JPS59173543A - Intake secondary-air supply device in internal- combustion engine - Google Patents

Intake secondary-air supply device in internal- combustion engine

Info

Publication number
JPS59173543A
JPS59173543A JP58046922A JP4692283A JPS59173543A JP S59173543 A JPS59173543 A JP S59173543A JP 58046922 A JP58046922 A JP 58046922A JP 4692283 A JP4692283 A JP 4692283A JP S59173543 A JPS59173543 A JP S59173543A
Authority
JP
Japan
Prior art keywords
valve
air
negative pressure
pressure
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046922A
Other languages
Japanese (ja)
Inventor
Shunpei Hasegawa
俊平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58046922A priority Critical patent/JPS59173543A/en
Priority to US06/587,743 priority patent/US4558682A/en
Publication of JPS59173543A publication Critical patent/JPS59173543A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • F02M23/08Apparatus for adding secondary air to fuel-air mixture with automatic control dependent on pressure in main combustion-air induction system, e.g. pneumatic-type apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To restrain the generation of detrimental constituents, by controlling the atmospheric air pressure introduced in a pressure receiving chamber in a pneumatic control valve in an intake secondary air passage which is communicated with the downstream side of a throttle valve, in accordance the operating condition of an engine. CONSTITUTION:Gas pressure is fed, through a three-way solenoid valve 13, into a vacuum chamber 12a in a vacuum driven type pneumatic control valve 12 disposed in an intake secondary air passage 11 which is arranged bypassing a throttle valve 5 in an intake-air passage 3. The three-way solenoid valve 13 switchingly connects, under opening and closing operation of a valve element 13c the vacuum chamber 12a with a vacuum control part 31 for generating a first control pressure or with an atmospheric air passage 16 for introducing a second control pressure. The vacuum control part 31 is composed of a vacuum responsive type regulating valve 32 and a pneumatic valve 33, and actuates in such a way that the opening degree of the regulating valve 32 is increased when the amount of the main intake-air of an engine 4 is small, and a relatively low first control pressure (negative pressure) Pe is generated. The solenoid valve 13 is controlled by means of a control circuit 22 in accordance with the output of O2 sensor 23.

Description

【発明の詳細な説明】 本発明は内燃エンジンの吸気2次空気供給装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake secondary air supply device for an internal combustion engine.

排ガス浄化のために三元触媒を排気系に備えた内燃エン
ジンにおいては、混合気の空燃比が理論空燃比(例えば
、14.7:1)付近のとき三元触媒がもっとも有効に
作用することがら空燃比をエンジンの運転状態に応じて
理論空燃比付近に制御覆ることが行われ−Cいる。この
空燃比制御を絞り弁下流に連通する吸気2次空気通路を
設【プてその2次空気量を制御することにより行なう吸
気2次空気供給装置がある。
In internal combustion engines equipped with a three-way catalyst in the exhaust system for exhaust gas purification, the three-way catalyst works most effectively when the air-fuel ratio of the mixture is around the stoichiometric air-fuel ratio (for example, 14.7:1). However, the air-fuel ratio is controlled to around the stoichiometric air-fuel ratio according to the operating state of the engine. There is an intake secondary air supply device that performs this air-fuel ratio control by providing an intake secondary air passage communicating downstream of the throttle valve and controlling the amount of secondary air therein.

吸気2次空気供給装置としては、受圧室内の気体圧の大
きさに応じて通路断面積を変化せしめる空気制御弁を吸
気2次空気通路に設け、排ガス中の酸素濃度を検出して
該酸素濃度から実際の空燃比を判定し、空燃比がリッチ
にあるときには空燃比を開弁せしめ得る第1制御圧を上
記受圧室に供給して流路断面積を徐々に増大させ、空燃
比がリーンに−あるときには空気制御弁を閉弁せしめ得
る第2制御圧を受圧室に供給しで流路断面積を徐々に減
少させてニューマチツタ方式の積分動作によっ“C空燃
比制御をなす装置が本出願人によって既に提案されてい
る。
The intake secondary air supply device is provided with an air control valve in the intake secondary air passage that changes the passage cross-sectional area according to the magnitude of the gas pressure in the pressure receiving chamber, and detects the oxygen concentration in the exhaust gas and adjusts the oxygen concentration. The actual air-fuel ratio is determined from the air-fuel ratio, and when the air-fuel ratio is rich, a first control pressure capable of opening the air-fuel ratio is supplied to the pressure receiving chamber to gradually increase the flow passage cross-sectional area, so that the air-fuel ratio becomes lean. -The present application provides a device that performs "C air-fuel ratio control by a pneumatic integration operation by supplying a second control pressure that can close the air control valve to the pressure receiving chamber and gradually reducing the cross-sectional area of the flow path. Already suggested by someone.

