JPS59182538A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59182538A
JPS59182538A JP5506883A JP5506883A JPS59182538A JP S59182538 A JPS59182538 A JP S59182538A JP 5506883 A JP5506883 A JP 5506883A JP 5506883 A JP5506883 A JP 5506883A JP S59182538 A JPS59182538 A JP S59182538A
Authority
JP
Japan
Prior art keywords
film
groove
insulator
buried
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5506883A
Other languages
Japanese (ja)
Inventor
Yoichi Tamaoki
玉置 洋一
Tokuo Kure
久礼 得男
Takeo Shiba
健夫 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5506883A priority Critical patent/JPS59182538A/en
Publication of JPS59182538A publication Critical patent/JPS59182538A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To remove generation of abnormal etching at flattening etching time when interelement isolation is to be performed by digging a groove in a semiconductor substrate, and filling up an insulator therein by a method wherein the groove is buried with a first insulator of SiO2, PSG, BSG, lead glass, etc. at first, and then a second insulator of Si3N4 or polycrystalline Si, etc. is buried in the central part thereof. CONSTITUTION:A collector buried layer 5 is formed by diffusion on the surface layer part of an Si substrate 4, a layer 6 to act as the active layer part of a transistor is grown epitaxially, and the surface is covered with an SiO2 film 7. Then photo etching is performed to provide an opening in the film 7, and a perpendicular groove 8 to get into the substrate 4 is formed according to the reactive sputter etching method using the film 7 as a mask. After then, a channel stopper 9 is formed according to ion implantation in the substrate 4 exposed on the underside of the groove 8, the film 7 is removed, and a thin SiO2 film 10 is adhered on the whole surface containing the groove 8. Then the groove 8 is buried 8 is buried with a first insulator 11 of SiO2, etc., a fine recess part 12 is dug at the central part thereof, and the part thereof is buried with a second insulator of good quality such as Si3N4, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体基板に形成された溝に絶縁物を充填し
て、複数の半導体素子を互いに電気的に分離する半導体
装置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device in which a plurality of semiconductor elements are electrically isolated from each other by filling a groove formed in a semiconductor substrate with an insulating material, and a method for manufacturing the same. .

〔背景技術〕[Background technology]

半導体基板に溝を形成して溝内に絶縁物を充填して半導
体素子間の絶縁分離(アイソレーション)を行なう方法
は、従来の選択酸化法に比べて、所要面積と寄生容量が
非常に小さく、高集積・高速LSIに適した方法である
。ところが、溝の充填に酸化膜等の絶縁物を用いる場合
、(、VD(化学気相成長)法やスパッタ法で形成した
膜は、堆積時の境界の膜質が悪い欠点を持っている。第
1図に示すように、S五基板1に溝を形成し、CVD法
で酸化膜2を形成すると、堆積時の境界3は膜質が悪く
、平坦化エツチングの際に異常エツチングが起って、第
2図に示すように酸化膜の中央に凹部4が発生し、後の
工程に悪影響を与える。
The method of forming a trench in a semiconductor substrate and filling the trench with an insulator to isolate semiconductor elements requires a much smaller area and parasitic capacitance than the conventional selective oxidation method. This method is suitable for highly integrated and high-speed LSIs. However, when using an insulating material such as an oxide film to fill the trench, films formed by VD (chemical vapor deposition) or sputtering have the disadvantage of poor film quality at the boundaries during deposition. As shown in Fig. 1, when grooves are formed in the S5 substrate 1 and an oxide film 2 is formed by the CVD method, the film quality is poor at the boundary 3 during deposition, and abnormal etching occurs during planarization etching. As shown in FIG. 2, a recess 4 is generated in the center of the oxide film, which adversely affects subsequent steps.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、以上述べた従来技術の欠点を除去し、
平坦性が良くて後の工程に悪影響を与えない絶縁物アイ
ソレーションをそなえた半導体装置およびその製造方法
を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above,
An object of the present invention is to provide a semiconductor device having insulator isolation that has good flatness and does not adversely affect subsequent steps, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は第3図に示すよう
にアイソレーション溝の中央付近の膜質の悪い部分に他
の絶縁物あるいは誘電体材料19を充填することによっ
て異常エツチングを防止し、平坦な表面を得るものであ
る。
To achieve the above object, the present invention prevents abnormal etching by filling the poor film quality part near the center of the isolation groove with another insulator or dielectric material 19, as shown in FIG. This will give you a flat surface.

