including intermediate annealing at 1,1950°C to obtain a final cold-rolled sheet with a thickness of 0.8 m, followed by decarburization and decarburization at 820°C for 8 minutes in a wet hydrogen atmosphere. After performing primary recrystallization annealing and then applying an annealing separator containing MgO as a main component to the surface of the steel sheet, it was annealed from 750 T to 1200'.
Secondary recrystallization annealing was performed by raising the temperature to C at a temperature increase rate of 5° C., followed by purification annealing at 1100° C. for 5 hours in a hydrogen atmosphere. Then, ca(H2PO4)2.H2O (0.0% in terms of ca) was applied to the surface of the obtained steel plate with an insulating coating.
01 m intense%) dilute aqueous solution 0.50,9/♂/IK
+ after coating at 900°G and 18°C in a nitrogen atmosphere.
Time annealing was performed. The magnetic properties of the obtained product were as follows.

Blol、89 T Wly、、 ol 、 07 w/k17実施例 8 C: 0.045%、 Si:8.85%、 Mn :
 0.072%、酸可溶性ke : 0.080%、 
S : 0.025%およびMO二0.018%を含有
する2、8mm厚の熱延板を作った。
Blol, 89 T Wly,, ol, 07 w/k17 Example 8 C: 0.045%, Si: 8.85%, Mn:
0.072%, acid soluble ke: 0.080%,
A hot rolled sheet with a thickness of 2.8 mm containing S: 0.025% and MO2 0.018% was produced.

この熱延板を1050℃の温度で焼鈍したのち、 1・
・O,aO,、の最終板厚まで冷間圧延し、ついで84
0℃の温度で脱炭・1次再結晶焼鈍したのち、1200
℃で2次再結晶焼鈍と純化焼鈍を施した。
After annealing this hot-rolled plate at a temperature of 1050°C, 1.
・Cold rolled to final thickness of O,aO,, then 84
After decarburization and primary recrystallization annealing at a temperature of 0℃, 1200℃
Secondary recrystallization annealing and purification annealing were performed at °C.

ついで得られた絶縁被膜付き鋼板の表面に、Ca(No
8)2・4H20(Caに換算して0.08重翫%)の
1希薄水溶液を0.78 ghL”の割合に塗布したあ
と、窒素雰囲気中で850℃、5時間の焼鈍を行なった
。得られた製品の磁気特性は次のとおりであった。
Then, Ca (No.
8) After applying a dilute aqueous solution of 2.4H20 (0.08% in terms of Ca) at a rate of 0.78 ghL'', annealing was performed at 850° C. for 5 hours in a nitrogen atmosphere. The magnetic properties of the obtained product were as follows.

B□。: 1.95 T WIV5o: 0.99 w/kg 実施例 4 C: 0.044%、 Si : 8.21%、 Mn
 : 0.048%。
B□. : 1.95 T WIV5o: 0.99 w/kg Example 4 C: 0.044%, Si: 8.21%, Mn
: 0.048%.

S : 0.025%、 B : 0.0018%およ
びCu : 0.85%を含有する連鋳スラブを熱延し
て2.2fim厚の熱 )延板とした。ついで950℃
で8分間の均一化焼鈍を施したのち1回の冷延を施して
0゜8o、、m厚の最終冷延板とし、しかるのち880
 ℃の湿水素中で脱炭焼鈍したあと1200℃で仕上焼
鈍を施した。その後得られた絶縁被膜付き鋼板の表面に
、l1lcace2へ(Caに換算して0.05重量%
)の希薄水溶液を0.40 gAn”の割合に塗布した
あと80θ℃で8時間の焼鈍を行なった。得られた製品
の磁気特性は次のとおりであった。
A continuous cast slab containing S: 0.025%, B: 0.0018% and Cu: 0.85% was hot rolled into a hot rolled sheet having a thickness of 2.2 fim. Then 950℃
After homogenization annealing for 8 minutes at
After decarburization annealing in wet hydrogen at 1200°C, final annealing was performed at 1200°C. Thereafter, l1lcace2 (0.05% by weight in terms of Ca) was applied to the surface of the obtained steel plate with an insulating coating.
) was applied at a ratio of 0.40 gAn'', and annealing was performed at 80θ°C for 8 hours.The magnetic properties of the obtained product were as follows.

Blo: 1.94 T WIV5o: 1 、00 w/kli’実施例 5 C: 0.0413%、 Si : 8.86%、 M
n :’0.062%。
Blo: 1.94 T WIV5o: 1,00 w/kli' Example 5 C: 0.0413%, Si: 8.86%, M
n: '0.062%.

