JPS5918204A - Blade of gas turbine - Google Patents

Blade of gas turbine

Info

Publication number
JPS5918204A
JPS5918204A JP12561682A JP12561682A JPS5918204A JP S5918204 A JPS5918204 A JP S5918204A JP 12561682 A JP12561682 A JP 12561682A JP 12561682 A JP12561682 A JP 12561682A JP S5918204 A JPS5918204 A JP S5918204A
Authority
JP
Japan
Prior art keywords
blade
main body
flow channel
blade main
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12561682A
Other languages
Japanese (ja)
Inventor
Yuji Nakada
裕二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12561682A priority Critical patent/JPS5918204A/en
Publication of JPS5918204A publication Critical patent/JPS5918204A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To increase the cooling effect of a tailing edge part of the titled blade by a method wherein plural projected streak are arranged in specific direction on an inner surface of one side flow channel opened at a tailing edge part of a blade main body, in the blade provided with plural cooling fluid flow channels via partition walls inside of the blade main body. CONSTITUTION:The first flow channel 11 extended in the height direction of a blade main body 1 is provided inside of a blade base part 2 of a blade and a central part of the blade main body 1. The second flow channel 12, one end side of which is opened at a tailing edge of the blade main body 1 and extended toward a cord direction, is provided inside of the tailing edge part B of the blade main body 1. Plural projected streaks 21 extended in the height direction of the blade main body 1 are arranged on inner surface of the flow channel 12 located at the ventral and back side of said blade main body 1, in the cord direction as having respectively different phase with respect to each surface. Plural small holes 22 are provided on a partition wall 16 located between said both flow channel 11 and 12, the axis center line of the hole is arranged in angled relation with the tangential line of the camber line X. Thereby, the cooling fluid is impacted on the inner surface of the flow channel 12 through the sall holes 22 from the flow channel 11 and stirred by projected streak 21.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービンの翼に係り、特に、冷却構造を
改良した翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine blade, and particularly to a blade with an improved cooling structure.

〔発明の背景技術〕[Background technology of the invention]

一般的にガスタービンは往復機関に比較して小型軽量で
犬馬力が得られるなどの多くの利点、を有している。こ
のようなガスタービンハ、 鴻常、1つの軸に圧縮機と
74ワータービンとを連−シ、圧縮機で圧縮された高圧
空気で燃焼器内自圧力を高め、この状態で燃焼器内に燃
料を噴軸して燃焼させ、この燃焼によって生じた高温。
In general, gas turbines have many advantages over reciprocating engines, such as being smaller, lighter, and able to provide a higher horsepower. This kind of gas turbine has a compressor and a 74-hour turbine connected to one shaft, and the high-pressure air compressed by the compressor increases the internal pressure in the combustor, and in this state, the pressure inside the combustor is increased. Fuel is combusted through a jet shaft, and the high temperature generated by this combustion.

高圧のガスをパワータービンに導いて膨張させることに
よシ回転動力を得るように構成されている。圧縮機は、
通常、案内翼と回転翼とを軸方向に配列した軸流型に構
成され、また、パワータービンも動翼と静翼とを軸方向
に交互に配列して構成されている。
It is configured to obtain rotational power by guiding high-pressure gas to a power turbine and expanding it. The compressor is
Generally, the turbine is constructed as an axial flow type in which guide vanes and rotor vanes are arranged in the axial direction, and power turbines are also constructed in such a manner that rotor blades and stator vanes are alternately arranged in the axial direction.

ところで、上記のようなガスタービンにおいて、出力効
率を高めるには、ノヤワータービンのしている。
By the way, in the above-mentioned gas turbine, the Noyawer turbine is used to increase the output efficiency.

〔背景技術の問題点〕[Problems with background technology]

上記のように構成されたタービンの翼にあっては確カー
に翼本体1の前縁部Aおよび後縁部Bを冷却することが
できる。
In the turbine blade configured as described above, the leading edge A and the trailing edge B of the blade body 1 can be cooled efficiently.