〔発明の実施例〕[Embodiments of the invention]

以下、バイポーラ集積回路に関する実施例を用いて本発
明の詳細な説明する。
Hereinafter, the present invention will be described in detail using embodiments related to bipolar integrated circuits.

実施例1 第4図に示すように、周知の方法を用いてSi基板4の
表面にコレクタ埋込層5を設け、その上にトランジスタ
の能動部分となるSiエピタキシャル層6(厚さ0.5
〜1.5μm)を形成した後、その表面を酸化して5j
02膜7を形成した。
Example 1 As shown in FIG. 4, a collector buried layer 5 is provided on the surface of a Si substrate 4 using a well-known method, and an Si epitaxial layer 6 (thickness 0.5
~1.5 μm), the surface is oxidized to form 5j
02 film 7 was formed.

次に、通常のホトエツチング技術を用いて5i02膜7
をバターニングし、この8102膜7をマスクにして反
応性スパッタ法でSt 6+ 5+ 4’tエツチング
して、Si基板4に達する垂直な溝8を形成した。そし
て、イオン打込法によって溝の底部にチャネル防止用の
拡散層(チャネルストッパ)9を形、成した(第5図)
Next, the 5i02 film 7 is etched using a normal photoetching technique.
was patterned, and using this 8102 film 7 as a mask, St 6+ 5+ 4't etching was performed by reactive sputtering to form a vertical groove 8 reaching the Si substrate 4. Then, a channel-preventing diffusion layer (channel stopper) 9 was formed at the bottom of the groove by ion implantation (Figure 5).
.

表面に残った8102膜7を除去した後、熱酸化を行な
って5j02膜10(厚さ50〜200 n m )を
形成し、その上にCVD法で溝の深さとほぼ同じ厚さの
5j02膜11を堆積した(第6図)。
After removing the 8102 film 7 remaining on the surface, thermal oxidation is performed to form a 5j02 film 10 (thickness 50 to 200 nm), and a 5j02 film 10 (thickness 50 to 200 nm) is formed on top of the 5j02 film 10 with a thickness approximately the same as the depth of the groove. 11 was deposited (Figure 6).

次に、8102膜11をフッ化水素酸系のエツチング液
で膜厚の1/2〜2/3エツチングすると、溝中心部は
膜質が悪いのでエツチングが進んで幅の狭い四部12が
発生する。そこで、5j3N4膜13をCVD法で形成
すると細い凹部12はSi3N4膜で埋ってしまう(第
7図)。ここで、先の5i02エツチングはドライエツ
チングでもかまわないが、最後にウェットエツチングを
追加して膜質の悪い部分をエツチングしておく必要があ
る。
Next, when the 8102 film 11 is etched by 1/2 to 2/3 of its thickness using a hydrofluoric acid-based etching solution, the film quality is poor at the center of the groove, so etching progresses and four narrow portions 12 are formed. Therefore, if the 5j3N4 film 13 is formed by the CVD method, the narrow recess 12 will be filled with the Si3N4 film (FIG. 7). Here, the previous 5i02 etching may be dry etching, but it is necessary to add wet etching at the end to etch the parts with poor film quality.

次に、5isN<膜13と5iOz膜12のエツチング
速度がほぼ等しいドライエツチング法を用いて、熱酸化
膜10の表面までエツチングし、平坦な表面を得た(第
8図)。この構造では、膜質の悪い部分がS i 3 
N 4膜に置き替っているので、後の工程で溝の中央部
が異常にエツチングされる恐れがなくなり、酸化膜埋込
みアイソレーションを用いたバイポーラLSIが歩留り
良く製作可能となり、信頼性も向上した。
Next, the surface of the thermal oxide film 10 was etched using a dry etching method in which the etching rates of the 5isN< film 13 and the 5iOz film 12 were approximately equal, to obtain a flat surface (FIG. 8). In this structure, the portion with poor film quality is S i 3
Since it is replaced with an N4 film, there is no risk that the central part of the groove will be abnormally etched in later processes, making it possible to manufacture bipolar LSIs using oxide film buried isolation with a high yield and improving reliability. did.

実施例2 次に、溝中央部の凹部に多結晶シリコンを充填する場合
について述べる。
Example 2 Next, a case will be described in which the recessed portion at the center of the groove is filled with polycrystalline silicon.

