JPS59181139A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS59181139A
JPS59181139A JP5255283A JP5255283A JPS59181139A JP S59181139 A JPS59181139 A JP S59181139A JP 5255283 A JP5255283 A JP 5255283A JP 5255283 A JP5255283 A JP 5255283A JP S59181139 A JPS59181139 A JP S59181139A
Authority
JP
Japan
Prior art keywords
signal
specimen
wave
signals
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5255283A
Other languages
Japanese (ja)
Inventor
上田 耕司
三之 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Seisakusho KK
Original Assignee
Akashi Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Seisakusho KK filed Critical Akashi Seisakusho KK
Priority to JP5255283A priority Critical patent/JPS59181139A/en
Publication of JPS59181139A publication Critical patent/JPS59181139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、検体に超音波を送信し、検体がらの反射波を
受信して、この反則波に基づいて検体内部の状態を調べ
る超音波診断装置に関し、特に反射波によって検体内部
の不連続部分の位置のみではなく、夫々の音響インピー
ダンスの状態を知り得る超音波診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic diagnostic apparatus that transmits ultrasonic waves to a specimen, receives reflected waves from the specimen, and examines the internal state of the specimen based on the reflected waves. The present invention relates to an ultrasonic diagnostic apparatus that can determine not only the position of discontinuous portions inside a specimen but also the state of acoustic impedance of each.

′近年例えば医療分野において人体内部の断層像を得る
ために超音波診断装置が広く利用されている。超音波診
断装置では、超音波を人体内に送信し、人体内部の組織
の不連続面からの反射波を受信して、この受信波を基に
して人体等の検体の組織の断層像を得ているものである
'In recent years, ultrasonic diagnostic devices have been widely used in the medical field, for example, to obtain tomographic images of the inside of the human body. Ultrasonic diagnostic equipment transmits ultrasonic waves into the human body, receives reflected waves from discontinuous surfaces of tissues inside the human body, and uses these received waves to obtain tomographic images of the tissues of specimens such as the human body. It is something that

この超音波を探査波とした診断装置は、他のX線等を利
用した診断装置に比べて危険性が少ないため広く用いら
れている。
Diagnostic devices that use ultrasound as probe waves are widely used because they are less dangerous than other diagnostic devices that use X-rays or the like.

従来において一般的に用いられている超音波診断装置は
、第1図に示すように、PZT等の圧電素子からなるト
ランスデユーサ4を検体に接触させ、これからIMF−
IZ乃至10MFIZ程度の超行波を送信する。
As shown in FIG. 1, conventional ultrasonic diagnostic equipment that has been commonly used brings a transducer 4 made of a piezoelectric element such as PZT into contact with a specimen, and then transmits an IMF-
Transmits superordinate waves of about IZ to 10MFIZ.

検体内部では、異なる組織1.2の境界而3で超行波の
一部は反射される。1JIJも2つの異なる組織1,2
は、異なる音響インピーダンスを有するなめ、この?f
響インピーダンスの不連続面で反射波が生じるのである
。この反射波を、送信に用いたトランスデユーサ4又は
他のトランスデユーサで受信して、この受信信号を基に
して検体内部の組織の境界面に関する情報を得ることが
できる。
Inside the specimen, a portion of the superordinate waves is reflected at the boundaries between different tissues 1 and 2. 1JIJ is also two different organizations 1, 2
Does this mean that it has a different acoustic impedance? f
Reflected waves occur at discontinuities in acoustic impedance. This reflected wave is received by the transducer 4 used for transmission or another transducer, and information regarding the tissue interface inside the specimen can be obtained based on this received signal.

