JPS59176550A - Single and double effect combination abroption type refrigerator - Google Patents

Single and double effect combination abroption type refrigerator

Info

Publication number
JPS59176550A
JPS59176550A JP5111283A JP5111283A JPS59176550A JP S59176550 A JPS59176550 A JP S59176550A JP 5111283 A JP5111283 A JP 5111283A JP 5111283 A JP5111283 A JP 5111283A JP S59176550 A JPS59176550 A JP S59176550A
Authority
JP
Japan
Prior art keywords
temperature
low
regenerator
liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5111283A
Other languages
Japanese (ja)
Other versions
JPH038465B2 (en
Inventor
高畠 修蔵
川野 潤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5111283A priority Critical patent/JPS59176550A/en
Publication of JPS59176550A publication Critical patent/JPS59176550A/en
Publication of JPH038465B2 publication Critical patent/JPH038465B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は、真空タンク内に蒸発器、吸収器、低温再生器
および凝縮器が構成されている吸収式冷凍機において、
冷凍効率の向上と小型化を図ると共に、天然エネルギー
または廃熱エネルギーなどを利用することができる一重
二重効用組合せ吸収式冷凍機に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an absorption refrigerator in which an evaporator, an absorber, a low-temperature regenerator, and a condenser are configured in a vacuum tank.
The present invention relates to a single-double effect combination absorption refrigerator that is capable of improving refrigeration efficiency and downsizing, and that can utilize natural energy or waste heat energy.

(b)従来技術 従来、第1図に示すような二重効用吸収式冷凍機1にお
いては、吸収液ポンプ2を介して熱交換器3に送液され
る吸収器4の稀吸収液5は、前記熱交換器3の出口側分
岐点6で分流され、一部は低温再生器7に送液されて散
布され、残部は高温再生器8のバーナ9で加熱され、高
温の冷媒蒸気と濃吸収液となる。後者は気液分離器10
で冷媒蒸気と濃吸収液に分離され、その冷媒蒸気は低温
再生器7の伝熱管11に導入される。この冷媒蒸気は低
温再生器7内で散布されている稀吸収液を加熱して冷媒
を蒸発させると共に、冷媒蒸気は伝熱管11を流過する
間に凝縮して凝縮器12に導出される。凝縮器12では
低温再生器7からの冷媒蒸気が、冷却水の流過する伝熱
管13で凝縮され、これと前記伝熱管11内の凝縮冷媒
とが、蒸発器14に供給されかつ散布されるようになっ
ている。
(b) Prior Art Conventionally, in a dual-effect absorption refrigerator 1 as shown in FIG. The liquid is divided at the branch point 6 on the outlet side of the heat exchanger 3, a part of which is sent to the low-temperature regenerator 7 and dispersed, and the remaining part is heated by the burner 9 of the high-temperature regenerator 8, where it is mixed with high-temperature refrigerant vapor. It becomes an absorbing liquid. The latter is a gas-liquid separator 10
The refrigerant vapor is separated into refrigerant vapor and concentrated absorption liquid, and the refrigerant vapor is introduced into the heat transfer tube 11 of the low temperature regenerator 7. This refrigerant vapor heats the dilute absorption liquid distributed in the low-temperature regenerator 7 to evaporate the refrigerant, and the refrigerant vapor condenses while flowing through the heat transfer tube 11 and is led out to the condenser 12. In the condenser 12, refrigerant vapor from the low-temperature regenerator 7 is condensed in a heat transfer tube 13 through which cooling water flows, and this and the condensed refrigerant in the heat transfer tube 11 are supplied to an evaporator 14 and dispersed. It looks like this.

このような吸収式冷凍機1は、常時、高温再生器8のバ
ーナ9を用いて高エネルギーを供給しなければ作動させ
ることができず、無尽蔵にある太陽の熱エネルギー、工
場やビル内の廃熱エネルギーなどを利用する省エネルギ
ー運転をすることができない欠点がある。
Such an absorption chiller 1 cannot be operated unless high energy is constantly supplied using the burner 9 of the high-temperature regenerator 8. The disadvantage is that it is not possible to perform energy-saving operation using heat energy or the like.

このような欠点を解消するものとして、第2図に示すよ
うな一重二重効用組合せ吸収式冷凍機20が提案されて
いる。これは、低温熱交換器21から低温再生器7への
管路に、太陽の熱エネルギーなどを利用する低温熱源再
生器22を介在させたものであり、低温熱源再生器22
と高温再生器8との組合せで一重二重効用組合せ運転さ
せる場合、高温再生器8のみで二重効用運転させる場合
または低温熱源再生器22のみで一重効用運転させる場
合とが、可能となっている。
To overcome these drawbacks, a single-double effect combination absorption refrigerator 20 as shown in FIG. 2 has been proposed. This is a pipe line from the low temperature heat exchanger 21 to the low temperature regenerator 7, in which a low temperature heat source regenerator 22 that uses solar thermal energy is interposed.
It is possible to perform a single-double effect combination operation by combining the heat source and the high-temperature regenerator 8, a double-effect operation by using only the high-temperature regenerator 8, or a single-effect operation by using only the low-temperature heat source regenerator 22. There is.

