JPS59174506A - Manufacture of new powdered silicon nitride - Google Patents

Manufacture of new powdered silicon nitride

Info

Publication number
JPS59174506A
JPS59174506A JP4709683A JP4709683A JPS59174506A JP S59174506 A JPS59174506 A JP S59174506A JP 4709683 A JP4709683 A JP 4709683A JP 4709683 A JP4709683 A JP 4709683A JP S59174506 A JPS59174506 A JP S59174506A
Authority
JP
Japan
Prior art keywords
silicon nitride
furnace
filter material
compd
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4709683A
Other languages
Japanese (ja)
Inventor
Hideaki Miyashita
宮下 英晃
Kensaku Maruyama
丸山 謙作
Norihiro Murakawa
紀博 村川
Yukihiro Yoda
与田 幸広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4709683A priority Critical patent/JPS59174506A/en
Publication of JPS59174506A publication Critical patent/JPS59174506A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture high-purity silicon nitride in good yield by collecting a product obtained by reacting a volatile silicon compd. with a decomposable nitrogen compd. contg. no oxygen in a hot air current, on a vanishing filter material. CONSTITUTION:A vanishing filter material 7 (fibrous carbon, powdered silicon dioxide etc.) is provided in a furnace consisting of a refractory furnace wall 4, a heating element 5 and an outer wall 6. The inside of the furance is filled with an inert gas atmosphere and kept at 900-1,400 deg.C. Then a decomposable nitrogen compd. such as ammonia or hydrazine contg. no oxygen from a duct 1 and a volatile silicon compd. such as SiCl4, HSiCl3 and SiF4 from a duct 2 are introduced into the furnace in a 1.5-6 ratio of N/Si (formula weight ratio) to react with each other. The obtained powdered silicon nitride is collected on the filter material 7. (symbol 3 is a gaseous by-product discharging duct) Then the silicon nitride is taken out together with the filter material 7 which is vanished by means of calcination etc. to obtain the high-purity powdered silicon nitride.

Description

【発明の詳細な説明】 本発明は新規な窒化珪素粉末の製造法であシ、更に詳し
くは揮発性珪素化合物と酸素を含まない分解性窒素化合
物を熱気流中で接触させ消失性炉材上に析出、捕集する
ことを特徴とする窒化珪素粉末の製造法である α型窒化珪素粉末は、その焼結体が高温強度にすぐれて
いる等の点で高温材料として有望である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a novel method for producing silicon nitride powder, and more specifically, a volatile silicon compound and a decomposable nitrogen compound that does not contain oxygen are brought into contact with each other in a hot air stream to form a silicon nitride powder on a fugitive furnace material. α-type silicon nitride powder, which is a method for producing silicon nitride powder characterized by precipitation and collection, is promising as a high-temperature material because its sintered body has excellent high-temperature strength.

従来、窒化珪素粉末は、金属シリコンを直接窒素または
アンモニアで窒化した生成物を粉砕する方法、二酸化ケ
イ素粉末と炭素粉末の混合物を窒素またはアンモニア雰
囲気中で還元窒化する方法、または揮発性珪素化合物と
アンモニアの直接反応による方法、あるいはシリコンイ
ミドの熱分解による方法などによシ製造されてきた。こ
れらの方法のうち粒子径の比較的そろった純度の高い微
細な窒化珪素粉末が得られる方法としては、気相中での
直接反応による合成がある。しかし、気相中での直接合
成では、収率の非常に悪いことが欠点であった。この原
因は、折角の生成物が補集されずに飛散することや、原
料が未反応のまま逸散するととKあシ、本発明はこの点
に鑑みてなされて従来の収率であった40〜50%を、
90%にも飛躍的に向上させたものである。
Traditionally, silicon nitride powder has been produced by pulverizing the product obtained by directly nitriding metallic silicon with nitrogen or ammonia, by reducing and nitriding a mixture of silicon dioxide powder and carbon powder in a nitrogen or ammonia atmosphere, or by combining volatile silicon compounds with It has been produced by methods such as direct reaction of ammonia or thermal decomposition of silicon imide. Among these methods, synthesis by direct reaction in a gas phase is a method for obtaining fine silicon nitride powder with a relatively uniform particle size and high purity. However, the disadvantage of direct synthesis in the gas phase is that the yield is very poor. The reason for this is that the product is scattered without being collected, and the raw material is scattered without being reacted.The present invention was made in consideration of this point, and the yield was lower than that of the conventional method. 40-50%,
This is a dramatic improvement of 90%.