しかし、このような従来の超音波診断装置にあっては、
音響インピーダンスの不連続面の有無は検知できるが、
不連続面を形成する組織の音響インピーダンスの相対的
な大小は検知すること(寸できなかった。この音響イン
ピーダンスの大小に関する情報を得ることができれば、
組お)1シの分布状態をより良く把握でき、診断の際極
めて有用である。
However, with such conventional ultrasound diagnostic equipment,
Although the presence or absence of acoustic impedance discontinuities can be detected,
It would be possible to detect the relative magnitude of the acoustic impedance of the tissue that forms the discontinuous surface.
It is possible to better understand the distribution state of group O)1, which is extremely useful in diagnosis.

本発明は、上記の要望に鑑みなされたものでアッテ、検
体内部の音響インピーダンスノ大小を検知できるノイイ
音波診断装置を提供することk[」的とする。
The present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide a noise wave diagnostic device capable of detecting the magnitude of acoustic impedance inside a specimen.

そしてこの目的は、検体内K 、I’((音波を送信し
、この検体内からの反射波を受信し、検体内部の状態を
示す電気信号を得る超音波診断装置において、周波数の
異なる送信信号に基づいて2種類の超音波を送信する手
段と、検体内の音響インピーダンス不連続面からの反射
波を受信し受信信号全出力する手段と、この受信信号に
、夫々の送信信号、及びこれらの送信信号の位相を7V
2変化させた信号からなる4種の参照信号を乗する4つ
の乗算器と、この乗算器の出力信号のうち低周波信号の
みを通過させる低域?JM波器と、この低周波信号から
発信波の上記不連続面での位相変化を検出する手段とを
有する超音波診断装置によって達成される。
The purpose of this is to transmit signals with different frequencies in an ultrasonic diagnostic apparatus that transmits sound waves, receives reflected waves from within the specimen, and obtains electrical signals indicating the state inside the specimen. means for transmitting two types of ultrasonic waves based on the above, a means for receiving reflected waves from an acoustic impedance discontinuity surface within the specimen and outputting the entire received signal; Set the phase of the transmission signal to 7V
4 multipliers that multiply 4 types of reference signals consisting of 2 changed signals, and a low frequency signal that passes only the low frequency signal among the output signals of these multipliers? This is achieved by an ultrasonic diagnostic apparatus having a JM wave device and means for detecting a phase change on the discontinuous plane of the emitted wave from this low frequency signal.

以下本発明に係る超音波診断装置を実施例に基づき詳細
に説明する。
The ultrasonic diagnostic apparatus according to the present invention will be described in detail below based on embodiments.

本発明の実施例に係る超音波診断装置aは、周波数の異
なる2種の超音波を送信する手段上して発振器9分周器
、加算器、送信増幅器9発受信兼用のトランスデユーサ
を有し、また検体の不I・V純血からの反射波を受信し
受信信号を出方する手段として、上記トランスデュ・−
サと受信増1’iii器とを有している。またこの超音
波診断装置1′1は、4種の参照信号のうち送信信号の
位相をπ/2変化された2種の参照信号を発生する2個
の位相変化器と、上記2種の参照信号及び、上記発振器
と分局器からの信号を他の2種の参照信号を受信信号に
夫々乗じる4個の乗算器と、夫々の#n器に接続された
同じく4個の低域濾波器と、この低域濾波器から出力さ
れる4種の信%jに、J71づき不連続面での反射波の
位相変化を検出する手段としての位相判定器とを有する
The ultrasonic diagnostic apparatus a according to the embodiment of the present invention includes an oscillator, a frequency divider with nine oscillators, an adder, and a transducer that serves as a receiver and transmitter for nine transmitting amplifiers as a means for transmitting two types of ultrasonic waves having different frequencies. In addition, the above-mentioned transducer is used as a means for receiving the reflected wave from the non-I/V pure blood sample and outputting the received signal.
The receiver has a receiver amplifier 1'iii. Furthermore, this ultrasonic diagnostic apparatus 1'1 includes two phase changers that generate two types of reference signals in which the phase of the transmitted signal is changed by π/2 among the four types of reference signals, and 4 multipliers for multiplying the received signal by the signals from the oscillator and the splitter, respectively, by the other two types of reference signals, and the same 4 low-pass filters connected to each #n unit. , the four types of signals outputted from this low-pass filter are provided with a phase determiner as a means for detecting the phase change of the reflected wave on the discontinuous surface of J71.