このような吸収式冷凍機20において一重二重効用組合
せ運転させる場合は、吸収液ポンプ2を介して低温熱交
換器21に送液される吸収器4の稀吸収液5は、低温再
生器7および低温熱源再生器22からの中間液と高温再
生器8からの濃吸収液との混合液により加熱された後、
前記低温熱交換器21の出口の分岐点23で分流され、
その約2/3の量の稀吸収液は次の分岐点24に向けて
送液され、残部の約173は高温熱交換器25の受熱側
に導入される。そして、分岐点24へ送液された稀吸収
液は、そこで低温熱源再生器22に導入されるものと低
温再生器7に導入されるものとに分流される。
When such an absorption chiller 20 is operated in a single/double effect combination, the dilute absorption liquid 5 of the absorber 4 sent to the low temperature heat exchanger 21 via the absorption liquid pump 2 is transferred to the low temperature regenerator 7. After being heated by the mixed liquid of the intermediate liquid from the low temperature heat source regenerator 22 and the concentrated absorption liquid from the high temperature regenerator 8,
divided at a branch point 23 at the outlet of the low-temperature heat exchanger 21;
Approximately 2/3 of the dilute absorption liquid is sent toward the next branch point 24, and the remaining portion, approximately 173, is introduced into the heat receiving side of the high temperature heat exchanger 25. Then, the dilute absorption liquid sent to the branch point 24 is divided there into two types: one to be introduced into the low temperature heat source regenerator 22 and the other to be introduced into the low temperature regenerator 7.

上述の高温熱交換器25に導入された稀吸収液は、高温
再生器8の戻りの高温濃吸収液で加熱された後、高温再
生器8に導入され図示しないバーすの燃焼によって冷媒
を蒸発させ、稀吸収液は濃吸収液となる一方、冷媒蒸気
は低温再生器7の伝熱管11に導入される。低温熱源再
生器22に導入された稀吸収液は、伝熱管26内の太陽
熱などによって加熱された温水により、冷媒を蒸発させ
て中間液となり、その冷媒蒸気は低温再生器7に導入さ
れる。低温再生器7で散布される稀吸収液は、伝熱管1
1内の高温冷媒蒸気により加熱され、冷媒を蒸発させて
中間液となる。なお、この中間液は合流点27で低温熱
源再生器22の中間液と合流し、さらに、次の合流点2
8で高温熱交換器25を通過した高温再生器8の濃吸収
液と合流した後、低温熱交換器21の加熱側に導入され
る。
The dilute absorption liquid introduced into the high-temperature heat exchanger 25 is heated by the high-temperature concentrated absorption liquid returned from the high-temperature regenerator 8, and then introduced into the high-temperature regenerator 8, where the refrigerant is evaporated by combustion in a bar (not shown). While the dilute absorption liquid becomes a concentrated absorption liquid, the refrigerant vapor is introduced into the heat exchanger tube 11 of the low temperature regenerator 7. The dilute absorption liquid introduced into the low-temperature heat source regenerator 22 evaporates the refrigerant by hot water heated by solar heat or the like in the heat transfer tube 26 to become an intermediate liquid, and the refrigerant vapor is introduced into the low-temperature regenerator 7. The dilute absorption liquid sprayed by the low-temperature regenerator 7 is transferred to the heat exchanger tube 1
It is heated by the high-temperature refrigerant vapor in 1 and evaporates the refrigerant to become an intermediate liquid. Note that this intermediate liquid merges with the intermediate liquid of the low-temperature heat source regenerator 22 at the confluence point 27, and then flows to the next confluence point 2.
After passing through the high-temperature heat exchanger 25 at 8 and joining the concentrated absorption liquid from the high-temperature regenerator 8 , it is introduced into the heating side of the low-temperature heat exchanger 21 .

その他の作動は前述した従来例と異なるところはない。Other operations are the same as those of the conventional example described above.

