JPS59176586A - Annular electric furnace - Google Patents

Annular electric furnace

Info

Publication number
JPS59176586A
JPS59176586A JP4863483A JP4863483A JPS59176586A JP S59176586 A JPS59176586 A JP S59176586A JP 4863483 A JP4863483 A JP 4863483A JP 4863483 A JP4863483 A JP 4863483A JP S59176586 A JPS59176586 A JP S59176586A
Authority
JP
Japan
Prior art keywords
furnace
gas
electric furnace
cooling
annular electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4863483A
Other languages
Japanese (ja)
Other versions
JPS627470B2 (en
Inventor
金子 純雄
大槻 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP4863483A priority Critical patent/JPS59176586A/en
Publication of JPS59176586A publication Critical patent/JPS59176586A/en
Publication of JPS627470B2 publication Critical patent/JPS627470B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は主として断面が円形あるいは多角形の外囲を有
する環状電気炉の断熱層の断熱特性を変化させて電気炉
の利用範囲を広げようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to widen the range of uses of electric furnaces by changing the heat insulating properties of the heat insulating layer of an annular electric furnace having an outer enclosure with a circular or polygonal cross section.

従来の電気炉は空気中において断熱材を使用している。Conventional electric furnaces use insulation in the air.

すなわち炉内の保温と断熱効果を高めるため、炉心管を
囲む発熱体と炉のケーシング(外囲)間に断熱材を多層
に使用したり、高密度の断熱材を使用しているが、外形
が大きくなり断熱材の費用を含めて高価になることが欠
点である。さらに電気炉を急冷したい場合には、炉のケ
ーシング外壁に水冷パイプを巻付は冷却しているが、熱
交換率が悪く冷却速度が遅い。このため熱交換器を使用
することが提案されているが、外形寸法が大きくなるこ
とに問題がある。上記をさらに詳しく説明すると、断熱
材の厚みを増すか高密度の断熱材を用いれば熱容量が大
きくなり、電気炉を目的(稼働)温度まで加熱するに要
する時間も増大し、断熱材の熱通過率は予想程小さくな
らず、他方加熱すべき断面円形または多角形の外囲表面
積が増大するために、炉を高温に維持したときの安定時
消費電力は比較的大きい。炉の冷却時には断熱材の熱通
過率はそのま\なので、炉のケーシングを冷却しても炉
心の温度降下の割合は、たとえば]、 250 ’Cか
ら800℃程度に冷却するのに非冷却時には330分か
\るが、冷却によって約300分になるのが限度である
In other words, in order to increase the heat retention and insulation effect inside the furnace, multiple layers of insulation material are used between the heating element surrounding the furnace core tube and the furnace casing (outer enclosure), and high-density insulation material is used. The disadvantage is that it becomes large and expensive, including the cost of the insulation material. Furthermore, when it is desired to rapidly cool an electric furnace, a water cooling pipe is wrapped around the outer wall of the furnace casing for cooling, but the heat exchange rate is poor and the cooling rate is slow. For this reason, it has been proposed to use a heat exchanger, but there is a problem in that the external dimensions become large. To explain the above in more detail, increasing the thickness of the insulation or using higher-density insulation increases the heat capacity, which increases the time required to heat the electric furnace to the desired (operating) temperature, and increases the amount of heat passing through the insulation. The rate is not as small as expected, and on the other hand, the steady-state power consumption when the furnace is maintained at a high temperature is relatively high due to the increased surrounding surface area of the circular or polygonal cross-section to be heated. When the reactor is cooled, the heat transfer rate of the insulation remains the same\, so even if the reactor casing is cooled, the rate of core temperature drop will be, for example, when cooling from 250'C to about 800°C, when not cooled. 330 minutes, but the limit is about 300 minutes due to cooling.

本発明は」−記の欠点を取除くために行ったもので、本
発明の実施例によって本発明を以下に説明する。
The present invention has been made to eliminate the drawbacks mentioned above, and the present invention will be explained below using examples of the present invention.

