JPS59179110A - Operating method of filter module - Google Patents

Operating method of filter module

Info

Publication number
JPS59179110A
JPS59179110A JP58056491A JP5649183A JPS59179110A JP S59179110 A JPS59179110 A JP S59179110A JP 58056491 A JP58056491 A JP 58056491A JP 5649183 A JP5649183 A JP 5649183A JP S59179110 A JPS59179110 A JP S59179110A
Authority
JP
Japan
Prior art keywords
module
pressure
filtration
modules
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58056491A
Other languages
Japanese (ja)
Other versions
JPH0334365B2 (en
Inventor
Naoki Tada
直樹 多田
Yoshiyasu Kamiyama
神山 義康
Keisuke Nakagome
中込 敬祐
Shigenori Matsumoto
松本 成紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP58056491A priority Critical patent/JPS59179110A/en
Publication of JPS59179110A publication Critical patent/JPS59179110A/en
Publication of JPH0334365B2 publication Critical patent/JPH0334365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To operate each module at about the same filtration rate by keeping the filtration side of each module of the filter modules, wherein several modules are connected in series, at a specified pressure. CONSTITUTION:N numbers of modules A1, A2,...An having the same performance (desalting efficiency, permeability etc.) are connected in series. The filtrate pressure (filter chamber pressure) of each module is equalized to the pressure difference Pk-n between the original liquid inlet pressure Pk of the module Ak and the original liquid inlet pressure Pn of the module An at the lowermost stream by controlling the pressure regulating valve Vk (k=1, 2,...n-1, and n is excluded) in the filter chamber of each module Ak. The modules are operated under such control. This control is usually performed automatically by using a constant pressure valve.

Description

【発明の詳細な説明】 本発明は直列に接続した濾過モジュールの運転方法の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method of operating filtration modules connected in series.

用水、廃水の処理、または工業プロセスの処理液の管理
等に膜モジーールを使用する場合、膜モジュールを数台
直列に接続すれば、被処理液の循環流量を/J’tさく
してポンプの省力化や装置のコンパクト化を図シ得、有
利である。而して、ある分野においては直列方式が実用
化されている。
When using membrane modules for the treatment of water, wastewater, or the management of treated liquids in industrial processes, connecting several membrane modules in series can reduce the circulation flow rate of the treated liquid and save pump labor. This is advantageous as it allows for more compact size and more compact equipment. Therefore, the serial method has been put into practical use in certain fields.

ところで、粘性が高く圧力損失の大なる被処理液の場合
は、上流側モジュール内の圧力と下流側モジュール内の
圧力との差が顕著になり、運転初期には、上流側モジュ
ールはど濾過速度が大となるとiつだ現象が生じる。他
方、濾過速度が大であるほど、膜面への固型物の付着量
が大となるから、上流側モジュールにおいては下流側モ
ジュールよシも濾過速度の低下が迅速であシ、やがては
、上流側モジー−ルはど濾過速度が小となるととが往々
にしである。
By the way, in the case of a liquid to be treated with high viscosity and a large pressure loss, the difference between the pressure in the upstream module and the pressure in the downstream module becomes significant, and at the beginning of operation, the filtration rate of the upstream module decreases. When becomes large, a phenomenon occurs. On the other hand, the higher the filtration rate, the greater the amount of solid matter adhering to the membrane surface, so the filtration rate decreases more quickly in the upstream module than in the downstream module, and eventually... This is often the case when the upstream module has a low filtration rate.

このように、直列に接続した膜モジュールによって圧力
損失の犬なる原液を処理する場合、同じ性能の膜モジー
ールを使用しても、濾過速度を同一になし得す、あるモ
ジュールが過負荷となるアンバランスが避けられない。
In this way, when treating a stock solution that suffers from pressure loss using membrane modules connected in series, even if membrane modules with the same performance are used, the filtration rate may be the same, but one module may become overloaded. Balance is inevitable.

か\る不合理は直列接続と並列接続との併用であるクリ
スマスツリ一方式においても同様に生じる。
The same unreasonableness occurs in the one-sided Christmas tree system that uses both series and parallel connections.

本発明は、」二記不合理を除去するべく、直列接続の各
膜モジーールをはソ等しい濾過速度のもとで運転するこ
とを可能にすることにある。
The present invention, in order to eliminate the above unreasonableness, is to enable each membrane module connected in series to be operated at an equal filtration rate.