第5図までは実施例1と同じである。チャネルストッパ
層9を形成した後、S i02膜7を除去し、熱酸化を
行なって5I02膜10を形成し、その上に5iaN4
膜14を被着し、さらにCVD法で溝の深さとほぼ同じ
厚さのS r 02膜15を堆積した(第9図)。
The steps up to FIG. 5 are the same as in the first embodiment. After forming the channel stopper layer 9, the Si02 film 7 is removed, thermal oxidation is performed to form a 5I02 film 10, and a 5iaN4 film is formed on it.
After the film 14 was deposited, an S r 02 film 15 having a thickness approximately the same as the depth of the groove was further deposited by CVD (FIG. 9).

次に、SiO2膜15全15ットエツチングあるいは、
ドライエツチング+ウェットエツチングで、Si3N4
膜14の表面が出るまでエツチングした。
Next, all 15 etchings of the SiO2 film 15 or
Si3N4 by dry etching + wet etching
Etching was performed until the surface of the film 14 was exposed.

このとき、溝中央部に凹部16が発生した。次に1CV
D法で多結晶シリコン17を形成すると、凹部16に多
結晶シリコンが充填されて表面がほぼ平坦になった(第
10図)。
At this time, a recess 16 was generated in the center of the groove. Next 1CV
When the polycrystalline silicon 17 was formed by the D method, the recessed portion 16 was filled with polycrystalline silicon and the surface became almost flat (FIG. 10).

次に1.多結晶シリコンをSi3N4膜14の表面が出
るまで均一にエツチングし、熱酸化を行なうと、四部に
残った多結晶シリコンの表面に酸化膜18が形成された
。最後に表面の8i3N4膜14を除去して平坦な表面
が得られ、アイソレーション工程が完了した(第11図
)。
Next 1. When the polycrystalline silicon was uniformly etched until the surface of the Si3N4 film 14 was exposed and thermal oxidation was performed, an oxide film 18 was formed on the surface of the polycrystalline silicon remaining in the four parts. Finally, the 8i3N4 film 14 on the surface was removed to obtain a flat surface, completing the isolation process (FIG. 11).

本実施例では、最後に多結晶シリコンの表面を酸化する
必要があるが、SiO2膜15全15チングあるいは多
結晶シリコン17のエツチングが容易に行なえる(エッ
チ速度の制御が容易、エツチングの終点判定が容易)の
で、再現性良く製作することが可能である。
In this example, it is necessary to oxidize the surface of the polycrystalline silicon at the end, but etching the entire SiO2 film 15 or etching the polycrystalline silicon 17 can be easily performed (the etch rate can be easily controlled, and the end point of etching can be determined). (easy), it can be manufactured with good reproducibility.

以上の実施例では埋込用酸化膜11.15としては5j
O2膜を用いているが、埋込材料としては、この他に、
Siを含有した8i02膜(Six02゜x)1)、P
SG(リンガラス)膜、BSG(ボロンガラス)膜、鉛
ガラス膜等を用いることが可能である。
In the above embodiment, the buried oxide film 11.15 is 5j.
Although O2 film is used, other embedding materials include:
8i02 film containing Si (Six02°x)1), P
It is possible to use an SG (phosphorus glass) film, a BSG (boron glass) film, a lead glass film, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の原理を示す工程図、第4図〜
第8図は本発明の実施例を示すf程図、第9図〜第11
図は本発明の他の実施例を示す工程図である。 1・・・シリコン基板、2・・・酸化膜、3・・・境界
、4゜12.16・・・凹部、19・・・絶縁物あるい
は誘電体材料、5・・・コレクタ埋込層、6・・・エピ
タキシャル成長層、7,10・・・8102膜、11.
15・・・酸化膜、13.14・・・5j3N4膜、1
7・・・多結晶シリ第1図 第 Z  図 第 3 図 第  4 図 第 5 図 第 6UiJ 芳7図 q 第3図 イ Z q 図 第 10   口 第 tr  図
Figures 1 to 3 are process diagrams showing the principle of the present invention, and Figures 4 to 3 are process diagrams showing the principle of the present invention.
FIG. 8 is a diagram showing an embodiment of the present invention, and FIGS. 9 to 11.
The figure is a process diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Oxide film, 3... Boundary, 4°12.16... Recessed part, 19... Insulator or dielectric material, 5... Collector buried layer, 6...Epitaxial growth layer, 7,10...8102 film, 11.
15...Oxide film, 13.14...5j3N4 film, 1
7... Polycrystalline silicon Figure 1 Z Figure 3 Figure 4 Figure 5 Figure 6 UiJ Yoshi 7 Figure q Figure 3 A Z q Figure 10 Figure tr

Claims (1)