即ち、本発明は特許請求の範囲の欄に記載の通シである
が、生成物の飛散に対しては消失性炉材の使用により、
また未反応原料の逸散に対しては特定の接触条件によ勺
解決したものである。原料の接触条件について先に説明
すると、揮発性珪素化合物と酸素を含まない分解性窒素
化合物はN/Si(式量比)を窒化珪素の化学量論比で
ある4/3以上として900〜1400℃の熱気流中に
おいて行なうことである。
That is, although the present invention is generally stated in the claims, scattering of the product can be prevented by using a fugitive furnace material.
Furthermore, the issue of dissipation of unreacted raw materials has been solved by using specific contact conditions. To explain the contact conditions of the raw materials first, the volatile silicon compound and the decomposable nitrogen compound that does not contain oxygen have a N/Si (formulaic ratio) of 900 to 1400, with the stoichiometric ratio of silicon nitride being 4/3 or more. This is done in a hot air stream at ℃.

900℃以下では、空気中で容易に分解して5i02に
なってしまうシリコンイミドが生成する。
At temperatures below 900° C., silicon imide is produced which easily decomposes in the air to form 5i02.

1400℃を越える場合には、材質選択の問題を生じる
だけで格別のメリットがない。
If the temperature exceeds 1400° C., there will be no particular advantage except for the problem of material selection.

ここでN/Si(式量比)は4/3以上で実施されるが
、更に好壕しくけ1.5〜6の範囲がよい、その理由は
、N/S’iが1.5以下では未反応の揮発性珪素化合
物が系外に排出され、またN/Siが6を超えるほどで
はアンモニア及びヒドラジンの単なる損失にしかならな
いためである。
Here, N/Si (formula weight ratio) is carried out at 4/3 or more, but it is even better to have a trench ratio in the range of 1.5 to 6. The reason is that N/S'i is 1.5 or less. This is because unreacted volatile silicon compounds are discharged out of the system, and when N/Si exceeds 6, there is only a mere loss of ammonia and hydrazine.

熱気流中で原料を接触させるに際しては炉を使用するの
が便利である。ここに述べる炉とは、耐によシ副生じた
ガスの排出口を備える耐火性の反応容器を意味する。こ
のような炉の内部は容易に900〜1400℃に加熱さ
れ、かつ還元性雰囲気となって窒化珪素の生成に有利で
ある。
It is convenient to use a furnace when contacting the raw materials in a hot air stream. Furnace as referred to herein means a refractory reaction vessel provided with an exhaust outlet for by-product gases. The inside of such a furnace is easily heated to 900 to 1400° C. and creates a reducing atmosphere, which is advantageous for producing silicon nitride.

加熱した炉内への揮発性珪素化合物と酸素を含捷ない分
解性窒素化合物の装入は、それぞれ単独にでも混合して
同時に行なってもよい。
The volatile silicon compound and the decomposable nitrogen compound that does not contain oxygen may be charged into the heated furnace either individually or simultaneously as a mixture.

本発明において揮発性珪素化合物とは一般式5i)(4
で表わされるもので、この式でXは水素、ハロゲン原子
またはアルキル基であシ、具体的に珪素化合物を挙げれ
ば5iCt4、H5iCA3、SiH4、Si(CH3
)4、(CH3)2 St C1z、CH35iCt3
、SiF4などであり、またこれらの混合物であっても
よい。
In the present invention, the volatile silicon compound has the general formula 5i) (4
In this formula, X is hydrogen, a halogen atom, or an alkyl group. Specific examples of silicon compounds include 5iCt4, H5iCA3, SiH4, Si(CH3
)4, (CH3)2 St C1z, CH35iCt3
, SiF4, etc., or a mixture thereof may be used.