すなわち、本発明に係る濾過モジュールの運転方法は、
数台を直列に接続した瀘過モジ一ルを運転する方法にお
いて、各モジュールのE過液圧力を、そのモジー−ルの
原液入口または出口の圧力と最下流のモジュールの原液
入口まだは出口の圧力との差圧にはソ等しい圧力に保持
しつつモジー−ルを運転することを特徴とする方法であ
る。
That is, the method of operating the filtration module according to the present invention is as follows:
In a method of operating several filtration modules connected in series, the E filtrate pressure of each module is determined by the pressure at the inlet or outlet of the module and the pressure at the inlet or outlet of the most downstream module. This method is characterized by operating the module while maintaining the pressure equal to the differential pressure.

以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明において使用する膜分離システムを示し
ている。
FIG. 1 shows the membrane separation system used in the present invention.

第1図において、A1 r A2+ 曲・Anは同性能
(壌除去率、透過率等)のn台の膜モジュールを示し、
互に直列に接続されている。これら膜モジュールには通
常、限外濾過モジュールが使用され、モジー−ル形式と
しては耐圧性の犬なるチー−プラー型、スパイラル型が
選ばれる。1は原液槽、2はポンプである。Voは原液
に濾過処理に必要な圧力Poを付与するための定圧弁(
圧力調整弁)、POはこの圧力POを測定するための圧
力計である。Pl、 y P2+・・・・・・Pnは各
膜モジュールA□。
In Figure 1, A1 r A2+ An represents n membrane modules with the same performance (lodge removal rate, transmittance, etc.),
are connected to each other in series. These membrane modules are usually ultrafiltration modules, and the pressure-resistant Cheapler type and spiral type are selected as the module type. 1 is a stock solution tank, and 2 is a pump. Vo is a constant pressure valve (
(pressure regulating valve), PO is a pressure gauge for measuring this pressure PO. Pl, y P2+...Pn is each membrane module A□.

A2・・・・・Anの原液入口に取付けた圧力計である
A2...This is a pressure gauge attached to the stock solution inlet of An.

3L 32・・・3n は各モジュールA□、A2・・
・・Anノy4液室に連結した泥液取出管、3oはP成
果水管、”It v2”””Vn−1は各F液取出管3
 コ、 、 32 、 =・−3n−1(3’nは除く
)に挿入した圧力調整弁である。LI+”21 ”””
 Ln−jは各モジュ−/l/ AIl A2−−An
−1(Anは除く)の濾過液室に連通した圧力計である
3L 32...3n is each module A□, A2...
... An No. 4 mud liquid extraction pipe connected to the liquid chamber, 3o is the P result water pipe, "It v2""Vn-1 is each F liquid extraction pipe 3
This is a pressure regulating valve inserted at , , 32, = -3n-1 (3'n is excluded). LI+”21 ”””
Ln-j is each module /l/AIl A2--An
-1 (excluding An) is a pressure gauge connected to the filtrate chamber.

上記において、各モジュールAk(k=1.・・・・・
・n)における圧力降下(圧力計PkとP k+1との
差圧)を△Pk(k=1,2・・曲n)とすれば、k番
目のモジ一−ルの入口圧力Pki並びに出口圧力Pko
は、Pkl−Po十△Pk+△Pk+1 + −△Pn
□■Pko”’Po+△pk+、+  −−=−△Pn
□■である。
In the above, each module Ak (k=1...
・If the pressure drop (differential pressure between pressure gauges Pk and Pk+1) at n) is △Pk (k=1, 2...curve n), then the inlet pressure Pki and outlet pressure of the k-th module are Pko
is Pkl−Po+ΔPk+ΔPk+1 + −ΔPn
□■Pko”'Po+△pk+, + −−=−△Pn
It is □■.

