JPS59174702A - Rotary-angle detecting device - Google Patents

Rotary-angle detecting device

Info

Publication number
JPS59174702A
JPS59174702A JP4946083A JP4946083A JPS59174702A JP S59174702 A JPS59174702 A JP S59174702A JP 4946083 A JP4946083 A JP 4946083A JP 4946083 A JP4946083 A JP 4946083A JP S59174702 A JPS59174702 A JP S59174702A
Authority
JP
Japan
Prior art keywords
rotor
coils
stator
detection
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4946083A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP4946083A priority Critical patent/JPS59174702A/en
Publication of JPS59174702A publication Critical patent/JPS59174702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve detecting accuracy and to make the device compact, by providing two stator windings at symmetrical positions, introducing the difference in change in voltage or current generated in the two stator windings based on the change in magnetic flux accompanied by the rotation of a magnetic body, which is partially provided in a rotor, thereby detecting the angular displacement of the rotor. CONSTITUTION:A detecting part 1 is provided with a rotor 11 and a stator 12. A control part 2 is provided with an exciting power source 21 for a high frequency and a synchronous rectifier circuit 221 as a signal processing circuit. The output signal from the control part 2 is inputted to an indicator 3 in an external device, and a rotary angle is indicated. The stator 12 is provided with a fixed magnetic core 121, which cooperates with a magnetic body 112 of the rotor 11 through an air gap 13, and windings 122, which comprise two fixed branched coils fixed to the magnetic core 121 along the circumference of the air gap with an equal interval being provided. The two coils 122 are excited by the control part 2 and associated with the excitation of the detecting part 1. The change in reluctance between the magnetic body 112 and the coils corresponds to the angular displacement of the rotor 11. The detected voltage generated in response to the change in reluctance is outputted to the control part 2. The connection of the coils are made in this way.

Description

【発明の詳細な説明】 本発明は、誘導子形のブラシレス構造で巻線を単一巻線
として励磁と検出を兼ねる回転角検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotation angle detection device that has an inductor-type brushless structure and uses a single winding for both excitation and detection.

従来のこの種の回転角検出装置には、ブラシレスレゾル
バと称して通常の巻線形回転子を(+ii?えるシンク
ロレゾルバのスリップリングとブラシを回転形トランス
に置換えて構成した検出部を使うもの、あるいはバニア
レゾルバ等と称して固定電機子と誘導子形回転子を備え
て構成した検出部を使うもの等があった。
Conventional rotation angle detection devices of this type include those that use a detection section called a brushless resolver in which the slip ring and brushes of a synchronized resolver are replaced with a rotary transformer, in which a normal wound rotor is replaced. Alternatively, there was a type called a vanier resolver that used a detection section comprising a fixed armature and an inductor type rotor.

これら従来の装置の検出部は回転子と同圧の外部回路と
の間の胎動給電機構を持たない構造となっているので保
守が容易であるが、しかし検出部の小形化という点でみ
ると、ブラシレスレゾルバは巻線形の回転電機子と回転
形トランスを備えることが必要であシ、筐だバーニアレ
ゾルバは固定子巻線として、励磁巻線と少なくとも2つ
の検出巻線とを単一の固定磁心に組込んで多重巻線を施
すことが必要であるなど、いずれも構成部材の叡は多く
形状も複雑であるため、製作上の困難ひいては検出の精
度低下の要因となるので、小形化には適していない。
The detection parts of these conventional devices are easy to maintain because they do not have a fetal movement power supply mechanism between the rotor and an external circuit of the same pressure. However, from the point of view of miniaturization of the detection part , a brushless resolver must be equipped with a wound rotary armature and a rotary transformer, and a vernier resolver with a housing must have an excitation winding and at least two detection windings as a stator winding. The number of component parts is large and the shapes are complex, such as the need to incorporate them into the magnetic core and apply multiple windings, making it difficult to manufacture and reducing detection accuracy. is not suitable.

これをもう少し数行して述べる。I will explain this in a few more lines.