酸素を含まない分解性窒素化合物の例としては、アンモ
ニアやヒドラジンなどを挙げることができる。
Examples of decomposable nitrogen compounds that do not contain oxygen include ammonia and hydrazine.

また、本発明における消失性炉材とは、繊維状カーボン
、カーボンブラック、二酸化珪素粉末等の高温で安定か
つ高表面積を有していながら後に、焼却によりまたはフ
ッ化水素酸での洗浄などによって消失させることのでき
るものである。このような消失性炉材を用いて窒化珪素
を析出、捕集する理由は、本発明において生成する窒化
珪素は大部分が非晶質であるために、別に特許出願した
特定の熱処理によってα型結晶に転化する必要があるか
らこの処理の際又はその後容易に消失させることができ
るものであれば本発明の目的に支障ないからである。
In addition, the fugitive furnace material in the present invention refers to materials that are stable at high temperatures and have a high surface area, such as fibrous carbon, carbon black, and silicon dioxide powder, but that disappear later by incineration or washing with hydrofluoric acid. It is something that can be done. The reason why silicon nitride is precipitated and collected using such a fugitive furnace material is that most of the silicon nitride produced in the present invention is amorphous, so a specific heat treatment for which a separate patent application has been applied is applied to convert it into α-type. Since it is necessary to convert it into crystals, the object of the present invention will not be hindered as long as it can be easily eliminated during or after this treatment.

すなわち、繊維状カーボン及びカーボンブラック等であ
る場合は酸化性雰囲気で焼却除去することができ2、二
酸化珪素粉末等である場合はフン化水素酸により除去す
ることができる。
That is, in the case of fibrous carbon, carbon black, etc., it can be removed by incineration in an oxidizing atmosphere2, and in the case of silicon dioxide powder, etc., it can be removed with hydrofluoric acid.

実施例−1 図面に示した反応炉(内径50mm、長さ1m)を用い
た。反応炉には消失性炉材(7)として繊維状カーボン
を設置し、この炉内を不活性ガス雰囲気として1200
℃に昇温した。その後ダクト(1)からアンモニアガス
(70mA/m1n)を、ダクト(2)から5iCt4
 (0,32L?/min )を送入しながら2時間反
応させ0本発明の窒化珪素粉末を得た。
Example-1 The reactor shown in the drawing (inner diameter 50 mm, length 1 m) was used. Fibrous carbon was installed in the reactor as a fugitive reactor material (7), and the inside of the reactor was set as an inert gas atmosphere.
The temperature was raised to ℃. After that, ammonia gas (70mA/m1n) was supplied from duct (1), and 5iCt4 was supplied from duct (2).
(0.32 L/min) was reacted for 2 hours to obtain silicon nitride powder of the present invention.

この繊維状カー、ボン上に析出捕集した窒化珪素粉末は
、消失性p材と共に混合物を粗粉砕し、特定の条件下で
α型窒化珪素粉末としさらにこれを空気中600〜80
0℃で焼き、繊維状カーボンを除去した。得られた窒化
珪素は、純度の高い比較的粒径のそろったものであった
。珪素基準の収率は後にまとめて表に示した。
The silicon nitride powder precipitated and collected on the fibrous carbon is coarsely pulverized together with the fugitive p-material and converted into α-type silicon nitride powder under specific conditions.
It was baked at 0°C to remove fibrous carbon. The obtained silicon nitride had high purity and relatively uniform particle size. The yields based on silicon are summarized in the table below.