本発明によってモジュールを運転するには、各モジュー
ルAk (k=1.2・・n−+、nは除<)ノ?過液
圧力(濾過室圧力)を、そのモジュールAkの原液入口
圧力Pkと最下流のモジュールAnの原液入口圧力Pn
との差圧Pk−nにはソ等しくするように各モジーール
Akの濾過室の圧力調整弁Vk(k=1,2・・n−1
,nは除く)を調節し、か\る調節下でモジー−ルを運
転する。この調節は通常、定圧弁を用い自動制御によっ
て行う。
To operate the modules according to the invention, each module Ak (k=1.2...n-+, excluding n<)? The filtrate pressure (filtration chamber pressure) is defined as the stock solution inlet pressure Pk of the module Ak and the stock solution inlet pressure Pn of the most downstream module An.
The pressure regulating valve Vk (k=1, 2...n-1) of the filtration chamber of each module Ak is set so that the differential pressure Pk-n with
, n excluded) and operate the module under such adjustment. This adjustment is usually performed by automatic control using a constant pressure valve.

上記差圧P k−nは P k−n ”△Pk十△Pk++ −+△Pn−、□
■である。
The above differential pressure P k-n is P k-n ”△Pk+△Pk++ −+△Pn-, □
■It is.

而して、各モジーールAkにおける原液入口圧力Pki
とそのモジー−ルの濾過液室圧力Pk−nとの差圧ΔP
kiは上記00式より △Pki”Po+△Pn□■ であり、各モジーールAkにおける原液出口圧力Pko
とそのモジー−ルの濾過液室圧力Pk−0との差圧△P
ko は上記00式より △P ko ”” P O+△Pn−△pk: Po 
□■である。
Therefore, the raw solution inlet pressure Pki in each module Ak
and the filtrate chamber pressure Pk-n of the module
From the above formula 00, ki is △Pki”Po+△Pn□■, and the stock solution outlet pressure Pko in each module Ak
The pressure difference △P between the pressure in the filtrate chamber of the module and the filtrate chamber pressure Pk-0
From the above formula 00, ko is △P ko ”” P O + △Pn - △pk: Po
It is □■.

従って、各モジュールAkにおける原液室と濾過液室と
の圧力差△Pには、そのモジュールの入口と出口との間
では原液圧力損失△Pnに相当する差が存在するが、そ
の圧力差△Pは各モジュールAkについてはソ同一であ
り、透過速度はこの圧力差△Pによって定まるから、各
モジュールにおける透過速度をはソ一定にできる。
Therefore, in the pressure difference △P between the stock solution chamber and the filtrate chamber in each module Ak, there is a difference corresponding to the stock solution pressure loss △Pn between the inlet and outlet of that module, but the pressure difference △P is the same for each module Ak, and the permeation rate is determined by this pressure difference ΔP, so the permeation rate in each module can be made constant.

上記実施例においては、各モジュールAkの濾過液圧力
(濾過室圧力)を、そのモジュールAkの原液入口圧力
Pkと最下流のモジュールAnの原液入口圧力P。との
差圧P k−n  にはソ等しくするようにしたが、そ
のモジュールAkの原液出口圧力Pk−,と最下流のモ
ジュールAnの原液出口圧力Po(圧力設定弁■Oの設
定圧力)との差Pk−0にはソ等しくするよ゛うにして
もよい。この場合、各モジーールAkにおける原液入口
圧力Pkiとそのモジュールの濾過液室圧力Pk−0と
の差圧△Pkよ。
In the above embodiment, the filtrate pressure (filtration chamber pressure) of each module Ak is the stock solution inlet pressure Pk of that module Ak and the stock solution inlet pressure P of the most downstream module An. The differential pressure Pk-n between the module Ak and the stock solution outlet pressure Pk-, and the stock solution outlet pressure Po of the most downstream module An (setting pressure of the pressure setting valve O) are set to be equal to The difference Pk-0 may be made equal to so. In this case, the differential pressure ΔPk between the stock solution inlet pressure Pki in each module Ak and the filtrate chamber pressure Pk-0 of that module.

並びに各モジュールA、kにおける原液出口圧力Pk。and the stock solution outlet pressure Pk in each module A, k.

とそのモジュールの濾過液圧力Pk−oとの差圧△Pk
oは上記00式に対し、 △P l(i = P o+△Pk−C)△Pko”’
PO+△Pk−△Pn□○となり、この場合も各モジュ
ールにおける透過速度をはシ一様とできることは勿論で
ある。
and the filtrate pressure Pk-o of that module △Pk
For the above formula 00, o is △P l (i = P o + △Pk - C) △Pko"'
PO+△Pk-△Pn□○, and it goes without saying that the permeation speed in each module can be made uniform in this case as well.