′;iI¥2図において、5け発&:器で、I Ml(
z乃至1(1、Mi(Z程度の周波数のうち−の周波数
の電気伯汗と出力する。6は分周器で発振!a5に接続
さオ]て、発振器5からの信号を受けて、該周波数のイ
の周波数のT17、気信号を発振するものであろっ7は
加算器;で一]二記発振器5及び分周器らに接続さノ]
て、これらが出力した信号を加え合わせるもので))る
。8は送信増幅器で加W器7に接続されて、これからの
信号を増幅する。4はトランスデユーサであって速信丹
半増幅器8が出力する電気信号を機械的振動に変換して
、超音波として検体内に送信する。またこのトランスデ
ユーサ4は送受信兼用のものであり、被検体内からの反
射波を受信して電気信号に変換する役割も果たす。トラ
ンスデユーサ4には、例えばPZT等の圧電素子が用い
られる。9は受信増Il’f:1器でトランスデユーサ
4が発lトシた受信電気信号を増幅する。10は乗算器
で受信増1隔器9に接続されており、受信増幅器9から
の電気信号に後述する4種の参照信号を夫々別々に掛は
合わせるものであり、夫々の参照信号に対応して4細膜
けられ、夫々が発振器5、分周器6、及び後述する2個
の位相変化器11に接続されている。
′;iI¥2 In the figure, 5 shots &: vessel, I Ml(
z to 1 (1, Mi (outputs an electric wave with a frequency of - out of frequencies around Z. 6 oscillates with a frequency divider! Connected to a5), receives the signal from the oscillator 5, The frequency T17 of the above frequency is used to oscillate a signal. 7 is an adder; connected to the oscillator 5 and the frequency divider etc.
and the signals output by these are added together)). A transmission amplifier 8 is connected to the W adder 7 and amplifies the signal to be received. 4 is a transducer which converts the electric signal outputted by the transducer amplifier 8 into mechanical vibration and transmits it into the specimen as an ultrasonic wave. The transducer 4 is also used for both transmission and reception, and also serves to receive reflected waves from within the subject and convert them into electrical signals. For the transducer 4, a piezoelectric element such as PZT is used, for example. 9 is a reception amplifier Il'f: 1 which amplifies the received electrical signal emitted by the transducer 4; A multiplier 10 is connected to the receiver amplifier 1 divider 9, and is used to multiply the electric signal from the receiver amplifier 9 by four types of reference signals, which will be described later, separately, and the multiplier 10 corresponds to each reference signal. There are four thin films, each connected to an oscillator 5, a frequency divider 6, and two phase changers 11, which will be described later.

4種の参、開信号のうち第1.第2の参照信号には、前
記発振器5と分周器6とからの信号が用いられる。11
は位相変化器で、発振器5と、分周器6とから発せられ
た電気信号の位相を夫々π7’2(90°)だけ進め、
第3.第4の参照波を発生するもので、発4に器5又は
分周器6に夫々接続されている。12け低域7磨波器で
あり、」二記乗算器10の発生する電気信どのうち、低
周波帯域のみを通過させるものであって、各乗算器用に
対応して4個設けられている。13け位相判定器で、低
域l虐波器12からの4 aが汀号に基づいて反射波の
位相変化を判定するものである。
The first of the four types of open signals. Signals from the oscillator 5 and frequency divider 6 are used as the second reference signal. 11
are phase changers that advance the phases of the electrical signals emitted from the oscillator 5 and the frequency divider 6 by π7'2 (90°), respectively.
Third. It generates a fourth reference wave, and is connected to the generator 4 and the frequency divider 5 or frequency divider 6, respectively. This is a 12-digit low-frequency 7-wave scrubber, which passes only the low frequency band of the electric signals generated by the multiplier 10, and there are 4 of them, one for each multiplier. . Of the 13 phase determiners, 4a from the low frequency wave detector 12 determines the phase change of the reflected wave based on the wave signal.