実施例−2 消失性炉材としてカーボンブランクを用い、炉内を不活
性ガス雰囲気で大気圧より低い圧力とし、1300℃に
加熱した。その温度でアンモニア(50ml/min 
)、5iF4(0、14f/m1n)を反応系内に送入
し、系内圧力を30 torrに保ち3時間反応を行な
い、本発明の窒化珪素粉末を得た。
Example 2 A carbon blank was used as the fugitive furnace material, the inside of the furnace was kept at a pressure lower than atmospheric pressure in an inert gas atmosphere, and heated to 1300°C. At that temperature, ammonia (50ml/min
), 5iF4 (0.14 f/m1n) were introduced into the reaction system, and the reaction was carried out for 3 hours while maintaining the system pressure at 30 torr to obtain the silicon nitride powder of the present invention.

このものは、消失性炉材とともに粗粉砕の後特定条件下
でα型に結晶化して後カーボンブラックは空気中で焼却
除去することにより、α型窒化珪素の粉末を得た。
This material was coarsely pulverized together with the fugitive furnace material, then crystallized into the α-type under specific conditions, and the carbon black was then removed by incineration in the air to obtain α-type silicon nitride powder.

実施例−3 消失性炉材としてSiO+粉末を用い、アンモニア(6
0m/L/m1n)とCH35iC41(0、25f/
min )を1200℃にした図面に示した炉内で2時
間反応させ、窒化珪素粉末を得た。得られたものはその
まま粗粉砕してα型に結晶化した。このものに混入して
いる5i02はフッ化水素酸によpsiO2のみを除去
し、窒化珪素を得た。
Example-3 SiO+ powder was used as the fugitive furnace material, and ammonia (6
0m/L/m1n) and CH35iC41 (0, 25f/
The reaction was carried out for 2 hours in the furnace shown in the drawing with the temperature (min) set at 1200° C. to obtain silicon nitride powder. The obtained product was coarsely pulverized as it was and crystallized into the α type. Only psiO2 of 5i02 mixed in this material was removed with hydrofluoric acid to obtain silicon nitride.

実施例−4 消失性E材としてカーボンブラックを用い、炉内を11
00℃に加熱し、5iCt4(0−34f/m1n)、
ヒドラジン(5、I P/min )を送入し、2時間
反応を行ない窒化珪素粉末を得た。このものは特定の処
理でα型窒化珪素とし、さらに空気中800℃でカーボ
ンブラックを焼却、除去した。
Example-4 Using carbon black as the fugitive E material, the inside of the furnace was heated to 11
Heated to 00℃, 5iCt4 (0-34f/m1n),
Hydrazine (5, I P/min) was introduced and the reaction was carried out for 2 hours to obtain silicon nitride powder. This material was converted into α-type silicon nitride through a specific treatment, and carbon black was further removed by incineration at 800° C. in air.

比較例−1 1300℃の高温雰囲気とした炉中に5iC4(0、3
9f/min )とアンモニア(75mt/mi n 
)を送入し、2時間反応を行ない、窒化珪素粉末(6,
422)を生成させた。(この方法は従来法である。)
得られた窒化珪素は非晶質で純度は99.4%であシそ
の比表面積は10 、’ 7 m2/lであったがその
収率は50.2%と甚だ低いものでしかなかった。
Comparative Example-1 5iC4 (0,3
9f/min) and ammonia (75mt/min
) and reacted for 2 hours to form silicon nitride powder (6,
422) was generated. (This method is a conventional method.)
The silicon nitride obtained was amorphous with a purity of 99.4% and a specific surface area of 10.7 m2/l, but the yield was extremely low at 50.2%. .

以上の結果の要点をまとめたものが次の表である。The following table summarizes the main points of the above results.