上記例れの実施例においても、各モジーールにおける透
過液流量ははソ一定となる。而して、各モジュールにお
ける透過液流量をはソ等しくすれば、上記■並びに0式
まだは■並びに0式の条件を維持できる。従って、最下
流のモジュールAnにおける濾過液流量I。を測定し、
上記した圧力調整バルブV1.V、、・・・・・に代え
て設けた定流量弁により各モジュール(A1.・An−
+)の濾過液流量を上記Ioとするようにしても本発明
を実施できる。
In each of the above embodiments, the permeate flow rate in each module is constant. If the permeate flow rate in each module is made equal, the conditions of the above equations 1 and 0 can be maintained. Therefore, the filtrate flow rate I in the most downstream module An. measure,
Above-mentioned pressure regulating valve V1. Each module (A1.・An-
The present invention can also be carried out by setting the filtrate flow rate of +) to the above Io.

実施例 電着塗装における限外湿過システムに関するものであり
、第2図に示すように、3台のスパイラル型膜モジュー
ルA1.A2.A3を直列に接続し、循環塗料量を16
01/in  (fは流量計)とするようにポンプ2を
駆動した。1番目のモジュールA1の原液入口圧力P1
は4.6Kg//d、 2番目のモジュールA2の原液
入口圧力P2は3.3 Ky7’crl、  3番目の
モジー−ルA3の原液入口圧力P、は2.OKノ肩。
This example relates to an ultra-humidity system in electrodeposition coating, and as shown in FIG. 2, three spiral-type membrane modules A1. A2. Connect A3 in series and increase the amount of circulating paint to 16
The pump 2 was driven so that the flow rate was 0.01/in (f is the flowmeter). Stock solution inlet pressure P1 of the first module A1
is 4.6Kg//d, the stock solution inlet pressure P2 of the second module A2 is 3.3 Ky7'crl, and the stock solution inlet pressure P of the third module A3 is 2. OK shoulder.

湿過圧設定値Poは0.7 Kg/dであり、各モジュ
ールの圧力損失は1.3 Ky/cr!であった。従っ
てP+3すなわち(P+  ”3)は2. e K91
cr&であり、P23すなわちP2− P3は1.3 
K2/dであり、1番目のモジュールA工の濾過室圧力
L1を2.6Ky/crlとするように圧力調整弁■1
を調節し、2番目モジュールA2の濾過室圧力L2を1
.3 Kp/crlとするように圧力調整弁v2を調節
した。
The wet overpressure setting Po is 0.7 Kg/d, and the pressure loss of each module is 1.3 Ky/cr! Met. Therefore, P+3 or (P+ “3) is 2. e K91
cr&, P23 or P2-P3 is 1.3
K2/d, and the pressure regulating valve ■1 is set so that the filtration chamber pressure L1 of the first module A is 2.6 Ky/crl.
and adjust the filtration chamber pressure L2 of the second module A2 to 1.
.. The pressure regulating valve v2 was adjusted to 3 Kp/crl.

かXる調節下でモジ、−ルを運転し、各モジュールA、
 、 A2. A3の濾過速度を測定したところ第3図
人の通りであった。これに対し、濾過室の圧力調節を行
なわなかった場合の濾過速度は第3図Bの通りであり、
本発明の実施例によれば、各モジュールをはソ同一の濾
過速度で運転できた。さらに、濾過量が安定しており、
第3図Bの比較例と比べて300日後の瀘過量において
高レベルを維持している。
Operate the module A under the control of
, A2. When the filtration rate of A3 was measured, it was as shown in Figure 3. On the other hand, the filtration speed when the pressure in the filtration chamber is not adjusted is as shown in Figure 3B.
According to embodiments of the invention, each module could be operated at the same filtration rate. Furthermore, the filtration rate is stable,
Compared to the comparative example shown in FIG. 3B, the filtration amount maintained at a high level after 300 days.