図面は本発明を実施した環状電気炉の構造例図で、一部
を縦断面図によって示しである。この図において]は熱
源となる発熱体で、均熱管9の周囲を取巻いて置かれる
。2は発熱体保持具で、発熱体コイル間隔の保持と絶縁
を兼ねる。3は発熱体端子で電力供給端子である。4は
炉の外囲部(却パイプや水冷却板を取付けていた。5は
炉口で、△ 断熱体の保持と炉口の外形決定に用いる。6は断熱材の
層で、発熱体を取巻いてケーシング間に詰められる。断
熱材にはたとえば直径2〜3μmの繊維状のアルミナ(
AIV203)ファイバなどのセラミック繊維質断熱材
を積層して用いる。7はガス吹出口が適当数ついている
ガス吹出しパイプで、断熱層内の雰囲気を空気以外の断
熱効果の良いものあるいは冷却効果の高いものとするこ
とが目的であるから、パイプの数や形状は適当なものが
選ばれる。図では炉の周方向に複数本用いている。8は
外部ガス供給口となる接手、]Oは被加熱物を内部に収
蔵する石英製反応管(炉心管上9は均熱管と呼ばれ、炉
心管]0を保持する役目をし、ムライト、アルミナ、S
iC等で製作される。
The drawing is a structural example of an annular electric furnace in which the present invention is implemented, and a portion thereof is shown in a vertical cross-sectional view. In this figure] is a heating element serving as a heat source, which is placed surrounding the soaking tube 9. Reference numeral 2 denotes a heating element holder, which serves both to maintain the spacing between the heating element coils and to provide insulation. 3 is a heating element terminal and a power supply terminal. 4 is the outer enclosure of the furnace (where the cooling pipe and water cooling plate were attached). 5 is the furnace mouth, which is used to hold the insulation and determine the outer shape of the furnace mouth. 6 is the layer of heat insulating material, which protects the heating element. The insulation material is made of fibrous alumina (2 to 3 μm in diameter).
AIV203) Laminated ceramic fiber insulation materials such as fibers are used. 7 is a gas blowing pipe with an appropriate number of gas blowing ports, and the purpose is to make the atmosphere inside the heat insulating layer something other than air that has a good insulation effect or has a high cooling effect, so the number and shape of the pipes are determined by An appropriate one is selected. In the figure, multiple pieces are used in the circumferential direction of the furnace. 8 is a joint that serves as an external gas supply port, ] O is a quartz reaction tube that stores the object to be heated inside (the upper part of the furnace core tube 9 is called a soaking tube, and serves to hold the furnace core tube); Alumina, S
Produced by iC etc.

なおこの炉は垂直炉として表わしであるが、一般には9
0回転した水平炉として使用されることが多い。
Although this furnace is shown as a vertical furnace, it is generally
It is often used as a horizontal furnace with zero rotation.

さて図示の炉においては、発熱体]と炉のケーシング4
の間に充填された断熱材6の中に雰囲気を作るためのガ
ス吹出口付きの複数のパイプ7を通じ、このパイプ7に
は外部からのガス供給パイプを接続し、外部からの供給
によるガス雰囲気内で断熱材を使用すれば、その熱伝導
率を変化させることができる。なおこメに供給されるガ
スは、雰囲気形成用の一定量でよく、一般には炉心に洩
れる小量を補給すればよく、さらにこのガスとし 3 
− て熱伝導の小さいガス(炭酸ガスや窒素等)を選べば断
熱効果が上って昇温か早くなり、また保温が良くなって
省エネルギ電気炉となる効果がある。
Now, in the illustrated furnace, the heating element] and the furnace casing 4
A gas supply pipe from the outside is connected to the pipes 7 through a plurality of pipes 7 with gas outlets to create an atmosphere in the heat insulating material 6 filled between Thermal conductivity can be changed by using insulation materials inside. The gas supplied to the reactor may be a fixed amount for creating an atmosphere, and in general, it is sufficient to replenish a small amount that leaks into the reactor core.
- If you choose a gas with low thermal conductivity (carbon dioxide, nitrogen, etc.), the insulation effect will increase and the temperature will rise faster, and heat retention will be better, resulting in an energy-saving electric furnace.