【図面の簡単な説明】[Brief explanation of drawings]

耕rA本発明の実施に用いた炉の断面図である。図にお
いて1および2は原料装入用のダクト、3は副生ガス排
出用ダクト、4は耐火性の炉壁、5は発熱体、6は外壁
および7は消失性p材を示す。 特許出願人 三井東圧化学株式会社
FIG. 1 is a sectional view of a furnace used in carrying out the present invention. In the figure, 1 and 2 are ducts for charging raw materials, 3 is a duct for discharging by-product gas, 4 is a refractory furnace wall, 5 is a heating element, 6 is an outer wall, and 7 is a fugitive p material. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)揮発性珪素化合物ト酵素を含まない分解性窒素化合
物を熱気流中で接触させ消失性炉材上に反応生成物を析
出、捕集することを特徴とする新規な窒化珪素粉末の製
造法。 2)熱気流の温度を900℃〜14001:とじたこと
を特徴とする特許請求の範囲第1項に記載の方法。 3)揮発性珪素化合物と酸素を含まない分解性窒素化合
物を接触させる量比を式量比N/Siとして1.5〜6
としたことを特徴とする特許請求の範囲第1項または第
2項に記載の方法。
[Claims] 1) A novel method characterized in that a volatile silicon compound and a decomposable nitrogen compound not containing an enzyme are brought into contact with each other in a hot air stream to precipitate and collect a reaction product on a fugitive reactor material. Method for manufacturing silicon nitride powder. 2) The method according to claim 1, characterized in that the temperature of the hot air stream is 900° C. to 14,000° C. 3) The quantitative ratio of the volatile silicon compound and the oxygen-free decomposable nitrogen compound to be brought into contact is 1.5 to 6 as the formula weight ratio N/Si.
The method according to claim 1 or 2, characterized in that:
JP4709683A 1983-03-23 1983-03-23 Manufacture of new powdered silicon nitride Pending JPS59174506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4709683A JPS59174506A (en) 1983-03-23 1983-03-23 Manufacture of new powdered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4709683A JPS59174506A (en) 1983-03-23 1983-03-23 Manufacture of new powdered silicon nitride

Publications (1)

Publication Number Publication Date
JPS59174506A true JPS59174506A (en) 1984-10-03

Family

ID=12765651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4709683A Pending JPS59174506A (en) 1983-03-23 1983-03-23 Manufacture of new powdered silicon nitride

Country Status (1)

Country Link
JP (1) JPS59174506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200814A (en) * 1984-03-22 1985-10-11 Mitsubishi Gas Chem Co Inc Production of composite fine powder consisting of silicon nitride and silicon carbide
JPS60221311A (en) * 1984-04-18 1985-11-06 Mitsubishi Gas Chem Co Inc Amorphous composition
JPH0375209A (en) * 1988-11-30 1991-03-29 Kemira Oy Method of manufacturing raw material of ceramics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200814A (en) * 1984-03-22 1985-10-11 Mitsubishi Gas Chem Co Inc Production of composite fine powder consisting of silicon nitride and silicon carbide
JPS60221311A (en) * 1984-04-18 1985-11-06 Mitsubishi Gas Chem Co Inc Amorphous composition
JPH05326B2 (en) * 1984-04-18 1993-01-05 Mitsubishi Gas Chemical Co
JPH0375209A (en) * 1988-11-30 1991-03-29 Kemira Oy Method of manufacturing raw material of ceramics
US5178847A (en) * 1988-11-30 1993-01-12 Kemira Oy Process for producing ceramic raw materials

Similar Documents

Publication Publication Date Title
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
CA1192377A (en) Synthesis of silicon nitride
JPS6112844B2 (en)
JPH10500933A (en) Method for producing silicon carbide
EP0070440B1 (en) Method for synthesizing amorphous silicon nitride
JPS5888110A (en) Preparation of silicon nitride powder
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS59174506A (en) Manufacture of new powdered silicon nitride
US5075091A (en) Process for the preparation of silicon nitride
EP0206795B1 (en) Method of producing silicon nitride powders
JP3951107B2 (en) Porous silicon oxide powder
JPS632885B2 (en)
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS6111885B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS5973412A (en) Preparation of powder of silicone nitride
JPS58176109A (en) Production of alpha-type silicon nitride
JPH0429603B2 (en)
JPS61295213A (en) Production of silicon nitride
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JPH05326B2 (en)
JPH0454609B2 (en)
JPS6140805A (en) Manufacture of silicon nitride fine powder
JPS61247613A (en) Production of silicon carbide powder
JPH0445443B2 (en)