しかしながら、後縁部Bを冷却するだめの第20流路1
2は、内部に多数のビンフィン13を設置したものとな
っているので、この第20流路12の構造が複雑となシ
、この結果、鋳造時の型の製作が困難で製作に長時間を
要する問題があった。また、ビンフィン13による冷却
効果を増すためには、ビンフィン13の数を増す必要が
あるので、必然的に翼全体の重量が増加し、特に、動翼
に適用した場合には遠心応力に耐えさせるために各部の
肉厚を増す必要があり、この結果重量がさらに増加する
問題があった。
However, the 20th flow path 1 for cooling the trailing edge portion B
2 has a large number of bottle fins 13 installed inside, so the structure of this 20th channel 12 is complicated, and as a result, it is difficult to make a mold for casting and it takes a long time to make. There was a problem. In addition, in order to increase the cooling effect of the bin fins 13, it is necessary to increase the number of bin fins 13, which inevitably increases the weight of the entire blade, and especially when applied to a rotor blade, it is necessary to increase the number of bin fins 13. Therefore, it was necessary to increase the thickness of each part, which resulted in a further increase in weight.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、特に、翼本体の重量を増すこと
なく、また、製作の困難化を招くことなく翼本体の後縁
部を良好に冷却で□きるガスタービンの翼を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and its purpose is to improve the trailing edge of the wing body without increasing the weight of the wing body or complicating manufacturing. The objective is to provide gas turbine blades that can be cooled well.

、〔発明の概要〕 本発明に係るガスタービンの翼は、翼本体の向へ複数設
けたことを特徴としている。
, [Summary of the Invention] The gas turbine blade according to the present invention is characterized in that a plurality of blades are provided toward the blade body.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、第20流路は上記突条の存在によっ
て内表面積が十分に拡大化される。
With the above configuration, the inner surface area of the 20th flow path is sufficiently expanded due to the presence of the ridges.

したがって、熱交換面積が十分広くなシ、上記第20流
路内を通流する冷却流体によって翼本体の後縁部が良好
に冷却されることになる。また、上記突条を翼本体の高
さ方向、つまシ、第2の流路内を通流する冷却流体の通
流方向と#1ぼ直交する関係に設けているので、上記突
条によって通流する冷却流体を積極的に攪拌させること
ができ、これによって、さらに後縁部を良好に冷却する
ことができる。また、突条を上記関係に設けているので
、いわゆる高さの低い突条であっても良好な攪拌機能を
発揮させることができる。したがって、突条の高さを増
さなくきる。また、第1の流路と第2の流路とを仕切る
仕切壁に設けられる小孔をその軸心線がキャンバ線の接
線に対して傾くように設けると前記突条による攪拌機能
をさらに増進させることができる。
Therefore, since the heat exchange area is sufficiently large, the trailing edge portion of the blade body can be cooled well by the cooling fluid flowing through the 20th flow path. In addition, since the above-mentioned protrusion is provided in a relationship that is approximately perpendicular to the height direction of the blade body, the blade, and the flow direction of the cooling fluid flowing through the second flow path, the above-mentioned protrusion allows the passage of water The flowing cooling fluid can be actively stirred, and thereby the trailing edge can be further cooled well. Further, since the protrusions are provided in the above relationship, even the so-called low protrusions can exhibit a good stirring function. Therefore, the height of the protrusion can be removed without increasing it. Furthermore, if the small hole provided in the partition wall that partitions the first flow path and the second flow path is provided so that its axis line is inclined with respect to the tangent line of the camber line, the stirring function by the protrusion can be further enhanced. can be done.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例に係る翼をキャンバ線に沿っ
て切断して示す図であり、第2図と同一部分は同一符号
で示しである。したがって、重複する部分の説明は省略
する。
FIG. 4 is a view showing a wing according to an embodiment of the present invention cut along a camber line, and the same parts as in FIG. 2 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例においては、翼本体1の後縁部B内にコード
方向に設けられる第2の流路12の内面で、かつ翼本体
1の腹側および背側に位置する側内面に第5図にも示す
ように、翼本体1の高さ方向に延びる突条21を各面相
互で位相が異なる関係にコード方向に3本ずつ突設し、
体は仕切壁16に設けられた小孔22を介して第20流
路12内へ流れ込むことになる。第20流路12内へ噴
流となって流れ込んだ冷却流体は小孔22が前記関係に
設けられているので第20流路12の内面に衝突し、さ
らに突条21によって十分攪拌されながら上記第20流
路12内をコード方向に流れ、この間に後縁部Bから熱
を奪う。そして最終的に後縁部Bの後縁端に設けられた
開口から真性へと流れる。
In this embodiment, the inner surface of the second flow path 12 provided in the trailing edge B of the wing body 1 in the chord direction, and the side inner surfaces located on the ventral side and the dorsal side of the wing body 1, as shown in FIG. As shown in FIG. 2, three protrusions 21 extending in the height direction of the wing body 1 are provided protruding in the chord direction with different phases on each surface.
The body flows into the twentieth channel 12 through the small hole 22 provided in the partition wall 16. The cooling fluid flowing into the twentieth flow path 12 as a jet collides with the inner surface of the twentieth flow path 12 because the small holes 22 are provided in the above-mentioned relationship, and is further stirred sufficiently by the ridges 21. 20 flows in the chord direction in the flow path 12, and during this time, heat is taken away from the trailing edge B. Finally, it flows from the opening provided at the trailing edge end of the trailing edge portion B to the essence.