次に本発明Oで係る超音波診断装置の作動について説明
する。
Next, the operation of the ultrasonic diagnostic apparatus according to the present invention O will be explained.

第1図に示すように、従来のI¥i音波診断装置と同様
にトランスデユーサ4を検体表面に密着させた状態で、
検体に対してトランスデユーサ4から超音波を送信する
As shown in FIG. 1, with the transducer 4 in close contact with the specimen surface, as in the conventional I\i sonic diagnostic device,
Ultrasonic waves are transmitted from the transducer 4 to the specimen.

検体は組織1と組織2とからなり、夫々の音響インピー
ダンスfI:z1.z2とする。この音響インピーダン
スの差違によって、組織1と組織2との境界向3で超音
波は反射され反射波が生じる。
The specimen consists of tissue 1 and tissue 2, each with acoustic impedance fI:z1. Let it be z2. Due to this difference in acoustic impedance, the ultrasonic wave is reflected at the boundary direction 3 between the tissues 1 and 2, and a reflected wave is generated.

ここC1夫々の音響インピーダンス、Zl + Z2の
値がz、 < Z2の関係であれば、入射波と反射波と
の位相は、同位相の関係にあり位相変化8まない。コレ
トハ逆Kz1〉z2ノ関係でJ t’Lば、入11・1
波と反射波は、逆位相、■lIJち、π(1800)の
イ37相差を有することになる。
If the value of the acoustic impedance of each C1, Zl + Z2, is in the relationship z<Z2, the phases of the incident wave and the reflected wave are in the same phase, and there is no phase change. Koretoha reverse Kz1〉z2ノ relationship, J t'L, entering 11.1
The wave and the reflected wave have opposite phases and a phase difference of π (1800).

従って、この反射波の位相変化を検出すJしば組織1と
組織2の音響インピーダンスz、 + Z2の大小が判
定できる。
Therefore, it is possible to determine the magnitude of the acoustic impedance z, +Z2 of the tissue 1 and the tissue 2 that detect the phase change of this reflected wave.

先ず、発郷器5から角周波数20)の信号、貝11ち、
A弼2ωtの信号が発せられる。また分1刈器6からは
、角周波数ωの信号、即ちA CrIs 6)tの信号
が発せられ、加算器7でこれらの信号はIJll 大−
合わされ、°送信増幅器8で増幅され、B c、ns 
2ωt+Bcosωtの信号となる。この信号がトラン
スデユーづ4に送られこの信号に対応した超音波75;
検体内に送信される。超音波は検体内を進み、境界面3
で反射される。反射波は、被検体内を逆行し、トランス
デユーサ4に受信され、再び電気信号に変換さ」]1、
受信増幅器9で増幅さオtて、C亦(2ωt+α) ’
+ 0cos (ωt+β)の信号となる。ここで、α
、βは、位相の変化で角周波数G+の4Y(jt波の波
長をλとして、検体表面に密着されたトランスデユー4
)4の表面と、境界面3とのh1ゼ離を1、とすると、 41       2t α=2πT+γe β=2πT+γ となる。ここに2π孝及び、2π丁 で表わされt ろ頂け、超音波が発信されてから受信されるまでの1(
(4打型nt2Lによって発生する位相変化で、γは、
境界向3で反射したときに発生する位相変化−Cある。
First, a signal with an angular frequency of 20) is sent from the generator 5, and a shell 11,
A signal of A2ωt is emitted. Furthermore, a signal with an angular frequency ω, that is, a signal with an angular frequency ω, is emitted from the divider 6, and an adder 7 converts these signals into
and amplified by ° transmission amplifier 8, B c,ns
The signal becomes 2ωt+Bcosωt. This signal is sent to the transducer 4 and an ultrasonic wave 75 corresponding to this signal;
Transmitted within the specimen. The ultrasound waves travel through the specimen and reach the interface 3.
reflected. The reflected wave travels backwards within the subject, is received by the transducer 4, and is converted back into an electrical signal.''1.
After being amplified by the receiving amplifier 9, C + (2ωt+α)'
+0cos (ωt+β) signal. Here, α
, β is the change in phase of 4Y of angular frequency G+ (with the wavelength of the jt wave being λ), the transducer 4 in close contact with the specimen surface
) 4 and the interface 3 is 1, then 41 2t α=2πT+γe β=2πT+γ. Here, 2π and 2π are expressed as 1 (1) from when the ultrasonic wave is emitted until it is received.
(With the phase change caused by the 4-stroke nt2L, γ is
There is a phase change -C that occurs when reflected in the boundary direction 3.