基本機能としての精度、応答性は維持しながら、保守性
および耐環境性に優れるとともに、小形化に適した回転
角検出装置の実現のために(r′i、その検出部は次の
ような前提条件を満たさねばならない。
In order to realize a rotation angle detection device that maintains the accuracy and responsiveness as basic functions, has excellent maintainability and environmental resistance, and is suitable for downsizing (r'i, the detection part is as follows. Prerequisites must be met.

■ ブラシレス構造であること。■ Must have a brushless structure.

■ 温度、雰囲気に対する受答乾団が広いこと。■ Wide response range for temperature and atmosphere.

@ 構造簡単で加工1組立が容易であること。@ Simple structure and easy processing and assembly.

■ 体積あたシの検出感度が大きいこと。■ High volume detection sensitivity.

従来装置は■と■は充足しているが下記の離膚がある。The conventional device satisfies ■ and ■, but suffers from the following skin separation.

すなわち ■ 巻線が励磁用と検出用の一巻蔵に分けて巻かれるλ
型巻線方式であるため、複雑で小形化に適してない。
That is, ■ λ where the winding is divided into two windings for excitation and one for detection.
Since it uses a type winding method, it is complicated and not suitable for miniaturization.

■ 励磁巻線と検出巻線の闇のt茹結合は局部的な不揃
いを避けに〈<、これを原因とする精度低下を生じやす
い。
■ The dark coupling between the excitation winding and the detection winding is necessary to avoid local irregularities, which tends to cause a decrease in accuracy.

■ 検出原理は差電圧検出方式なので、検出信号はノイ
ズ成分としての速度起−力を含む。このため、高分解能
を意図して部数を多くしたり高速回転のもとで使ったシ
する場合には、検出感度の直下は避けられない。
■ Since the detection principle is a differential voltage detection method, the detection signal includes speed electromotive force as a noise component. For this reason, when increasing the number of copies with the intention of achieving high resolution or using the device under high-speed rotation, it is unavoidable that the detection sensitivity will be just below the detection sensitivity.

などの理由で、■および■については詞さtない。For these reasons, I will not say anything about ■ and ■.

ここにおいて本発明は、従来装置の離別を見服し、励條
酊源よシ励磁される固定子巻線を対象位置に2個そなえ
、回転子に部分的に設けた優性体の回転に伴う磁束変化
から、さきの2個の固定子巻線に生起する電圧あるいは
電流の変化の差を導出して、回転子の角変位を・検出す
る回転角検出装置を提供することを、その目的とする。
Here, the present invention overlooks the separation of the conventional device and provides two stator windings at target positions which are excited by the excitation source, and which is accompanied by the rotation of a dominant body partially provided on the rotor. The purpose is to provide a rotation angle detection device that detects the angular displacement of the rotor by deriving the difference in voltage or current changes occurring in the previous two stator windings from the magnetic flux changes. do.

本発明の技術手段の主な内容は次のとおシである。The main contents of the technical means of the present invention are as follows.

■ 励磁と検出の両方に兼用する単一巻線方式を採るこ
とにより、@を満すとともに、励磁と検出の両機能の間
で感度にとって有害なも−X1.磁未が介在しなく−な
るので、■についてもかな9の改善を可能にしている。
■ By adopting a single winding method that is used for both excitation and detection, @ is satisfied, and the problem between the excitation and detection functions that is harmful to sensitivity -X1. Since there is no intervening magnetic force, it is possible to improve Kana 9 with regard to (■).

■ 前記■における検出部の体積の一栢少のため、およ
び差4圧検出による検出処理方式では感度の維持も考i
して、検出部の励磁には高周数゛嵯源を用いる。
■ Due to the reduction in the volume of the detection part in the above (■), and the detection processing method using differential 4 pressure detection, maintaining sensitivity is also considered.
Then, a high-frequency vibration source is used to excite the detection section.

■ ノイズとしての速夏起屯力の影響を1求去するため
の差電流検出による検出処理方式も提案している。
■ We also propose a detection processing method using differential current detection to eliminate the influence of the fast summer momentum as noise.

さて、本発明において誘導子形と言う同一の嵯磁構造の
もとでも、回転角の検出方式としては差電圧検出と差電
流検出の−通りが考えられ、その内のどちらの方式も選
ぶことができる。
Now, in the present invention, even under the same magnetic structure called the inductor type, there are two possible ways to detect the rotation angle: differential voltage detection and differential current detection, and it is not possible to select either method. I can do it.