上述の説明から判るように、高温再生器8のみで二重効
用作動させる場合、つまり、天候が悪くて太陽熱を利用
することができないなどの理由で、低?!jL熱源再生
器22を作動させることができない場合は、前記分岐点
24で分離された約1/3の稀吸収液は、低温熱源再生
器22を通過するに過ぎず、稀吸収液のま\合流点27
に戻される。また、太陽の熱エネルギーやその他の廃熱
エネルギーを十分利用できる場合は、低温熱源再生器2
2に導入される約1/3の稀吸収液から蒸発する冷媒蒸
気のみが凝縮器12に送られ、高温再生器8内は稀吸収
液が通過するにすぎない。
As can be seen from the above explanation, when dual-effect operation is performed using only the high-temperature regenerator 8, that is, when the weather is bad and solar heat cannot be used, etc. ! If the jL heat source regenerator 22 cannot be operated, about 1/3 of the dilute absorption liquid separated at the branch point 24 will only pass through the low temperature heat source regenerator 22 and will remain as the dilute absorption liquid. Confluence point 27
will be returned to. In addition, if sufficient solar thermal energy or other waste heat energy can be used, low-temperature heat source regenerator 2
Only the refrigerant vapor evaporated from about ⅓ of the dilute absorption liquid introduced into the regenerator 2 is sent to the condenser 12, and only the dilute absorption liquid passes through the high temperature regenerator 8.

このような−重二重組合せ吸収式冷凍機20で上述した
ような一重二重効用組合せ運転をする場合、低温熱源再
生器22に導入される稀吸収液量が約1/3と少なく、
低温熱源再生器22の中間液の濃度、温度とも高くなり
過ぎ、天然エネルギーおよび廃熱エネルギーを低温度ま
で有効に利用できなくなる。また、低温熱源再生器22
の中間液の温度が高くなり過ぎるため、この中間液に低
温再生器7からの中間液および高温再生器8からの高温
濃吸収液とを混合させて、低温熱交換器21で吸収器4
からの低温の稀吸収液5に放熱しても適正な温度に下が
りきらない。したがって、吸収器4での散布濃液の温度
が高くなり過ぎ、蒸発器14からの冷媒蒸気を吸収する
効果が低下し、冷却能力を十分に発揮できなくなる。し
たがって、これを回避するためには、吸収器4の伝熱管
29内を流過する冷却水の温度を下げて運転する必要が
あり、図示しない冷却塔が大型化する欠点がある。また
、二重効用運転時稀吸収液5の一部は低温熱源再生器2
2を通過するだりで、そのま−吸収器4へ戻るため冷凍
サイクルを構成せず熱損失が大きくなる。加えて、前記
2つの分岐点23.24における分流の適正な流量配分
が難しく、低負荷、低冷却水、低温水などのあらゆる運
転状況に応じて、稀吸収液の循環量が適正に追随して行
かず、高温再生器8の圧力変動が大きくなる。
When performing the above-mentioned single-double effect combination operation with such a double-double combination absorption refrigerator 20, the amount of dilute absorption liquid introduced into the low-temperature heat source regenerator 22 is as small as about 1/3;
Both the concentration and temperature of the intermediate liquid in the low-temperature heat source regenerator 22 become too high, making it impossible to effectively utilize natural energy and waste heat energy down to low temperatures. In addition, the low temperature heat source regenerator 22
Since the temperature of the intermediate liquid becomes too high, this intermediate liquid is mixed with the intermediate liquid from the low-temperature regenerator 7 and the high-temperature concentrated absorption liquid from the high-temperature regenerator 8,
Even if the heat is radiated to the low-temperature dilute absorption liquid 5, the temperature cannot be lowered to an appropriate level. Therefore, the temperature of the sprayed concentrated liquid in the absorber 4 becomes too high, and the effect of absorbing the refrigerant vapor from the evaporator 14 decreases, making it impossible to fully demonstrate the cooling capacity. Therefore, in order to avoid this, it is necessary to lower the temperature of the cooling water flowing through the heat exchanger tubes 29 of the absorber 4 during operation, which has the drawback of increasing the size of the cooling tower (not shown). In addition, during dual-effect operation, a part of the dilute absorption liquid 5 is transferred to the low-temperature heat source regenerator 2.
2 and then directly returns to the absorber 4, which does not constitute a refrigeration cycle and increases heat loss. In addition, it is difficult to properly distribute the flow rate of the divided flow at the two branch points 23 and 24, and the circulation amount of the dilute absorption liquid cannot appropriately follow various operating conditions such as low load, low cooling water, and low temperature water. As a result, pressure fluctuations in the high-temperature regenerator 8 increase.