これによって炉を小形化し、価格の低下が可能となる。This allows the furnace to be made smaller and lower in price.

さらに水素ガスやヘリウムガス等の熱伝導率が大きいガ
スを雰囲気ガスに選定すれば、熱伝導が良くなり急冷す
ることができると共に、冷却速度をコントロールするこ
とにより被加熱物の品質を向」ニさせることができる。
Furthermore, if a gas with high thermal conductivity such as hydrogen gas or helium gas is selected as the atmospheric gas, heat conduction will be improved and rapid cooling will be possible, and the quality of the heated object can be improved by controlling the cooling rate. can be done.

このように雰囲気ガスの選定、組合わせにより加熱と冷
却の時間を早めることは生産サイクルを短縮するに効果
があることは言うまでもない。
It goes without saying that speeding up the heating and cooling times by selecting and combining atmospheric gases in this way is effective in shortening the production cycle.

数値例を示せば従来の炉のような断熱材使用の構造では
1200′C!11ら800′Cまでの冷却速度はたと
えば3℃/m]nであるが、本発明を施した図のような
炉では、従来の3〜4倍すなわち9℃/min〜12℃
/minが容易に実現できる。このとき内部の雰囲気と
して用いるガスの量は極く僅かで、Al2O3の繊維の
表面を包む程度で良い。
To give you a numerical example, a conventional furnace with a structure that uses insulation material can reach 1200'C! The cooling rate from 11 to 800'C is, for example, 3°C/m]n, but in a furnace like the one shown in the figure in which the present invention is applied, the cooling rate is 3 to 4 times that of the conventional one, that is, 9°C/min to 12°C.
/min can be easily achieved. At this time, the amount of gas used as the internal atmosphere is extremely small and may be sufficient to cover the surface of the Al2O3 fibers.

 4− 別な例として半導体製造用の電気炉の使用例では、シリ
コンウェハの外径が4.5.6 と大きくなるに従って
、加熱冷却時の熱のひずみによりウェハ平面度が劣化し
てマスク合わせの精度が悪くなるため、本熱処理の前後
には低温(800℃)でウェハの熱処理の準備をし、1
 ]、 O0℃とか工2・00℃まで加熱して1〜2時
間の熱処理を行い、次に低温800℃まで冷却する。こ
の冷却をするときは、ウェハ内の不純物分布のコントロ
ールの都合で冷却速度は]O℃/min程度が最良であ
るが、これは本発明によって容易に実現できる値である
4- As another example, in the case of using an electric furnace for semiconductor manufacturing, as the outer diameter of the silicon wafer increases to 4.5.6 mm, the wafer flatness deteriorates due to thermal distortion during heating and cooling, making mask alignment difficult. Since the accuracy of the wafer will deteriorate, the wafer should be prepared for heat treatment at a low temperature (800℃) before and after the main heat treatment.
], heat treatment is performed for 1 to 2 hours by heating to 00°C or 2.00°C, and then cooling to a low temperature of 800°C. When performing this cooling, the best cooling rate is approximately 0.degree. C./min in order to control the impurity distribution within the wafer, but this is a value that can be easily achieved by the present invention.

本発明の効果についてはすでに述べであるが、要約すれ
ば(]−)省エネルギ化、(2)炉の小形、低価格化、
(3)負部、急冷が容易に達成され、製造サイクルが早
くなること、であって工業上着しい効果が得られるもの
である。
The effects of the present invention have already been described, but in summary: (]-) Energy saving, (2) Smaller size and lower cost of the furnace,
(3) The negative part and rapid cooling can be easily achieved and the manufacturing cycle can be shortened, which is an advantageous industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施した環状電気炉の構造例図で、一部
を断面によって示しである。 1・・・・コイル状発熱体、 2・・・・発熱体保持具
、3・・・・発熱体の電力供給端子、 4・・・・炉のケーシング、  5・・・・炉口板、6
・・・・断熱材、  7・・・・ガス吹出用パイプ、8
・・・・外部ガス供給管との接続金具、9・・・・均熱
管、 ]0・・・・反応管。 特許出願人  国際電気株式会社  7−
The drawing is a structural example of an annular electric furnace embodying the present invention, and is partially shown in cross section. DESCRIPTION OF SYMBOLS 1... Coiled heating element, 2... Heating element holder, 3... Power supply terminal of heating element, 4... Furnace casing, 5... Furnace mouth plate, 6
...Insulation material, 7...Gas blowing pipe, 8
... Connection fittings for external gas supply pipe, 9 ... Soaking tube, ]0 ... Reaction tube. Patent applicant: Kokusai Electric Co., Ltd. 7-