これらλつの方式の原理的比較は第1凶(a)、(b)
に示すような/対のコイルからなる菟修モテルによって
明らかにすることができる。
The principle comparison of these λ methods is the first one (a) and (b).
This can be clarified by a coil assembly consisting of a pair of coils as shown in Figure 1.

一方の差電圧検出方式は、直列に接続したコイルCal
、Ca2に一建の交匠゛厄圧÷を印加する回路を用いて
、回転角に対応したりラフタンスの賀化(したがってパ
ーミアンスの変化)によって生じろコイルCal l 
CILZ間での分担′電圧の差を検出量9dとする方式
である。
One differential voltage detection method uses a series-connected coil Cal.
, by using a circuit that applies a constant pressure ÷ to Ca2, the coil Cal l which is generated by changing the rotation angle or by changing the roughtance (therefore changing the permeance)
This is a method in which the difference in shared voltage between CILZ is used as the detection amount 9d.

第1図(a)において、 寸は励磁電圧、 文は第1コイルCalの電圧降下、 免は第2コイルca2の電圧降下、 である。そして、 λlは第1コイルCa1と鎖交する磁路のパーミアンス
、 λ2!−L第−2コイルCa2と鎖交する磁路のパーミ
アンス、 λは/周期の角度に対する平均・クーミアンス、θは電
気角、 λ(のけパーミアンスの変動分(θのl、il!、lハ
)、としたとき λ1− λ十λ(の λ2=λ十λ(θ−7cA)  であり、検出量ψdは
次の゛(7式)で表わされる。
In FIG. 1(a), dimension is the excitation voltage, yen is the voltage drop in the first coil Cal, and yen is the voltage drop in the second coil Ca2. And λl is the permeance of the magnetic path interlinking with the first coil Ca1, λ2! -L - The permeance of the magnetic path interlinking with the second coil Ca2, λ is the average coummance with respect to the angle of / period, θ is the electrical angle, λ (variation of permeance (l, il!, l of θ) ), then λ1-λ+λ(λ2=λ+λ(θ-7cA)), and the detected amount ψd is expressed by the following (Equation 7).

寸、=9□−9□ ここで、 λi(の−λ1−λ2=λ(の−λ(θ−7c/2)、
シ=dシaは電気角基準での角速度、 ωは電源(すなわち励磁)角周波数、 である。
dimension, =9□−9□ Here, λi(-λ1−λ2=λ(−λ(θ−7c/2)),
C = d Shea is the angular velocity on an electrical angle basis, and ω is the power supply (ie, excitation) angular frequency.

(7式)の右辺の第1項は角度θに対応する有効検出量
であるが、鋲!項はさきに述べたノイズ成分としての速
度起電力の項で回転速度νに比例して均温する。この影
響を抑えるためには励磁周波数ωを高くとることが有効
なことも(7式)より明らかである。
The first term on the right-hand side of (7) is the effective detection amount corresponding to the angle θ, but ! The term is the speed electromotive force as a noise component mentioned earlier, and the temperature is equalized in proportion to the rotational speed ν. It is also clear from (Equation 7) that it is effective to set the excitation frequency ω high in order to suppress this influence.

他方の差電流検出方式は第1図(bンに示すように、並
列に接続したコイルCbl l Cb2に一定の文脈′
は圧tを印加する回路を同いて、回転用に応じたりラフ
タンスの変化によって生じるコイルfilの分流電流の
差を検出1<iaとする方式である・第1図(b)にお
いて、 i】は第1コイルCblの電流、 I2は第2コイルCb2の電流、 である。そして、 rは第1コイルCbxと鎖交する磁路のリラクタンス、 I2は第2コイルCb2と鎖交する磁路のリラクタンス
、 7は/周期の角度に対する平均リラクタンス、r(θ)
はりラフタンスの変動分(θの開数)、としたとき r=’;+r(θ) r=y+r(θ−7V2)  であり、検出量id  
は次の(2式)となる。
The other differential current detection method is as shown in Figure 1 (b).
This is a method in which the circuit that applies the pressure t is used to detect the difference in shunt current of the coil fil caused by the rotation or changes in roughtance, 1<ia.In Fig. 1(b), i] is I2 is the current in the second coil Cb2, and I2 is the current in the first coil Cbl. And, r is the reluctance of the magnetic path interlinking with the first coil Cbx, I2 is the reluctance of the magnetic path interlinking with the second coil Cb2, 7 is the average reluctance with respect to the angle of / period, r (θ)
When the fluctuation of the beam roughtance (the integral number of θ) is taken, r=';+r(θ) r=y+r(θ-7V2), and the detected amount id
is the following (2 equations).