Tの値は、zI> Z2のときπで、Zl < Z2の
とき0となる。
The value of T is π when zI>Z2, and 0 when Zl<Z2.

次に乗勢器10で4種の参照信号と掛は合わされる。こ
こで第1の参照信号は、発振器5で発せられる信号で、
ACQS2ωtで表わされ、第2の参照信粥は分周器6
で発せられる信号で、Acosωtで表わされる。第3
.第4の信号は、上記信号を位相変化器11に入力した
信号で、夫々A(9)(2ω’  4−7V2  )=
   As1n 2ωt  、  Acos(ωを十π
/2)=−4;石ωtで表わされる。
Next, the multiplier 10 combines the four types of reference signals and multipliers. Here, the first reference signal is a signal emitted by the oscillator 5,
The second reference signal is represented by ACQS2ωt, and the second reference signal is passed through the frequency divider 6.
It is a signal emitted by Acos ωt. Third
.. The fourth signal is a signal obtained by inputting the above signal to the phase changer 11, and A(9)(2ω' 4-7V2 )=
As1n 2ωt, Acos (ω is 1π
/2)=-4; Represented by stone ωt.

例、t−ば、受信信号と第一の参照信号との積は、(C
+yy、 (2ωt+α) + Crrs(ωt+β)
 ) X ACQS 2ωt=L・ AC(mα十cm
(2ωt+α)+cw(ωtモβ) 4− 弼(30>
 t→−β))と表わされる。
For example, if t, the product of the received signal and the first reference signal is (C
+yy, (2ωt+α) + Crrs(ωt+β)
)
(2ωt+α)+cw(ωtmoβ) 4- \(30>
t→−β)).

次にこの信号が低域lI〆波器12を通i&Mすると、
’ A(3+nsα以外の項は、いずれも高周波数成分
であるから通過せず、−!−A Ccnsαの値だけが
出力される。同様に、受信信号と第2.第3.第4の参
照信号との積を夫々の乗算器10で演算して低きる。こ
の4つの出力値が、位相判定器13に入力され、例えば
’ACsfnα/土AO羞α−確αの飴に基2 づいてαが得られ、同様にしてβの値が得られる。
Next, when this signal passes through the low-frequency lI filter 12 and M,
' All terms other than A(3+nsα are high frequency components, so they are not passed through, and only the value of -!-A Ccnsα is output.Similarly, the received signal and the second, third, and fourth reference The product with the signal is computed by each multiplier 10 to obtain a low value.These four output values are input to the phase determiner 13, and are calculated based on the candy of 'ACsfnα/earth AO shame α−certain α. α is obtained, and similarly the value of β is obtained.