Claims (1)

【特許請求の範囲】[Claims] 炉心の反応管または均熱管を取巻く発熱体と炉の外囲体
(ケーシング)間に多層の断熱材を充填した環状電気炉
において、環状断熱層の内部にガス吹出し穴を有するガ
スパイプを通じ、このパイプには上記断熱層の雰囲気を
空気以外のガス体で置換できるように炉の外部から保温
促進用の熱伝導率の小さいガスあるいは逆に冷却促進用
の熱伝導率の大きいガスを適量供給するようにしたこと
を特徴とする環状電気炉。
In an annular electric furnace in which a multilayer insulation material is filled between the heating element surrounding the reaction tube or soaking tube of the reactor core and the furnace envelope (casing), a gas pipe having a gas blowing hole inside the annular insulation layer is passed through the pipe. In order to replace the atmosphere in the heat insulating layer with a gas other than air, an appropriate amount of gas with low thermal conductivity to promote heat retention or gas with high thermal conductivity to promote cooling is supplied from outside the furnace. An annular electric furnace characterized by:
JP4863483A 1983-03-25 1983-03-25 Annular electric furnace Granted JPS59176586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4863483A JPS59176586A (en) 1983-03-25 1983-03-25 Annular electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4863483A JPS59176586A (en) 1983-03-25 1983-03-25 Annular electric furnace

Publications (2)

Publication Number Publication Date
JPS59176586A true JPS59176586A (en) 1984-10-05
JPS627470B2 JPS627470B2 (en) 1987-02-17

Family

ID=12808801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4863483A Granted JPS59176586A (en) 1983-03-25 1983-03-25 Annular electric furnace

Country Status (1)

Country Link
JP (1) JPS59176586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529722A (en) * 2011-09-06 2014-11-13 アルサラン エマミArsalan Emami Heating element with increased cooling capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529722A (en) * 2011-09-06 2014-11-13 アルサラン エマミArsalan Emami Heating element with increased cooling capacity

Also Published As

Publication number Publication date
JPS627470B2 (en) 1987-02-17

Similar Documents

Publication Publication Date Title
JP4185194B2 (en) Carbon heater
JP2002277054A (en) Fluid heating device
JP4845146B2 (en) Carbon heater
JPH04273990A (en) Heating device
JP2000164602A (en) Sealing terminal
US5323484A (en) Heating apparatus with multilayer insulating structure
US3842794A (en) Apparatus for high temperature semiconductor processing
JP4198901B2 (en) Carbon heater
JPS59176586A (en) Annular electric furnace
JP3383784B2 (en) Heat treatment equipment for semiconductor wafers
JP2953744B2 (en) Heat treatment equipment
CN104716228B (en) The CIGS solar cells anti-corrosion evaporation line source device preparation method of high temperature
JP3881937B2 (en) Semiconductor manufacturing equipment or heating equipment
US3112389A (en) Unit brazing fixture
JPS63284787A (en) Strand heater and semiconductor heat treatment device
JP2573102B2 (en) Furnace wall of heating furnace
CN204045554U (en) A kind of water-cooled body of heater for High temperature diffusion oxidation furnace
JP2670513B2 (en) Heating equipment
CN216954037U (en) Low-temperature tube type furnace body
JPH06168899A (en) Heater unit for heating substrate
JPH0517143Y2 (en)
JPS638128Y2 (en)
JPS5833083A (en) Heat treatment furnace
CN201990766U (en) Furnace body and diffusion furnace for diffusion furnace
JPS5942969B2 (en) Semiconductor heat treatment equipment