また、−型動用運転をする場合、低温再生器7から凝縮
器12へ送られる冷媒蒸気量が1/3と少ないので、低
温熱源再生器22のみを作動させる場合は冷凍能力が低
下し、高温再生器8のみを作動させる場合の、二重効用
運転をする場合と同じ冷凍能力をあげようとすると、そ
の加熱量を増大させるか、低温熱源再生器を大型化させ
なければならない欠点がある。
In addition, when performing - type dynamic operation, the amount of refrigerant vapor sent from the low-temperature regenerator 7 to the condenser 12 is as small as 1/3, so if only the low-temperature heat source regenerator 22 is operated, the refrigerating capacity decreases and the high temperature In order to increase the same refrigerating capacity as in the case of dual-effect operation when only the regenerator 8 is operated, there is a drawback that the amount of heating must be increased or the low-temperature heat source regenerator must be made larger.

(C)発明の目的 本発明は上述の問題点を解決するためになされたもので
、稀吸収液の分流を少なくしてその流量配分を容易にす
ると共に、−重二型動用組合せ運転時吸収器に帰還され
る散布濃液の温度を低下させ、かつ、低温再生器におり
る冷媒蒸気の発生をより一層促進させ、冷凍効率の高い
小型の一重二型動用組合せ吸収式冷凍機を提供すること
を目的とする。
(C) Purpose of the Invention The present invention has been made to solve the above-mentioned problems. To provide a compact single-double type dynamic combination absorption chiller with high refrigeration efficiency by lowering the temperature of a sprayed concentrated liquid returned to a container and further promoting the generation of refrigerant vapor flowing into a low-temperature regenerator. The purpose is to

(d)発明の構成 本発明の特徴とするところは、熱交換器と低温再生器と
の間の稀吸収液管路に、低温熱源を利用して冷媒蒸気を
発生させる低温熱源再生器を介在させた一重二型動用組
合せ吸収式冷凍機としたことであり、さらに、第2の発
明は上記の構成に加えて、熱交換器と高温再生器との間
の管路に、高温再生器の高温濃吸収液により前記吸収器
からの稀吸収液を加熱することができる高温熱交換器を
介在させた一重二型動用組合せ吸収式冷凍機としたこと
である。
(d) Structure of the Invention The present invention is characterized in that a low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source is interposed in the dilute absorption liquid pipeline between the heat exchanger and the low-temperature regenerator. In addition to the above-mentioned configuration, the second invention is to provide a single-double type dynamic combination absorption refrigerating machine with The present invention is a single-double type dynamic combination absorption refrigerating machine in which a high-temperature heat exchanger capable of heating the dilute absorption liquid from the absorber with the high-temperature concentrated absorption liquid is interposed.

(e)実施例 以下に本発明の一重二型動用組合せ吸収式冷凍機を、そ
の実施例に基づいて詳細に説明する。
(e) Examples The single-double type dynamic combination absorption refrigerating machine of the present invention will be described in detail below based on examples thereof.

第3図は本発明の一実施例である一重二型動用組合せ吸
収式冷凍機30の系統図を示す。これは第1図で説明し
た吸収式冷凍機に低?ML熱源再生器31を付加したも
のである。吸収器4からの稀吸収液5を熱交換器3で加
熱後、その一部を低温再生器7へ残部を高温再生器8へ
導くと共に、高温再生器8からの濃吸収液と低温再生器
7からの中間座とを前記熱交換器3の加熱側に戻して混
合し、散布濃液として吸収器4に帰還させるようになっ
ていて、前記熱交換器3と低温再生器7との間の稀吸収
液管路32に、外部から導入される太陽熱などの天然ま
たは廃熱エネルギーなどを伝熱管33を介して利用し、
冷媒蒸気を発生させる低温熱源再生器31が介在されて
いる。なお、低温熱源再生器31内の冷媒蒸気および中
間液をそれぞれ凝縮器12および低温再生器7とに導出
する2本の管路34.35が接続されている。
FIG. 3 shows a system diagram of a single-double type dynamic combination absorption refrigerator 30, which is an embodiment of the present invention. Is this lower than the absorption chiller explained in Figure 1? An ML heat source regenerator 31 is added. After heating the dilute absorption liquid 5 from the absorber 4 in the heat exchanger 3, a part of it is guided to the low temperature regenerator 7 and the remainder to the high temperature regenerator 8, and the concentrated absorption liquid from the high temperature regenerator 8 and the low temperature regenerator are introduced. 7 is returned to the heating side of the heat exchanger 3, mixed, and returned to the absorber 4 as a sprayed concentrated liquid, and between the heat exchanger 3 and the low-temperature regenerator 7. Utilizing natural or waste heat energy such as solar heat introduced from the outside into the dilute absorption liquid pipe line 32 through the heat transfer pipe 33,
A low temperature heat source regenerator 31 is interposed to generate refrigerant vapor. Note that two pipe lines 34 and 35 are connected to lead out the refrigerant vapor and intermediate liquid in the low-temperature heat source regenerator 31 to the condenser 12 and the low-temperature regenerator 7, respectively.