前述のように、αとβは、 α=2π芋+γ・β=2π子+γ であるから、−2β−αを演算することによって、2β
−α二2(2π丁十γ)−(2π芋十γン:γt γの値が出力される。前述の如く、γの値がOであれば
、音響インピーダンス2よの値は2.より大きく、また
、γの値がπであれば、Z2は2.より小さいことが判
定できる。
As mentioned above, α and β are α = 2π potato + γ・β = 2π child + γ, so by calculating -2β - α, 2β
-α22(2πd10γ)−(2πimo10γn:γt The value of γ is output. As mentioned above, if the value of γ is O, the value of acoustic impedance 2 is 2. If the value of γ is large and the value of γ is π, it can be determined that Z2 is smaller than 2.

この情報を、従来からの断層像に重ねて、表示すること
によって、被検体内のrf響インピーダンスの分布状態
が明らかになる。
By superimposing this information on a conventional tomographic image and displaying it, the state of distribution of rf acoustic impedance within the subject becomes clear.

なお、本実施例[おいては、トランスデユーサ4は、送
受信兼用のものとしたが、これは、送信受信別個のトラ
ンスデユーサとしてもよい。
In this embodiment, the transducer 4 is used for both transmission and reception, but it may be a separate transducer for transmission and reception.

まfc 21Mtの、+41J音波の周波数の比は、1
対2としたが、他の倍率例えばl対にとして、位相判定
器内での2β−αの演算を、kβ−α/(k−1)とし
てγを求めても、Lい。−)、た本実1宛例においては
、2種の超音波を同時に検体内に送信したが、必ずしも
同112jでなくとも別個に送信し後の処理を行なうこ
ともできる。
The frequency ratio of the +41J sound wave of fc 21Mt is 1
Although the number of pairs is set to 2, even if another magnification is set, for example, 1 pair, the calculation of 2β-α in the phase determiner and the calculation of γ as kβ-α/(k-1) will result in a large amount of L. -), In the example addressed to Tamotoji 1, two types of ultrasound waves were transmitted into the specimen at the same time, but they do not necessarily have to be transmitted at the same time 112j, but they may be transmitted separately for subsequent processing.

本発明は超音波診断装置において検体内部のl−f響イ
ンピーダンスの不連届1而での反射波の位相変化の判定
を行ない、音響・インピーダンスの大小に対応する信号
を発生するようにしたから、トi・体内部の組織の分布
をこれまで以上に把握することができ、7Fk断におい
て極めて有用であるという効果を奏するものである。
The present invention uses an ultrasonic diagnostic apparatus to determine the phase change of the reflected wave in the discontinuity of the l-f acoustic impedance inside the specimen, and generates a signal corresponding to the magnitude of the acoustic impedance. It is possible to understand the distribution of tissues inside the body more than ever before, and it is extremely useful in 7Fk cutting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は検体内部の組織?示す説明図、t* 2図は本
発明の実施例に係る超音波診断装置を示すブロック図で
ある。 4・・・トランスデユーサ  5・・・発振器6・・・
分、VR器       7・・・加算器10・・・乗
舒器       12・・・低域濾波器13・・・位
相判定器
What is the structure inside the specimen in Figure 1? The explanatory diagram shown in FIG. t*2 is a block diagram showing an ultrasonic diagnostic apparatus according to an embodiment of the present invention. 4... Transducer 5... Oscillator 6...
VR unit 7...Adder 10...Multiplier 12...Low pass filter 13...Phase determiner

Claims (1)