Id=■l   I2 “  ・ ・・・ −・・・・・・・・・(,2式)%
式% ) nはコイルの巻回数 である。
Id=■l I2 “ ・ ・・・ −・・・・・・・・・(,2 formula)%
Formula %) n is the number of turns of the coil.

(2式)よシ明らかなように、差電流検出方式では検出
量中に速度νに依任する項を含葦ないので、差電圧検出
方式に比べて原理的に優れており、特に、部分解能を図
って多極にしたり高速回転させるなどのνが高い条件の
もとての検出が要求される場合には、この検出方式を採
用するのが良い。
As is clear from Equation (2), the differential current detection method does not include a term that depends on the speed ν in the detected quantity, so it is superior in principle to the differential voltage detection method. It is preferable to adopt this detection method when the original detection is required under conditions of high ν, such as multi-pole or high-speed rotation to improve resolution.

第2図は、本発明の第1の実壓例の構成を表わすブロッ
ク図であ−る。
FIG. 2 is a block diagram showing the configuration of a first practical example of the present invention.

/は検出部、//は回転子、/コは固定子、I3は空隙
、l//は回転軸、//、2は磁性体、//3は固定部
判、/2/は磁心、/22注巻緑、コはfji!シ御部
、ユ/は励磁電源1.2.2 / v″i同期k K回
v!(d、、d2UJ’イオードz rs l r11
ri抵抗1C1はコンデンサ)、3はは指示計である。
/ is the detection part, // is the rotor, / is the stator, I3 is the air gap, l// is the rotating shaft, //, 2 is the magnetic body, //3 is the fixed part size, /2/ is the magnetic core, /22 note volume green, Ko is fji! Control part, U/ is excitation power supply 1.2.2 / v″i synchronization k K times v! (d,, d2UJ' Iode z rs l r11
ri resistor 1C1 is a capacitor), 3 is an indicator.

この第/の実施例は差電圧方式を採っている。This/first embodiment employs a differential voltage method.

装置は検出部/と*lj 8部2柵を差′、コ圧万式に
従って接続し構成する。
The device is constructed by connecting the detection section / and the *lj 8 parts 2 rails according to the difference', k pressure million formula.

検出部/は回転子//と固定子l′2を岐け、制御部コ
は高周波の励磁電源2/と信号処理回路としての同期整
流回路221を備え、制御部λの出力信号は外部装置“
の指示計3に入れて回転角を指示するようにしている。
The detection section / is connected to the rotor // and the stator l'2, and the control section is equipped with a high-frequency excitation power source 2/ and a synchronous rectification circuit 221 as a signal processing circuit, and the output signal of the control section λ is connected to an external device. “
It is placed in indicator 3 to indicate the rotation angle.

この第1の実施例では、回転子//は外力を受ける回転
幅7ノノに7個の磁性体/1.2を非磁性の固定部材を
固着させて回転体を形成しておシ、固定子/2は、空隙
/3を介して回転子/lの磁性体//2と協働する固定
の磁心/21と、空隙円周に泊って等間隔を隔てて磁心
/、2/に固定した2個のコイルを枝路巻線としてなる
巻線yx、x−5(備える。その2個のコイル72.2
はいずれも制御部2より励磁を受けて検出部lの励磁に
あずかるとともに、回転子l/の角変位に対応した磁性
体11.2との間のりツクタンスの変化に感じて生ずる
検出電圧の制御部2への出力にも兼用するように接続し
ている。
In this first embodiment, the rotor // is formed by fixing seven magnetic materials/1.2 to a non-magnetic fixing member over a rotation width of 7 to receive an external force. The child /2 is fixed to the fixed magnetic core /21 which cooperates with the magnetic body //2 of the rotor /l through the air gap /3, and to the magnetic cores /, 2/ at equal intervals around the circumference of the air gap. The two coils 72.2 are provided as branch windings, yx and x-5.
Both receive excitation from the control unit 2 and participate in the excitation of the detection unit l, and also control the detection voltage generated by sensing the change in flux between the magnetic body 11.2 and the magnetic body 11.2 corresponding to the angular displacement of the rotor l/. It is connected so that it can also be used as an output to section 2.