このような構成による一重二型動用組合せ運転の作動は
、次のようになる。
The operation of the single/double type dynamic combination operation with such a configuration is as follows.

まづ、吸収器4の稀吸収液5は吸収液ポンプ2により熱
交換器3に導入され、加熱後その出口の分岐点6で分流
され、約1/2の稀吸収液は稀吸収液管路32を介して
低温熱源再生器31に導入される。そこで、伝熱管33
を介して加熱され、冷媒を蒸発させて中間液となる。そ
の冷媒蒸気は管路34を介して凝縮器12に導入され、
前記中間液は管路35を介して低温再生器7の散布装置
0 36で散布される。前記分岐点6で分流された残りの約
1/2の稀吸収液は、管路37を介して高温再生器8に
導入されて加熱され、高温の冷媒茄気と濃吸収液になり
、気液分離器10に導入される。なお、稀吸収液の分岐
点6における配分は実験などで予め確認した上で、管路
37あるいは稀吸収液管路32にオリフィスなどを介在
させて流量の調整がなされる。前記気液分離器10で冷
媒蒸気と濃吸収液とが分離され、冷媒蒸気が低温再生器
7内の伝熱管11に導入され、低温再生器7内で散布さ
れる中間液はさらに冷媒を藤発させる。
First, the dilute absorption liquid 5 of the absorber 4 is introduced into the heat exchanger 3 by the absorption liquid pump 2, and after being heated, it is divided at the branch point 6 at the outlet, and about 1/2 of the dilute absorption liquid is transferred to the dilute absorption liquid pipe. It is introduced into the low temperature heat source regenerator 31 via the path 32. Therefore, the heat exchanger tube 33
The refrigerant is heated to evaporate the refrigerant and become an intermediate liquid. The refrigerant vapor is introduced into the condenser 12 via line 34;
The intermediate liquid is distributed via a pipe 35 in a distribution device 036 of the low temperature regenerator 7. The remaining approximately 1/2 of the dilute absorption liquid separated at the branch point 6 is introduced into the high-temperature regenerator 8 via the pipe 37, where it is heated, becomes high-temperature refrigerant gas and concentrated absorption liquid, and is converted into gas. The liquid is introduced into the liquid separator 10. The distribution of the diluted absorption liquid at the branch point 6 is confirmed in advance through experiments, and the flow rate is adjusted by interposing an orifice or the like in the pipe line 37 or the diluted absorption liquid line 32. The refrigerant vapor and the concentrated absorption liquid are separated in the gas-liquid separator 10, and the refrigerant vapor is introduced into the heat transfer tubes 11 in the low-temperature regenerator 7, and the intermediate liquid sprayed in the low-temperature regenerator 7 further removes the refrigerant. make it emit

前記気液分離器10内の濃吸収液は熱交換器3に戻され
、そこで前記低温再生器7から戻されてきた中間液と混
合され、前記稀吸収液5に放熱して冷却された後、管路
38を介して散布濃液として吸収器4の散布装置39で
散布される。
The concentrated absorption liquid in the gas-liquid separator 10 is returned to the heat exchanger 3, where it is mixed with the intermediate liquid returned from the low-temperature regenerator 7, and is cooled by radiating heat to the dilute absorption liquid 5. , is sprayed as a spray concentrate via a line 38 in a spray device 39 of the absorber 4.

一方、低温熱源再生器31のみを使用して高温再生器8
を使用しない一重効用の作動は、吸収器4からの稀吸収
液の一部は単に高温再生器8を通過し、残部の1/2の
稀吸収液は低温熱源再生器31に導入される。また、高
温再生器8のみを使用する二重効用の作動は、吸収器4
からの稀吸収液の一部は単に低温熱源再生器31を通過
し、残部の1/2の稀吸収液は高温再生器8に導入され
る。
On the other hand, using only the low temperature heat source regenerator 31, the high temperature regenerator 8
In single-effect operation without the use of , a portion of the dilute absorption liquid from the absorber 4 simply passes through the high temperature regenerator 8 and the remaining 1/2 dilute absorption liquid is introduced into the low temperature heat source regenerator 31 . In addition, dual-effect operation using only the high temperature regenerator 8 is possible with the absorber 4
A part of the diluted absorption liquid from the above simply passes through the low temperature heat source regenerator 31, and the remaining 1/2 diluted absorption liquid is introduced into the high temperature regenerator 8.