そして、この場合には、第2の流路12の内面に前記関
係に突条21を設けたことが有効に作用し、十分に広い
熱交換面に十分に攪拌された冷却流体が接触することに
なυ、後縁部Bが良好に冷却されることになる。また、
突条21を冷却流体の通流方向にほぼ直交するように設
けたことと突条21と云った単純形状のものを用いてい
ることとが相俟って翼本体の大重量化を招くことなく、
シかも製作の困難化を招くことなく良好な冷却特性を発
揮させることができるので、結局、前述した効果が得ら
れることに重複する部分の説明は省略する。
In this case, providing the protrusions 21 in the above-mentioned relationship on the inner surface of the second flow path 12 effectively works to ensure that the sufficiently agitated cooling fluid comes into contact with a sufficiently wide heat exchange surface. In other words, the trailing edge B is well cooled. Also,
Providing the protrusions 21 so as to be substantially orthogonal to the flow direction of the cooling fluid and using a simple-shaped protrusion 21 combine to increase the weight of the blade body. Without,
Since it is possible to exhibit good cooling characteristics without complicating the manufacturing process, the explanation of the parts that overlap with the above-mentioned effects will be omitted.

この実施例においては第1の流路を仕切壁23によって
流路II@とllbとに区分し、小孔15から噴出する
冷却流体の流量と、第2の流路12内を流れる冷却流体
の流量とをそれぞれ独立して調整できるようにしている
In this embodiment, the first flow path is divided into flow paths II@ and Ilb by a partition wall 23, and the flow rate of the cooling fluid ejected from the small hole 15 and the flow rate of the cooling fluid flowing inside the second flow path 12 are controlled. The flow rate can be adjusted independently.

このように構成しても前記実施例と同様な効果が得られ
ることは勿論である。
Of course, even with this configuration, the same effects as in the above embodiment can be obtained.

なお、各実施例において、翼本体の腹側外面および背側
外面に沿って冷却流体をフィルム状に排出させるフィル
ム冷却用の孔を設けるようにしてもよい。
In each embodiment, film cooling holes may be provided along the ventral outer surface and the dorsal outer surface of the wing body to discharge the cooling fluid in the form of a film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却手段を施した従来のガスタービンの動翼の
斜視図、第2図は第1図におけるP−P線に沿って切断
し矢印方向にみた断面図、がスタービンの翼を第3図に
対応させて示す横−断面図、第6図は本発明の他の実施
例に係る翼を第4図に対応させて示す縦断面図、第7図
は門真を第5図に対応させて示す横断面図である。 1・・・翼本体、2・・・翼根部、1ノ・・・第10流
路、12・・・第2の流路、16・・・仕切壁、21・
・・突条、22・・・小孔。 出願人 工業技術院長  石 坂 誠 −第1図 第2図 113図 窄4図 第511 qp 6閃 慎7図 19−
Figure 1 is a perspective view of the rotor blades of a conventional gas turbine equipped with a cooling means, and Figure 2 is a sectional view taken along line P-P in Figure 1 and viewed in the direction of the arrow. 3 is a transverse sectional view corresponding to FIG. 3, FIG. 6 is a vertical sectional view showing a blade according to another embodiment of the present invention corresponding to FIG. 4, and FIG. 7 is a Kadoma shown in FIG. FIG. DESCRIPTION OF SYMBOLS 1...Blade body, 2...Blade root, 1...10th channel, 12...2nd channel, 16...Partition wall, 21...
... Protrusion, 22... Small hole. Applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Figure 1 Figure 2 Figure 2 113 Figure 511 qp 6 Senshin 7 Figure 19-

Claims (2)