第3図は、本発明の第ユの実施例(差電流方式)の構成
を表わすブロック図である。
FIG. 3 is a block diagram showing the configuration of the fourth embodiment (differential current type) of the present invention.

図において同一の符合は同一もしくは相当μ分を表わす
In the figures, the same reference numerals represent the same or equivalent μ.

同期整流回路222のC3,C4はダイオードである。C3 and C4 of the synchronous rectifier circuit 222 are diodes.

回転子/lの回転角に応じたシラクタンスの変化によっ
てλつの巻線/22間の分流電流の差電流を検出部lか
ら検出し、制御部!へ与え同期整流回路22−1を経て
指示計3へ出力する。
The difference current between the shunt currents between the λ windings/22 is detected by the detecting section 1 by the change in syractance according to the rotation angle of the rotor/l, and the control section! It is output to the indicator 3 via the synchronous rectifier circuit 22-1.

本発明の第3の実施例(差電圧方式)の構成を示すブロ
ック図を第≠図に表わす。
A block diagram showing the configuration of the third embodiment (differential voltage method) of the present invention is shown in FIG.

巻線12.2におりて、コイルpuはコイルul、 u
2からなシ、同様にコイル群τ、v、マ、w−wはそれ
ぞれコイルU工、112、V□、 72、Vl、 V2
、W□。
In winding 12.2, coil pu is connected to coil ul, u
Similarly, the coil groups τ, v, M, w-w are coils U, 112, V□, 72, Vl, V2.
,W□.

W2、W工、W2からなる。It consists of W2, W-work, and W2.

磁性体//2は2極の突極を形成する。The magnetic body //2 forms two salient poles.

第5図は、本発明の第グの実施例(差電流検出方式)の
構成を表わすブロック図である。
FIG. 5 is a block diagram showing the configuration of the fourth embodiment (differential current detection method) of the present invention.

222は同期整流回路でおのおのが検出信号の出力端を
もつ。
222 is a synchronous rectifier circuit, each of which has an output terminal for a detection signal.

本発明の第jの実施例(差電流検出方式)の一部構成図
を第を図に示す。
A partial configuration diagram of the jth embodiment (differential current detection method) of the present invention is shown in FIG.

ここで留意すべきことは、第μ図の差電圧検出方式では
検出部lと制御部コとの接続リード線数は5本であるの
に対して、第5図の差電流検出方式のそれは7本を要す
るので実用上でやや不便であるo第z図は同じ差電流検
出方式でのこの点に対する改善例であって、制御部λの
励磁電源、2/を巻線/コ2の分岐巻線の数だけ設ける
とともに接続法にも変更を加えてリード線数を第μ図と
同じく5本とすることを可能にしている。
What should be noted here is that in the differential voltage detection method shown in Fig. µ, the number of lead wires connecting the detection part l and the control part 1 is five, whereas in the difference current detection method shown in Fig. This is somewhat inconvenient in practice since it requires 7 wires. Figure o-z is an example of an improvement on this point using the same differential current detection method, where the excitation power source of the control section λ, 2/ is connected to the winding/co 2 branch. By providing the same number of windings and changing the connection method, it is possible to reduce the number of lead wires to five, the same as in Figure μ.

第7図は、本発明の第tの実施例(差電流検出方式)の
構成図である。
FIG. 7 is a configuration diagram of the tth embodiment (differential current detection method) of the present invention.