このような作動においては、前記低温熱源再生器31へ
の稀吸収液の送液量を1/2とすることができるので、
従来例のところで述べたような稀吸収液量が1/3の場
合に比べ、低温熱源再生器31内の中間液温度が高くな
り過ぎることばなく、天然エネルギーおよび廃熱エネル
ギーを低温度まで有効に利用することができる。また、
散布濃液の温度が低くなるため、吸収器4における蒸発
器14からの冷媒蒸気の散布濃液への吸収効果を向上さ
せることができ、図示しない冷却塔の容量を小型化でき
る。また、二重効用専用運転時においても、熱交換器3
を通った稀吸収液は全て冷凍サイクルを構成して循環す
るので、熱損失が少なくなる。さらに、稀吸収液の分岐
点を1個所にしたので、種々の負荷運転でも高温再生器
8内の圧力1 変動を小さく維持でき、適正な稀吸収液量に追随して運
転することができる。
In such an operation, the amount of dilute absorption liquid sent to the low temperature heat source regenerator 31 can be reduced to 1/2;
Compared to the case where the amount of dilute absorption liquid is 1/3 as described in the conventional example, the temperature of the intermediate liquid in the low temperature heat source regenerator 31 does not become too high, and natural energy and waste heat energy can be effectively used down to a low temperature. can be used. Also,
Since the temperature of the sprayed concentrated liquid is lowered, the absorption effect of the refrigerant vapor from the evaporator 14 into the sprayed concentrated liquid in the absorber 4 can be improved, and the capacity of the cooling tower (not shown) can be reduced in size. In addition, even during dual-effect exclusive operation, the heat exchanger 3
All the diluted absorption liquid that has passed through the refrigeration cycle is circulated, so heat loss is reduced. Furthermore, since the dilute absorption liquid branch point is set at one location, pressure fluctuations in the high temperature regenerator 8 can be kept small even under various load operations, and the operation can be performed following an appropriate amount of dilute absorption liquid.

加えて、低温熱源再生器31から導出される中間液の量
が多(その温度を従来例よりも低くすることができるの
で、対数平均温度差が大きくなり伝熱管33の伝熱面積
も小さくできる。ちなみに、前記低温熱源再生器31の
伝熱面積の小さくできることを理論的に説明すると、例
えば、供給される熱量が従来例と同じであれば、低温熱
源再生器31の伝熱面積は、主に外部の熱エネルギーを
供給する液体の入口と出口の温度および稀吸収液の入口
温度と導出される中間液の温度との対数平均温度差によ
って決まる。すなわち、伝熱面積を決める式は、 H3=Q/ (K−Δtm) た\゛し、 H8:伝熱面積 K  :熱伝達率(はシ一定) Δtm:対数平均温度差 Q  :外部から供給される熱量(一定)3 2 となり、対数平均温度差Δtmが大きくなれば、伝熱面
積も小さくすることができるからである。
In addition, the amount of intermediate liquid drawn out from the low-temperature heat source regenerator 31 is large (its temperature can be lowered than in the conventional example, so the logarithmic average temperature difference becomes large and the heat transfer area of the heat transfer tubes 33 can also be reduced). By the way, to explain theoretically that the heat transfer area of the low temperature heat source regenerator 31 can be made small, for example, if the amount of heat supplied is the same as the conventional example, the heat transfer area of the low temperature heat source regenerator 31 is mainly It is determined by the temperature at the inlet and outlet of the liquid supplying external thermal energy and the logarithmic average temperature difference between the inlet temperature of the dilute absorbing liquid and the temperature of the derived intermediate liquid.That is, the formula determining the heat transfer area is: H3 =Q/ (K-Δtm) H8: Heat transfer area K: Heat transfer coefficient (constant) Δtm: Logarithmic average temperature difference Q: Amount of heat supplied from the outside (constant) 3 2, and the logarithm This is because the larger the average temperature difference Δtm, the smaller the heat transfer area.

したがって、低温熱源再生器31を小型化することがで
きる。
Therefore, the low temperature heat source regenerator 31 can be downsized.

第4図は異なる発明の実施例である一重二型動用組合せ
吸収式冷凍I!l!40である。これは、上記の発明の
構成に加えて、吸収器4からの稀吸収液が前記熱交換器
3から高温再生器8に至るまでの管路37に、高温再生
器8の高温濃吸収液により稀吸収液5を加熱することが
できる高温熱交換器41を介在させたものである。
Figure 4 shows a single-double type dynamic combination absorption refrigeration I! which is an embodiment of a different invention. l! It is 40. In addition to the configuration of the invention described above, this is because the dilute absorption liquid from the absorber 4 is transferred to the pipe 37 from the heat exchanger 3 to the high temperature regenerator 8 by the high temperature concentrated absorption liquid of the high temperature regenerator 8. A high-temperature heat exchanger 41 that can heat the dilute absorption liquid 5 is interposed.