Se : (1,018%、 Sb : 0.025%
およびMo : 0.018%を含有する熱延板(2,
8mm厚)を、950 ’Cで2、。
Se: (1,018%, Sb: 0.025%
and Mo: 0.018% hot rolled sheet (2,
8 mm thick) at 950'C.

均−化焼鈍後、950℃の中間焼鈍を含む2回の 1冷
延を行なってO,amm厚の最終冷延板としたのち、8
80℃の湿水素雰囲気中で脱炭・1次再結晶焼鈍を施し
てから、MgOを主成分とする焼鈍分離剤を鋼板表面に
塗布したのち、850℃、5o 。
After equalization annealing, cold rolling was performed twice including intermediate annealing at 950°C to obtain a final cold rolled sheet with a thickness of 8 mm.
After decarburizing and primary recrystallization annealing in a wet hydrogen atmosphere at 80°C, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and then annealing was performed at 850°C at 5o.

時間の2次再結晶焼鈍、引続き1180 ℃の水素中で
の純化焼鈍を施した。ついでフォルステライト絶縁被膜
を形成させた鋼板の表面に、CaCe 2とca(No
、)2−+H2o (重量比1 : 1 ) (Caに
換算して0.08重量%)の水溶液を0.45F−の割
合に塗布したあと窒素ガス中で850°C25時間の焼
鈍を行なった。得られた製品の磁気特性は次のとおりで
あった。
A secondary recrystallization annealing for an hour followed by a purification annealing in hydrogen at 1180°C was performed. Next, CaCe 2 and ca (No.
,)2-+H2o (weight ratio 1:1) (0.08% by weight in terms of Ca) was applied at a ratio of 0.45F-, and then annealed at 850°C for 25 hours in nitrogen gas. . The magnetic properties of the obtained product were as follows.

Bo。: 1.92 T W1%。: 1.00 w/kg 以上述べたようにこの発明によれば、最終仕上げ焼鈍後
にCa化合物を含有する希薄水溶液を塗布して焼鈍を行
うという簡便な処理によって、一方向性けい素鋼板の純
化を促進して磁気特性とくに鉄損特性の大幅な改善を達
成することができる、
Bo. : 1.92 T W1%. : 1.00 w/kg As described above, according to the present invention, a unidirectional silicon steel sheet can be purified by a simple process of applying a dilute aqueous solution containing a Ca compound and annealing after final finish annealing. It is possible to achieve significant improvements in magnetic properties, especially iron loss properties, by promoting

【図面の簡単な説明】 第1図は、仕上げ焼鈍後さらに窒素ガス中で焼鈍を施し
て得た一方向性けい素鋼板の、表面から10μm深さの
抽出レプリカにおける顕微鏡断面組織写真、 第2図は、巨大MnSの析出状況を焼鈍温度と焼鈍時間
との関係で示した図、 第8図は、MnS析出状況を析出物の大きさと鋼板表面
からの深さとの関係で示した図、第4図は、鋼板表面近
傍における、従来のMnS 1・・の析出状況とこの発
明に従う場合のMnSの析出状況を比較して示したグラ
フである。 第1図 第2図 a此晴藺吟) 第3図 六 60 スrつn5采さ (/l力1)第4図
[Brief explanation of the drawings] Figure 1 is a microscopic cross-sectional structure photograph of a replica extracted from the surface at a depth of 10 μm of a grain-oriented silicon steel sheet obtained by further annealing in nitrogen gas after final annealing. Figure 8 shows the precipitation state of giant MnS in relation to annealing temperature and annealing time. FIG. 4 is a graph showing a comparison between the conventional MnS 1 precipitation state and the MnS precipitation state according to the present invention in the vicinity of the steel sheet surface. Fig. 1 Fig. 2 a Koharei Gin) Fig. 3 6 60 srtsun5 采さ (/l力1) Fig. 4

Claims (1)