また、本発明の第7の実施例(差電流検出方式)の構成
図が第g図に示される。
Further, a configuration diagram of a seventh embodiment (differential current detection method) of the present invention is shown in FIG. g.

d、〜d1oはダイオード、r5〜r7は抵抗、C2〜
C9はコンデンサ、221.2,111は同期整流回路
−8〜eは各コイル(a  a=e  e)からなるコ
イ21F2 ル群である。
d,~d1o are diodes, r5~r7 are resistors, C2~
C9 is a capacitor, 221.2, 111 is a synchronous rectifier circuit -8 to e is a coil group consisting of each coil (a a = e e).

固定子/、lの巻線ノ22が第7図ではu、v、wの3
群、第g図では”p by ”y d、 eの5群のコ
イル群を備えておシ、両者ともそれぞれのコイル一群は
空隙円周に沿って等間隔に配設するとともに、各コイル
群の一端ずつは共通の端子へ他端はおのおの別個の端子
へ接続することによって星形巻線をなしておシ、この星
形巻線を励磁と検出の両方に兼用している。
In Fig. 7, the windings 22 of stator /, l are 3, u, v, w.
In both cases, each coil group is arranged at equal intervals along the circumference of the gap, and each coil group is arranged at equal intervals along the circumference of the gap. By connecting one end of each to a common terminal and the other end to each individual terminal, a star-shaped winding is formed, and this star-shaped winding is used for both excitation and detection.

制御部ユはともに高周波の動磁電源コ/を備えるととも
に、信号処理のために同期整流回路ムUまたは22μを
用いて、検出部lよシ受ける検出電流を処理することに
よって、回転子l/の角変位と固定子巻線/Uλの配置
に対応して変化する信号を検出出力する。
The control unit U is equipped with a high-frequency magnetic dynamic power source CO/, and uses a synchronous rectifier circuit U or 22μ for signal processing to process the detection current received by the detection unit I, thereby controlling the rotor l/L. A signal that changes in response to the angular displacement of and the arrangement of the stator winding/Uλ is detected and output.

第7図では接続用のリード線はμ本でよく、3相での角
変位の検出が比較的簡単な手段で実現できること、およ
び差電流検出方式のためにノイズに対しても有利である
ことなども考え合わせると、一般的にはこの第6の実施
例は最も合理的である。
In Fig. 7, only μ lead wires are required for connection, and detection of angular displacement in three phases can be achieved with relatively simple means, and the differential current detection method is advantageous against noise. Taking these factors into consideration, the sixth embodiment is generally the most reasonable.

かくして本発明によれは、固定子に巻装する巻線を単一
巻線としてこれにより励磁と検出を兼ねることができ、
装置の小形化がなされ〜励磁・検出の巻線間の不揃−に
よる精度低下はなく、マたそれら巻線間の有害なもれ磁
束も介在せず、検出感度も良く、とくに差電流検出方式
を選ぶと速度の影響がなくなシ、斯界に益するところが
大きい〇
Thus, according to the present invention, the winding wound around the stator is a single winding, which can serve as both excitation and detection.
The device has been miniaturized, so there is no loss of accuracy due to misalignment between the excitation and detection windings, there is no harmful leakage flux between the windings, and the detection sensitivity is good, especially for differential current detection. Choosing this method eliminates the influence of speed, which greatly benefits the industry〇