これによれば、熱交換器3からの稀吸収液5は、高温再
生器8に導入される前にさらに高温熱交換器41で、高
温再生器8からの高温濃吸収液により加熱されるので、
冷媒蒸気を発生し易い状態で高温再生器8に導入される
ことになる。その後の作動は前述の発明と異なるところ
はない。
According to this, the dilute absorption liquid 5 from the heat exchanger 3 is further heated by the high temperature concentrated absorption liquid from the high temperature regenerator 8 in the high temperature heat exchanger 41 before being introduced into the high temperature regenerator 8. ,
The refrigerant is introduced into the high-temperature regenerator 8 in a state where refrigerant vapor is easily generated. The subsequent operation is no different from that of the invention described above.

したがって、冷凍効果の面では上述の発明と同様である
ことに加えて、高温熱交換器41を介在させることによ
って高温再生器8に導入される稀吸4 収液の温度が一層高められるので、高温再生器8で使用
されるバーナ9の燃料消費量を減らすことができると共
に、高温再生器8で冷媒蒸気を多く発生させることがで
き、冷凍効果の向上をより一層図ることができる。
Therefore, in addition to having the same refrigeration effect as the above-described invention, the temperature of the dilute absorption liquid introduced into the high-temperature regenerator 8 is further increased by interposing the high-temperature heat exchanger 41. The fuel consumption of the burner 9 used in the high-temperature regenerator 8 can be reduced, and a large amount of refrigerant vapor can be generated in the high-temperature regenerator 8, so that the refrigeration effect can be further improved.

(f)発明の効果 本発明は以上詳細に説明したように、熱交換器と低温再
生器との間の稀吸収液管路に、低温熱源を利用して冷媒
蒸気を発生させる低温熱源再生器を介在させた一重二型
動用組合せ吸収式冷凍機としたので、低温熱源再生器の
中間液温度を低くすることができ、コンパクトな低温熱
源再生器とすることができる。また、冷却塔の容量を小
型化することができ、かつ、サイクル効率を」二げるこ
とにより熱損失を少なくできると共に、稀吸収液系統の
分岐点が減るので種々の負荷運転においても追随がよく
、高い冷却効率で作動させることができる。さらに、異
なる発明は」1記の構成に加えて、熱交換器と高温再生
器との間の管路に、高温再生器の高温濃吸収液により前
記吸収器からの稀吸収5 液を加熱することができる高温熱交換器を介在させたの
で、冷凍効果をさらに向上させることができる。
(f) Effects of the Invention As explained in detail above, the present invention provides a low-temperature heat source regenerator that uses a low-temperature heat source to generate refrigerant vapor in a dilute absorption liquid pipeline between a heat exchanger and a low-temperature regenerator. Since the single-double type dynamic combination absorption refrigerator is used, the intermediate liquid temperature of the low-temperature heat source regenerator can be lowered, and the low-temperature heat source regenerator can be made compact. In addition, the capacity of the cooling tower can be downsized, and heat loss can be reduced by increasing cycle efficiency, and the number of branch points in the dilute absorption liquid system is reduced, making it easier to keep up with various load operations. It can be operated with high cooling efficiency. Furthermore, in addition to the structure described in item 1, a different invention includes heating the dilute absorption liquid from the absorber by the high temperature concentrated absorption liquid of the high temperature regenerator in the pipe line between the heat exchanger and the high temperature regenerator. Since a high-temperature heat exchanger is provided, the refrigeration effect can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の二重効用吸収式冷凍機の系統図、第2
図は従来例の一重二型動用組合せ吸収式冷凍機の系統図
、第3図は本発明の一重二型動用組合せ吸収式冷凍機の
系統図、第4図は異なる発明の系統図である。 3−熱交換器、4−吸収器、5−稀吸収液、7−低温再
生器、8−高温再生器、3o、40−−−一重二型動用
組合せ吸収式冷凍機、31−低温熱源再生器、32−稀
吸収液管路、37−管路、41−高温熱交換器 特許出願人    川崎重工業株式会社代理人 弁理士
 吉村勝俊(はが1名)6
Figure 1 is a system diagram of a conventional dual-effect absorption chiller;
The figure is a system diagram of a conventional single-double type dynamic combination absorption refrigerating machine, FIG. 3 is a system diagram of a single-double type dynamic combination absorption refrigerating machine of the present invention, and FIG. 4 is a system diagram of a different invention. 3-heat exchanger, 4-absorber, 5-dilute absorption liquid, 7-low-temperature regenerator, 8-high-temperature regenerator, 3o, 40--single dual type dynamic combination absorption refrigerator, 31-low temperature heat source regeneration vessel, 32-dilute absorption liquid pipe line, 37-pipe line, 41-high temperature heat exchanger Patent applicant Kawasaki Heavy Industries, Ltd. agent Patent attorney Katsutoshi Yoshimura (1 person) 6