【特許請求の範囲】[Claims] 検体内に超音波を送信し、この検体内からの反射波を受
信し、検体内部の状態を示す電気信号を得る超音波診断
装置において、周波数の異なる発信信号に基づいて2種
類の超音波を送信する手段と、検体内の音響インピーダ
ンス不連続面からの反射波を受信し受信信号を出方する
手段と、この受信信号に、夫々の送信信号、及びこil
らの送信信号の位相をπ/2変化させた信づからなる4
種の参照信号を粱する4つの乗算器と、この乗算器の出
力信号のうち低周波信号のみを通過させる低域濾波器と
、この低周波信号から発信波のに記不連続面での位相変
化を検出する手段とを有することを特徴とする超音波討
断装j;7.t0
Ultrasonic diagnostic equipment transmits ultrasound waves into a specimen, receives reflected waves from within the specimen, and obtains electrical signals indicating the state inside the specimen. a means for transmitting, a means for receiving a reflected wave from an acoustic impedance discontinuity surface within the specimen and outputting a received signal;
4, which consists of a signal that changes the phase of the transmitted signal by π/2.
Four multipliers that filter the reference signals of the seeds, a low-pass filter that passes only the low-frequency signals of the output signals of these multipliers, and the phase of the emitted wave from the low-frequency signals at the discontinuous plane shown in 7. An ultrasonic cutting device characterized by having a means for detecting a change; 7. t0
JP5255283A 1983-03-30 1983-03-30 Ultrasonic diagnostic apparatus Pending JPS59181139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5255283A JPS59181139A (en) 1983-03-30 1983-03-30 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5255283A JPS59181139A (en) 1983-03-30 1983-03-30 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPS59181139A true JPS59181139A (en) 1984-10-15

Family

ID=12917965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5255283A Pending JPS59181139A (en) 1983-03-30 1983-03-30 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS59181139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290943A (en) * 1985-06-20 1986-12-20 コントロン インスツルメンツ ホールディング エヌ.ブイ. Imaging method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418794A (en) * 1977-06-23 1979-02-13 Gen Electric Supersonic phtographing method and apparatus
JPS55136043A (en) * 1979-04-11 1980-10-23 Fujitsu Ltd Ultrasoniccwave diagnosis device
JPS55143417A (en) * 1979-04-26 1980-11-08 Kiyoshi Nakayama Measuring method for impedance distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418794A (en) * 1977-06-23 1979-02-13 Gen Electric Supersonic phtographing method and apparatus
JPS55136043A (en) * 1979-04-11 1980-10-23 Fujitsu Ltd Ultrasoniccwave diagnosis device
JPS55143417A (en) * 1979-04-26 1980-11-08 Kiyoshi Nakayama Measuring method for impedance distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290943A (en) * 1985-06-20 1986-12-20 コントロン インスツルメンツ ホールディング エヌ.ブイ. Imaging method and apparatus

Similar Documents

Publication Publication Date Title
US3568661A (en) Frequency modulated ultrasound technique for measurement of fluid velocity
US4112735A (en) Detection of bubbles in a liquid
Coghlan et al. Directional Doppler techniques for detection of blood velocities
JPH09505761A (en) Contrast imaging of ultrasonic spectrum
Christopher et al. A high-frequency continuous-wave Doppler ultrasound system for the detection of blood flow in the microcirculation
JPH01110351A (en) Ultrasonic doppler diagnostic apparatus
JP3093823B2 (en) Ultrasound Doppler diagnostic device
JPS6111659A (en) Ultrasonic insepction device
JPH01293854A (en) Ultrasonic doppler blood flow apparatus
JPS59181139A (en) Ultrasonic diagnostic apparatus
JP2553635B2 (en) Ultrasonic Doppler blood flow meter
JP3281435B2 (en) Ultrasound Doppler diagnostic equipment
JPS6096232A (en) Ultrasonic blood flow measuring apparatus
JP3317988B2 (en) Ultrasound bone diagnostic equipment
JP2009039284A (en) Ultrasound imaging apparatus
JP2953083B2 (en) High limit speed pulse Doppler measurement system
JPH0218097B2 (en)
JPH0734801B2 (en) Ultrasonic CW Doppler blood flow meter
US5272908A (en) Flame position ultrasonic interferometer
JPS63194644A (en) Ultrasonic measuring apparatus
JPS62152437A (en) Ultrasonic doppler diagnostic apparatus
JPH0523334A (en) Ultrasonic doppler image apparatus
JPH05111486A (en) Ultrasonic doppler diagnostic device
JPH08224237A (en) Ultrasonic doppler diagnosing device
JPH11113893A (en) Ultrasonograph