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の原理説明図、第2図な
いし第g図は本発明の第1なりし第7の実施例の構成を
示すブロック図である。 l・・・検出部 λ・・・制御部 3・・・指示計 //・・・回転子 lユ・・・固定子 13・・・空隙 ユ/・・・励磁電源 ///・・・回転軸 /12・・・磁性体 713・・・固定部材 lコノ・・・磁心 /22・・・巻ね 221.222.コλ3,12μ・・・同期整流回路d
1〜dl。・・・ダイオード r、〜r7・・・抵抗 C工〜C5・・・コンデンサ ulv u2. Vl、 V2p Wlv W2. u
ly u2. vl、 V2゜’971. W2. A
le a2. bl、 b2. elp c2. dl
、 d2°゛コイル 出願人代理人   猪 股 第1図        [ (Q) 第3図 第4図 第5図 第6(支) 第7図 第8図
FIGS. 1(a) and 1(b) are diagrams for explaining the principle of the present invention, and FIGS. 2 through 7 are block diagrams showing the configuration of the first to seventh embodiments of the present invention. l...Detection part λ...Control unit 3...Indicator//...Rotor l...Stator 13...Air gap/...Excitation power source///... Rotating shaft/12...Magnetic body 713...Fixing member l Cono...Magnetic core/22...Winding 221.222. λ3, 12μ...Synchronous rectifier circuit d
1~dl. ...Diode r, ~r7...Resistor C~C5...Capacitor ulv u2. Vl, V2p Wlv W2. u
ly u2. vl, V2゜'971. W2. A
le a2. bl, b2. elp c2. dl
, d2°゛ Coil Applicant's Agent Inomata Figure 1 [ (Q) Figure 3 Figure 4 Figure 5 Figure 6 (Support) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 乙 外力を受けて回転し空隙を介して固定子と協働する
回転子と、制御部より励磁を受は回転子の角変位に対応
する検出電圧または電流を制御部へ田方する固定子とを
備える検出部と、検出部を励磁する励磁電源と検出電圧
筐たは電流を計測に適した電気量に変換して出力する信
号処理回路とを備える市U御都とによってイI′4成す
る内14云角倹田装置において、 回転子Vよ、外力を受ける回転軸と少なくとも1個のω
性体を設け、磁性法は空隙円周(で泊って円周の一部を
形成し固定子に対し等間隔を隔てて回転子に固着され、 固定子は、臣陣ケ介して回転子の蜂1土体と協働する固
定の研心を具え、空詠円周に泊って等jvJ崗にω)し
・にL−ボした少なくともコ・、固の巷朦をる1゛dえ
、これら巻線へ高周波の一定電圧を与える励磁電源と検
出された信号を処理する信号処理回路を具備するととも
に、 前記2個の巻線をMJJ磁電源に直列に接続し両者の電
圧降下の、差を検出する手段、あるいけ前記2個の巻線
を励磁電源に並列に接続し両者のそれぞれを流通する電
流の差を検出する手段からなることを特徴とする回転角
検出装置。 !、固定子の巻線ハ同数のコイルよりなり少なくともλ
対のコイル群をそなえ、それぞれの対は空隙円周に泊っ
て固定子に等間隔に配設するとともに、6対のコイル群
の両端は共通にして励m蓋源へ接続し6対のコイルの接
bl凄は信号処理回路へ接続するか、あるいは6対のコ
イル群の両端は信号処理回路に接続し6対のコイルの接
わ′〔廣は励磁電源へ接続するようにした特許請求の範
囲第1項記載の回転角検出装置。 38、固定子の巻層は回数のコイルよりなる少なくとも
3群のコイル群をそなえ、それそλしの砕は空隙円周に
漕って等間隔に配設するととも1(、各コイル群の一端
は共通にして星形巻線を形成して励磁電源へ接続し、各
コイル群の他端はおのおの信号処理回路へ接続するよう
にした特許請求の範囲第1項記載の回転角検出装置。
[Claims] B. A rotor that rotates in response to an external force and cooperates with a stator through an air gap, and a rotor that receives excitation from a control section and sends a detected voltage or current corresponding to the angular displacement of the rotor to the control section. By the City U Mito, which includes a detection section including a stator that rotates, an excitation power source that excites the detection section, and a signal processing circuit that converts the detection voltage case or current into an amount of electricity suitable for measurement and outputs it. In the 14-angle Kutden device consisting of I'4, the rotor V, the rotating shaft that receives the external force, and at least one ω
A magnetic material is provided, and the magnetic method forms a part of the circumference of the air gap and is fixed to the rotor at equal intervals to the stator. Bee 1 Equipped with a fixed focus that cooperates with the earth body, stays in the sky circle and does L-bo in Etc. It is equipped with an excitation power source that applies a constant high-frequency voltage to these windings and a signal processing circuit that processes the detected signals, and also connects the two windings in series to the MJJ magnetic power source to calculate the difference in voltage drop between the two. A rotation angle detecting device comprising means for detecting the current, and means for connecting the two windings in parallel to an excitation power source and detecting a difference in current flowing through each of the two windings. ! , the stator winding consists of the same number of coils at least λ
It is equipped with pairs of coil groups, and each pair is arranged around the circumference of the air gap at equal intervals on the stator, and both ends of the six pairs of coil groups are commonly connected to the excitation lid source. The connections of the six pairs of coils are connected to the signal processing circuit, or both ends of the six pairs of coils are connected to the signal processing circuit, and the six pairs of coils are connected to the excitation power source. The rotation angle detection device according to scope 1. 38. The winding layer of the stator is provided with at least three groups of coils each consisting of a number of coils. 2. The rotation angle detecting device according to claim 1, wherein one end of each coil group is connected to an excitation power source forming a common star-shaped winding, and the other end of each coil group is connected to a respective signal processing circuit.
JP4946083A 1983-03-24 1983-03-24 Rotary-angle detecting device Pending JPS59174702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4946083A JPS59174702A (en) 1983-03-24 1983-03-24 Rotary-angle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4946083A JPS59174702A (en) 1983-03-24 1983-03-24 Rotary-angle detecting device