【特許請求の範囲】 1、半導体基板に形成された溝内に絶縁物を充填して素
子間の絶縁分離を行なうものにおいて、上記分離溝の中
央部に第二の絶縁物あるいは誘電体材料の領移を有する
ことを特徴とする半導体装置。 2、上記溝充填用の第一の絶縁物として5i02膜。 Si含有SiO2膜(81XO2,X>1)、PSG膜
、BSG膜、鉛ガラス膜のいずれかを用い、溝中央部の
第二の材料として813N4膜あるいは多結晶シリコン
と8102の二層膜のいずれかを用いることを特徴とす
る半導体装置およびその製造方法。
[Claims] 1. In a device that performs insulation isolation between elements by filling a groove formed in a semiconductor substrate with an insulator, a second insulator or dielectric material is provided in the center of the isolation groove. A semiconductor device characterized by having territory transfer. 2. 5i02 film as the first insulator for filling the trench. Either a Si-containing SiO2 film (81XO2, A semiconductor device and a method for manufacturing the same, characterized by using the following.
JP5506883A 1983-04-01 1983-04-01 Semiconductor device and manufacture thereof Pending JPS59182538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5506883A JPS59182538A (en) 1983-04-01 1983-04-01 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5506883A JPS59182538A (en) 1983-04-01 1983-04-01 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59182538A true JPS59182538A (en) 1984-10-17

Family

ID=12988374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5506883A Pending JPS59182538A (en) 1983-04-01 1983-04-01 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59182538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791073A (en) * 1987-11-17 1988-12-13 Motorola Inc. Trench isolation method for semiconductor devices
US4855804A (en) * 1987-11-17 1989-08-08 Motorola, Inc. Multilayer trench isolation process and structure
US4871689A (en) * 1987-11-17 1989-10-03 Motorola Inc. Multilayer trench isolation process and structure
JPH0298958A (en) * 1988-10-05 1990-04-11 Sharp Corp Isolation structure of semiconductor element
US4960727A (en) * 1987-11-17 1990-10-02 Motorola, Inc. Method for forming a dielectric filled trench
JPH0745694A (en) * 1993-07-26 1995-02-14 Nec Corp Semiconductor device and manufacture thereof
JP2001244328A (en) * 2000-02-29 2001-09-07 Denso Corp Method for manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791073A (en) * 1987-11-17 1988-12-13 Motorola Inc. Trench isolation method for semiconductor devices
EP0316550A2 (en) * 1987-11-17 1989-05-24 Motorola, Inc. Trench isolation means and method
US4855804A (en) * 1987-11-17 1989-08-08 Motorola, Inc. Multilayer trench isolation process and structure
US4871689A (en) * 1987-11-17 1989-10-03 Motorola Inc. Multilayer trench isolation process and structure
US4960727A (en) * 1987-11-17 1990-10-02 Motorola, Inc. Method for forming a dielectric filled trench
JPH0298958A (en) * 1988-10-05 1990-04-11 Sharp Corp Isolation structure of semiconductor element
JPH0745694A (en) * 1993-07-26 1995-02-14 Nec Corp Semiconductor device and manufacture thereof
JP2001244328A (en) * 2000-02-29 2001-09-07 Denso Corp Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
EP0036111B1 (en) Method for making fine deep dielectric isolation
US4211582A (en) Process for making large area isolation trenches utilizing a two-step selective etching technique
US4509249A (en) Method for fabricating isolation region in semiconductor devices
JPH0344419B2 (en)
US4891092A (en) Method for making a silicon-on-insulator substrate
EP0405923B1 (en) Method for forming variable width isolation structures
US5234861A (en) Method for forming variable width isolation structures
JPS59182538A (en) Semiconductor device and manufacture thereof
KR900007149B1 (en) Semiconductor device
JPH0697400A (en) Soi wafer and its manufacture
KR20000028680A (en) Method for fabrication of silicon on insulator substrates
JPH05849B2 (en)
JPS59232437A (en) Manufacture of semiconductor device
JPH0488658A (en) Semiconductor device and manufacture thereof
JPH05343320A (en) Manufacture of soi structure
KR0150998B1 (en) Soi wafer fabricating method using double stopper
JP2812013B2 (en) Method for manufacturing semiconductor device
US6261966B1 (en) Method for improving trench isolation
JPS60121737A (en) Element isolating method for semiconductor device
JPS63114158A (en) Manufacture of semiconductor device
JPS595644A (en) Manufacture of semiconductor device
JPS6257232A (en) Isolation device and making thereof
JPS59188936A (en) Manufacture of semiconductor device
KR950003900B1 (en) Semiconductor device manufacturing method for soi structure
JPH0516181B2 (en)