Claims (2)

【特許請求の範囲】[Claims] (1)吸収器からの稀吸収液を熱交換器で加熱後、その
一部を低温再生器へ残部を高温再生器へ導くと共に、高
温再生器からの濃吸収液と低温再生器からの中間液とを
前記熱交換器の加熱側に戻して混合し、散布濃液として
吸収器に帰還させる吸収式冷凍機において、 前記熱交換器と低温再生器との間の稀吸収液管路に、低
温熱源を利用して冷媒蒸気を発生させる低温熱源再生器
を介在させたことを特徴とする一重二重効用組合せ吸収
式冷凍機。
(1) After heating the diluted absorption liquid from the absorber in a heat exchanger, a part of it is led to a low-temperature regenerator and the remainder to a high-temperature regenerator, and the concentrated absorption liquid from the high-temperature regenerator and the intermediate from the low-temperature regenerator are In an absorption refrigerator that returns the liquid to the heating side of the heat exchanger and returns to the absorber as a sprayed concentrated liquid, a dilute absorbent liquid pipe line between the heat exchanger and the low-temperature regenerator, A single-double effect combination absorption refrigerator characterized by interposing a low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source.
(2)吸収器からの稀吸収液を熱交換器で加熱後、その
一部を低温再生器へ残部を高温再生器へ導くと共に、高
温再生器からの濃吸収液と低温再生器からの中間液とを
前記熱交換器の加熱側に戻して混合し、散布濃液として
吸収器に帰還させる吸収式冷凍機において、 前記熱交換器と低温再生器との間の稀吸収液管路に、低
温熱源を利用して冷媒蒸気を発生させる低温熱源再生器
を介在させると共に、 前記熱交換器と高温再生器との間の管路に、高温再生器
の高温濃吸収液により前記吸収器からの稀吸収液を加熱
することができる高温熱交換器を介在させたことを特徴
とする一重二重効用組合せ吸収式冷凍機。
(2) After heating the diluted absorption liquid from the absorber in a heat exchanger, a part of it is led to a low-temperature regenerator and the remainder to a high-temperature regenerator. In an absorption refrigerator that returns the liquid to the heating side of the heat exchanger and returns to the absorber as a sprayed concentrated liquid, a dilute absorbent liquid pipe line between the heat exchanger and the low-temperature regenerator, A low-temperature heat source regenerator that generates refrigerant vapor using a low-temperature heat source is interposed, and a high-temperature concentrated absorption liquid of the high-temperature regenerator is used to absorb water from the absorber into a pipe line between the heat exchanger and the high-temperature regenerator. A single-double effect combination absorption refrigerator characterized by interposing a high-temperature heat exchanger capable of heating a dilute absorption liquid.
JP5111283A 1983-03-25 1983-03-25 Single and double effect combination abroption type refrigerator Granted JPS59176550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5111283A JPS59176550A (en) 1983-03-25 1983-03-25 Single and double effect combination abroption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5111283A JPS59176550A (en) 1983-03-25 1983-03-25 Single and double effect combination abroption type refrigerator

Publications (2)

Publication Number Publication Date
JPS59176550A true JPS59176550A (en) 1984-10-05
JPH038465B2 JPH038465B2 (en) 1991-02-06

Family

ID=12877717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111283A Granted JPS59176550A (en) 1983-03-25 1983-03-25 Single and double effect combination abroption type refrigerator

Country Status (1)

Country Link
JP (1) JPS59176550A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264636B2 (en) * 2013-08-30 2018-01-24 パナソニックIpマネジメント株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPH038465B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JPS59189265A (en) Triple effect absorption type refrigerator
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
GB2166534A (en) Absorption refrigeration system
WO2002018849A1 (en) Absorption refrigerating machine
US4662191A (en) Absorption - type refrigeration system
JPS59176550A (en) Single and double effect combination abroption type refrigerator
JP2000205691A (en) Absorption refrigerating machine
JP2000154946A (en) Triple effect absorption refrigeration machine
JPH0552438A (en) Absorption heat pump
KR200144045Y1 (en) Absorption type cooler
JP3404225B2 (en) Absorption refrigerator
JPS58219371A (en) Double effect absorption type heat pump
CA2219159A1 (en) Absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JPH0350373Y2 (en)
JP2858921B2 (en) Control device for absorption refrigerator
JPH0429339Y2 (en)
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH06137703A (en) Tripple effect heat pump
JPH0583831B2 (en)
JP2003021420A (en) Absorption refrigerating plant and its operating method
JPS58120063A (en) Absorption type refrigerator