上述した通り本発明に係る濾過モジュールの運転方法に
よれば、直列に接続し九p過モジ一ルをはソ同一の濾過
速度で運転でき、一部のモジー−ルの過負荷運転等の不
合理なく、濾過モジュールを適正に運転できる。
As described above, according to the method of operating a filtration module according to the present invention, the 9P filtration modules connected in series can be operated at the same filtration speed, and problems such as overload operation of some modules can be avoided. The filtration module can be operated properly without any reason.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用する分離システムを示す説
明図、第2図は本発明を電着塗装ラインに使用した場合
の説明図、第3図人並びに第3図Bは本発明における濾
過速度特性並びに従来例の濾過速度特性を示す説明図で
ある。 図において、A、、A2・・・は膜モジーール、Pl。 P2・は圧力計、L、、L2・・・は圧力計、Vl、 
V2・は圧力調整弁である。
Figure 1 is an explanatory diagram showing the separation system used in the present invention, Figure 2 is an explanatory diagram when the present invention is used in an electrodeposition coating line, Figure 3 shows the filtration speed in the present invention, and Figure 3B shows the filtration speed in the present invention. It is an explanatory view showing characteristics and filtration rate characteristics of a conventional example. In the figure, A,, A2... are membrane modules, Pl. P2・ is a pressure gauge, L,, L2... is a pressure gauge, Vl,
V2 is a pressure regulating valve.

Claims (2)

【特許請求の範囲】[Claims] (1)  数台を直列に接続した濾過モジュールを運転
する方法において、各モジュールの濾過液側を、そのモ
ジー−ルの原液入口または出口の圧力と最下流のモジュ
ールの原液入口または出口の圧力との差圧にはソ等しい
圧力に保持しつつモジュールを運転することを特徴とす
る濾過モジュールの運転方法。
(1) In a method of operating several filtration modules connected in series, the filtrate side of each module is equal to the pressure at the raw solution inlet or outlet of that module and the pressure at the raw solution inlet or outlet of the most downstream module. A method of operating a filtration module, characterized in that the module is operated while maintaining a pressure equal to the differential pressure of .
(2)数台を直列に接続した濾過モジュールを運転する
方法において、各モジュールの濾過液側をそのモジュー
ルの原液入口または出口の圧力と最下流のモジュールの
原液入口または出口との差圧にはソ等しい圧力に保持す
るように各モジュールの透過液量を調節しつつモジー−
ルを運転することを特許とする濾過モジュールの運転方
法。
(2) In a method of operating several filtration modules connected in series, the filtrate side of each module is set to the differential pressure between the raw solution inlet or outlet of that module and the raw solution inlet or outlet of the most downstream module. The permeate volume of each module is adjusted to maintain the same pressure.
A patented method for operating a filtration module.
JP58056491A 1983-03-30 1983-03-30 Operating method of filter module Granted JPS59179110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056491A JPS59179110A (en) 1983-03-30 1983-03-30 Operating method of filter module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056491A JPS59179110A (en) 1983-03-30 1983-03-30 Operating method of filter module

Publications (2)

Publication Number Publication Date
JPS59179110A true JPS59179110A (en) 1984-10-11
JPH0334365B2 JPH0334365B2 (en) 1991-05-22

Family

ID=13028556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056491A Granted JPS59179110A (en) 1983-03-30 1983-03-30 Operating method of filter module

Country Status (1)

Country Link
JP (1) JPS59179110A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220707A (en) * 1985-03-27 1986-10-01 Kurita Water Ind Ltd Liquid permeating method
JPS6213502U (en) * 1985-07-10 1987-01-27
JPS6223404A (en) * 1985-07-23 1987-01-31 Toyo Soda Mfg Co Ltd Membrane separation apparatus
EP0307737A2 (en) * 1987-09-15 1989-03-22 Henkel Kommanditgesellschaft auf Aktien Process for the separation of a biotechnologically produced agent from a fermenter broth by cross-flow micro and/or ultrafiltration
JPH0275389A (en) * 1988-09-08 1990-03-15 Kubota Ltd Treatment of waste water
JPH0457294U (en) * 1990-09-26 1992-05-15
US5549829A (en) * 1992-07-01 1996-08-27 Northwest Water Group Plc Membrane filtration system
EP0747111A1 (en) * 1995-05-08 1996-12-11 BUCHER-GUYER AG Maschinenfabrik Method for enhancing the filtration performance of cross-flow filters in modules from filtration plants
WO1999024154A1 (en) * 1997-11-07 1999-05-20 Kurita Water Industries Ltd. Method of operating spiral type membrane module
JP2009180433A (en) * 2008-01-31 2009-08-13 Tohoku Univ Wet desiccant air conditioner
WO2014157256A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Method for removing impurities in high-molecular-weight compound solution
JP2020081920A (en) * 2018-11-16 2020-06-04 三菱ケミカル株式会社 Separation membrane module