【特許請求の範囲】[Claims] (1)翼本体内に上記翼本体の高さ方向に沿った第1の
流路を設けるとともに上記翼本体の後縁部内圧一端側が
後縁端に開口する関係にコード方向に延びる第20流路
を設け、上記第1の餌路に導かれた冷却流体を、上記第
1の流路と前記第2の流路との間を仕切る仕切壁に設け
られた複数の小孔を介して上記第2の流路に流入させる
ようにした冷却路を備えたガスタービンの翼において、
前記第2の流路は、前記翼本体の腹側および背側に位置
する内面に翼本体の高さ方向に延びる突条を複数コード
方向に有してなることを特徴とするガスタービンの翼。
(1) A first flow path is provided in the blade body along the height direction of the blade body, and a 20th flow path extends in the chord direction such that one end side of the internal pressure of the trailing edge of the blade body opens to the trailing edge end. A passage is provided, and the cooling fluid guided to the first bait passage is passed through a plurality of small holes provided in a partition wall that partitions between the first passage and the second passage. In a gas turbine blade equipped with a cooling passage configured to flow into a second flow passage,
The second flow path has a plurality of protrusions extending in the height direction of the blade body on the inner surfaces located on the ventral side and the dorsal side of the blade body in the cord direction. .
(2)  前記仕切壁に設けられた小孔は、その軸心線
が翼型のキャンバ線の接線に対して傾いて設けられてい
ることを特徴とする特許請求の範囲第1項記載のガスタ
ービンの翼。
(2) The gas according to claim 1, wherein the small hole provided in the partition wall is provided with an axial center line inclined with respect to a tangent to a camber line of the airfoil. turbine blade.
JP12561682A 1982-07-21 1982-07-21 Blade of gas turbine Pending JPS5918204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12561682A JPS5918204A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12561682A JPS5918204A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Publications (1)

Publication Number Publication Date
JPS5918204A true JPS5918204A (en) 1984-01-30

Family

ID=14914485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12561682A Pending JPS5918204A (en) 1982-07-21 1982-07-21 Blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS5918204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141801A (en) * 1990-09-19 1991-06-17 Hitachi Ltd Cooling blade of gas turbine
EP1035302A3 (en) * 1999-03-05 2002-02-06 General Electric Company Multiple impingement airfoil cooling
GB2460936A (en) * 2008-06-18 2009-12-23 Gen Electric Turbine airfoil cooling
JP2018112187A (en) * 2017-01-10 2018-07-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Blade, cut-back of blade or vane, and gas turbine having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141801A (en) * 1990-09-19 1991-06-17 Hitachi Ltd Cooling blade of gas turbine
EP1035302A3 (en) * 1999-03-05 2002-02-06 General Electric Company Multiple impingement airfoil cooling
GB2460936A (en) * 2008-06-18 2009-12-23 Gen Electric Turbine airfoil cooling
US8210814B2 (en) 2008-06-18 2012-07-03 General Electric Company Crossflow turbine airfoil
GB2460936B (en) * 2008-06-18 2012-11-28 Gen Electric Crossflow turbine airfoil
JP2018112187A (en) * 2017-01-10 2018-07-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Blade, cut-back of blade or vane, and gas turbine having the same

Similar Documents

Publication Publication Date Title
EP1001137B1 (en) Gas turbine airfoil with axial serpentine cooling circuits
US5498133A (en) Pressure regulated film cooling
EP1496204B1 (en) Turbine blade
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
US6179556B1 (en) Turbine blade tip with offset squealer
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
US4515526A (en) Coolable airfoil for a rotary machine
US5261789A (en) Tip cooled blade
US7695243B2 (en) Dust hole dome blade
JP6283462B2 (en) Turbine airfoil
US5975850A (en) Turbulated cooling passages for turbine blades
EP0716217B1 (en) Trailing edge ejection slots for film cooled turbine blade
EP1645722B1 (en) Turbine airfoil with stepped coolant outlet slots
JP4341248B2 (en) Crossover cooled airfoil trailing edge
EP2138675A2 (en) A rotor blade
JP2006077767A (en) Offset coriolis turbulator blade
US6382908B1 (en) Nozzle fillet backside cooling
JP2000314301A (en) Internal intercooling circuit for gas turbine moving blade
JP2001234702A (en) Coriolis turbulator moving blade
GB2460936A (en) Turbine airfoil cooling
JP2013139791A (en) Turbine rotor blade platform cooling
WO2020213381A1 (en) Turbine stator vane, and gas turbine
JP2004028097A (en) Cooling device and manufacturing method of turbine blade wall
JP2818266B2 (en) Gas turbine cooling blade
JPS5918204A (en) Blade of gas turbine