Publications (1)

Publication Number Publication Date
JPS59174702A true JPS59174702A (en) 1984-10-03

Family

ID=12831750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4946083A Pending JPS59174702A (en) 1983-03-24 1983-03-24 Rotary-angle detecting device

Country Status (1)

Country Link
JP (1) JPS59174702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181405A (en) * 1985-02-08 1986-08-14 遠藤 左介 Toothbrush
US4991301A (en) * 1987-02-27 1991-02-12 Radiodetection Limited Inductive displacement sensors
FR2705455A1 (en) * 1993-05-17 1994-11-25 Valeo Systemes Dessuyage Relative displacement sensor using magnetic reluctance measurement, torque sensor using such a sensor and application to a vehicle assisted steering system
JP2010002205A (en) * 2008-06-18 2010-01-07 Nsk Ltd Multiple system rotation sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181405A (en) * 1985-02-08 1986-08-14 遠藤 左介 Toothbrush
JPH0136365B2 (en) * 1985-02-08 1989-07-31 Sasuke Endo
US4991301A (en) * 1987-02-27 1991-02-12 Radiodetection Limited Inductive displacement sensors
FR2705455A1 (en) * 1993-05-17 1994-11-25 Valeo Systemes Dessuyage Relative displacement sensor using magnetic reluctance measurement, torque sensor using such a sensor and application to a vehicle assisted steering system
JP2010002205A (en) * 2008-06-18 2010-01-07 Nsk Ltd Multiple system rotation sensor

Similar Documents

Publication Publication Date Title
US5422525A (en) Switched reluctance machine having unbalance forces compensation coils
CN100399682C (en) Electrical machines
US7518332B2 (en) Brushless synchronous motor and driving control apparatus therefor
EP2157681B1 (en) Direct flux regulated permanent magnet brushless motor utilizing sensorless control by dc and ac excitation
JP5388678B2 (en) Rotating device
JPS6077660A (en) Synchron resolver device
US4918997A (en) Vernier torquemeter
JPS59174702A (en) Rotary-angle detecting device
CA1072194A (en) Position coder associated with a variable reluctance machine
JPH0634564B2 (en) Ground fault detector for generator
US20020047356A1 (en) Brushless alternating-current generating apparatus and method for measuring field winding temperature therefor
US1937375A (en) Instrument for transmitting angular movement
WO2001071288A1 (en) Torsional quantity measuring device
JP5350979B2 (en) Variable reluctance angle detector
CN209982293U (en) Motor structure with speed synchronous detection function
JPH0530725A (en) Electromagnetic pump device
SU1164633A1 (en) Transducer for detecting short-circuit turns in stator windings of electric machines
CN108541353A (en) Motor with permanent magnet
JPH05316692A (en) Actuator fitted with thrust sensor
US2521254A (en) Permanent magnet generator system
SU1744752A1 (en) Device for protection of three-phase load against emergency operation
US633695A (en) Motor-meter for three-phase currents.
SU562044A2 (en) Induction Current Sensor
JPS59201695A (en) Structure of rotary electric machine
JPS6258444B2 (en)