【特許請求の範囲】 LSi:2.0〜4.0重量%を含有する一方向性けい
素鋼板用素材を熱延し、ついで冷延と中間焼鈍とを適宜
繰返して得られる最終成品厚の冷延鋼板に、脱炭を兼ね
た1次再結晶焼鈍を施したのち焼鈍分離剤を塗布し、し
かるのち最終仕上げ焼鈍を施して(11O)〈001>
1・・方位の2次再結晶粒を発達させつつ有害不純物を
除去すると共に、フォルステライト系絶縁被膜を形成さ
せる一連の工程よりなる一方向性けい素鋼板の製造方法
において、 上記最終仕上げ焼鈍後に、フォルステライトド系絶縁被
膜をそなえる鋼板の表面に、Caを含む化合物をCa換
算で0.001〜1.0重量%の範囲で含有する水溶液
を、単位面積1 m2当り0.01−10,9の範囲に
おいて塗布し、ついで非酸化性雰囲気中、500〜10
00℃の−1・範囲の温度で焼鈍処理して、上記フォル
ステ・ライト系絶縁被膜の直下にCaの硫化物を優先生
成させるこ、とを特徴とする特許 れた一方向性けい素鋼板の製造方法。
[Claims] The final product thickness obtained by hot rolling a material for a unidirectional silicon steel sheet containing 2.0 to 4.0% by weight of LSi, and then appropriately repeating cold rolling and intermediate annealing. A cold-rolled steel sheet is subjected to primary recrystallization annealing that also serves as decarburization, then an annealing separator is applied, and then final finish annealing is performed (11O) <001>
1. In a method for manufacturing a grain-oriented silicon steel sheet, which comprises a series of steps of developing secondary recrystallized grains in the orientation, removing harmful impurities, and forming a forsterite-based insulating film, after the final annealing described above, , an aqueous solution containing a Ca-containing compound in a range of 0.001 to 1.0% by weight in terms of Ca was applied to the surface of a steel plate provided with a forsterite-based insulating coating at a rate of 0.01 to 10% per unit area of 1 m2. 500 to 10 in a non-oxidizing atmosphere.
A patented unidirectional silicon steel sheet characterized in that it is annealed at a temperature in the -1. Production method.
JP58057916A 1983-04-04 1983-04-04 Production of grain oriented silicon steel sheet having excellent iron loss characteristic Granted JPS59182972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057916A JPS59182972A (en) 1983-04-04 1983-04-04 Production of grain oriented silicon steel sheet having excellent iron loss characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057916A JPS59182972A (en) 1983-04-04 1983-04-04 Production of grain oriented silicon steel sheet having excellent iron loss characteristic

Publications (2)

Publication Number Publication Date
JPS59182972A true JPS59182972A (en) 1984-10-17
JPH025819B2 JPH025819B2 (en) 1990-02-06

Family

ID=13069316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057916A Granted JPS59182972A (en) 1983-04-04 1983-04-04 Production of grain oriented silicon steel sheet having excellent iron loss characteristic

Country Status (1)

Country Link
JP (1) JPS59182972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401835A1 (en) * 1989-06-09 1990-12-12 Matsushita Electric Industrial Co., Ltd. A magnetic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530257Y2 (en) * 1988-08-08 1993-08-03

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401835A1 (en) * 1989-06-09 1990-12-12 Matsushita Electric Industrial Co., Ltd. A magnetic material
US5238507A (en) * 1989-06-09 1993-08-24 Matsushita Electric Industrial Co., Ltd. Magnetic material
US5350628A (en) * 1989-06-09 1994-09-27 Matsushita Electric Industrial Company, Inc. Magnetic sintered composite material

Also Published As

Publication number Publication date
JPH025819B2 (en) 1990-02-06

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH10500454A (en) Method of manufacturing grain-oriented electrical steel sheet for transformer
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0230740A (en) High magnetic flux density grain oriented electrical steel sheet having drastically excellent iron loss and its manufacture
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JPS5850298B2 (en) Processing method for electrical steel sheets
JP4214683B2 (en) Method for producing grain-oriented electrical steel sheet having excellent punchability and magnetic properties
JPS59182972A (en) Production of grain oriented silicon steel sheet having excellent iron loss characteristic
JP2014156619A (en) METHOD FOR PRODUCING GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET, AND MgO FOR ANNEALING SEPARATING AGENT
CN111566250B (en) Oriented electrical steel sheet and method for manufacturing the same
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JP3420936B2 (en) MgO annealing separator for producing unidirectional silicon steel sheet having excellent primary film forming ability and method for producing unidirectional silicon steel sheet using the same
JP2014156620A (en) Method for producing grain-oriented electromagnetic steel sheet
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH0293021A (en) Production of grain-oriented silicon steel sheet reduced in deterioration in iron loss accompanying stress relief annealing
JPS6039124A (en) Production of grain-oriented silicon steel sheet having extremely high magnetic flux density and low iron loss
JPS602674A (en) Production of grain-oriented silicon steel sheet having excellent iron loss characteristic
JPS63186825A (en) Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss
JPH11158555A (en) Production of separation agent for annealing and grain oriented silicon steel sheet
JPH10110217A (en) Production of grain oriented silicon steel sheet