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220707A (en) * 1985-03-27 1986-10-01 Kurita Water Ind Ltd Liquid permeating method
JPS6213502U (en) * 1985-07-10 1987-01-27
JPH0520419Y2 (en) * 1985-07-10 1993-05-27
JPS6223404A (en) * 1985-07-23 1987-01-31 Toyo Soda Mfg Co Ltd Membrane separation apparatus
EP0307737A2 (en) * 1987-09-15 1989-03-22 Henkel Kommanditgesellschaft auf Aktien Process for the separation of a biotechnologically produced agent from a fermenter broth by cross-flow micro and/or ultrafiltration
JPH0275389A (en) * 1988-09-08 1990-03-15 Kubota Ltd Treatment of waste water
JPH0457294U (en) * 1990-09-26 1992-05-15
US5549829A (en) * 1992-07-01 1996-08-27 Northwest Water Group Plc Membrane filtration system
EP0747111A1 (en) * 1995-05-08 1996-12-11 BUCHER-GUYER AG Maschinenfabrik Method for enhancing the filtration performance of cross-flow filters in modules from filtration plants
WO1999024154A1 (en) * 1997-11-07 1999-05-20 Kurita Water Industries Ltd. Method of operating spiral type membrane module
US6267890B1 (en) 1997-11-07 2001-07-31 Kurita Water Industries Ltd. Method of operating spiral wound type membrane module
JP2009180433A (en) * 2008-01-31 2009-08-13 Tohoku Univ Wet desiccant air conditioner
WO2014157256A1 (en) * 2013-03-25 2014-10-02 富士フイルム株式会社 Method for removing impurities in high-molecular-weight compound solution
JP2014208775A (en) * 2013-03-25 2014-11-06 富士フイルム株式会社 Method for removing impurities in high polymer solution
CN104968419A (en) * 2013-03-25 2015-10-07 富士胶片株式会社 Method for removing impurities in high-molecular-weight compound solution
CN104968419B (en) * 2013-03-25 2017-03-08 富士胶片株式会社 Impurity removal method in macromolecular compound solution
JP2020081920A (en) * 2018-11-16 2020-06-04 三菱ケミカル株式会社 Separation membrane module

Also Published As

Publication number Publication date
JPH0334365B2 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
US6656362B1 (en) Spiral reverse osmosis membrane element, reverse osmosis membrane module using it, device and method for reverse osmosis separation incorporating the module
JPS59179110A (en) Operating method of filter module
CN204625367U (en) Water purifying equipment
JP3311139B2 (en) Membrane module system
US20050224412A1 (en) Water treatment system having upstream control of filtrate flowrate and method for operating same
CN207102346U (en) A kind of reverse osmosis type sewage-treatment plant
CN106517597A (en) Electroplating nickel-containing wastewater treatment system
CN212315655U (en) Water purifier and purifier with adjustable water yield
JPS59228988A (en) Method for obtaining pure water from high-conductivity water by reverse osmosis method
JPS62286586A (en) Water treatment plant
JP3997583B2 (en) Membrane filtration device and membrane filtration method
US4994190A (en) Serial crossflow filtration assembly
CN112174419A (en) Wastewater treatment system and method for reducing evaporation capacity of wastewater
JPH10156354A (en) Membrane separator for treating water
EP1631369B1 (en) Pump-pressure-exchanger system for reverse osmosis processes
CN109529625A (en) A kind of continuous nanofiltration technique of lye
US9993774B2 (en) Filtration system and filtration method
CN214059936U (en) Speed regulation water purification system based on water production circulation and water purifier
JP7074169B2 (en) Membrane filtration system and its control method
JP2005270934A (en) Membrane filtration method and apparatus
WO2016151673A1 (en) Water treatment device, and method of operating water treatment device
JPS59154118A (en) Filter
KR102082802B1 (en) Control method of sewage reuse and water treatment RO system using high pressure pump operation rate
CN104828993A (en) Water purifying equipment
JPS61220707A (en) Liquid permeating method