ところで、三元触媒を排気系に備えた内燃エンジンにお
いては、三元触媒による排ガス中の有害成分の浄化作用
は第1図に示づ−ように理論空燃比よりリッチ側の空燃
比ではNOx  (窒素酸化物)に対して効果的であり
、また理論空燃比よりり−ン側の空燃比ではC0(−酸
化炭素)及びHC(炭化水素)に対して極めて効果的で
ある。
By the way, in an internal combustion engine equipped with a three-way catalyst in the exhaust system, the purification effect of the three-way catalyst on harmful components in the exhaust gas is reduced to NOx ( It is effective against CO (-carbon oxides) and HC (hydrocarbons) at air-fuel ratios closer to the stoichiometric air-fuel ratio.

一般に、エンジンのアイドル時、減速運転時等の低速成
いは低負荷での運転状態にJ3いて(ま吸気が絞り弁に
よって絞られて吸気量が減少覆るが、燃料は増加して空
燃比がリッチになると共(こシ1ノンダ内の圧縮圧力が
低下する。故に燃焼温度が低下して不完全燃焼によるC
Oの発生が増大しクエンチングゾーンの生成による1−
ICの発生も増大づる。一方、高負荷での運転状態にお
いては燃焼速度が速くなると共に圧縮圧力及びガス湿度
が一ヒ昇して燃焼効率が1臂する。故にC01l−IC
の発生は比較的少ないがNOXが多量に発生する。第2
図はかかるエンジン負荷と排ガス有害成分との関係を示
している。
In general, when the engine is running at low speeds such as when idling or decelerating, the J3 is in a low-load operating state (the intake air is throttled by the throttle valve and the amount of intake air decreases, but the amount of fuel increases and the air-fuel ratio increases). As it becomes richer (the compression pressure inside the cylinder decreases), the combustion temperature decreases and carbon dioxide due to incomplete combustion decreases.
1- due to increased generation of O and generation of quenching zone.
The occurrence of IC is also increasing. On the other hand, under high-load operating conditions, the combustion rate increases and the compression pressure and gas humidity also increase, thereby increasing the combustion efficiency. Therefore C01l-IC
The generation of NOx is relatively small, but a large amount of NOx is generated. Second
The figure shows the relationship between such engine load and harmful exhaust gas components.

よって、排カス中の有害成分の浄化性能を向上させるた
めには上記ニューマチック方式の積分動作による吸気2
次空気供給装置を備えた内燃エンジンにおいても運転状
態によっては空燃比苓理論空燃比よりリッチ側又はリー
ン側に自動的に制御できることが望ましいのである。
Therefore, in order to improve the purification performance of harmful components in the exhaust gas, it is necessary to
Even in an internal combustion engine equipped with a secondary air supply device, it is desirable to be able to automatically control the air-fuel ratio to be richer or leaner than the stoichiometric air-fuel ratio depending on the operating conditions.

そこで、本発明の目的は、運転状態に応じて空燃比の制
御中心値を変化さ′Uで排ガス浄化の19能の向上を図
っlζ内燃エンジンのニューマチック方式の積分動作に
よる吸気2次空気供給装置を捉供することである。
Therefore, the purpose of the present invention is to improve the ability of exhaust gas purification by changing the control center value of the air-fuel ratio according to the operating conditions. It is to acquire and provide equipment.

本発明による内燃エンジンの吸気2次空気供給装置は、
第1制御圧を圧力通路を介して空気制御弁の受圧室に供
給しており、エンジン運転状態に応じて圧ツノ通路の流
路断面積を変化せしめるようになされていることを特徴
としている。
The intake secondary air supply device for an internal combustion engine according to the present invention includes:
The first control pressure is supplied to the pressure receiving chamber of the air control valve via the pressure passage, and the cross-sectional area of the pressure horn passage is changed depending on the engine operating condition.

以下、本発明の実施例を図面を参照して説明づる。Embodiments of the present invention will be described below with reference to the drawings.

第3図に示した本発明の一実施例たる吸気2次空気供給
装置において、吸入空気は大気吸入口1からエアクリー
ナ2、吸気路3を介してエンジン4に供給されるように
なっている。吸気路3には絞り弁5が設けられ、絞り弁
5の−[流には気化器のベンチュリ6が形成され、ベン
チュリ6より更に−L流にはチ」−り弁7が設【プられ
ている。絞り弁5近傍の吸気路3の内壁面には負圧検出
孔8が形成され、負圧検出孔8は絞り弁5の閉弁時に絞
り弁5のL流に位訪し、絞り弁5の閉弁時には絞り弁5
の下流に位δするようになっている。またベンチュリ6
にも負圧検出孔9が形成されている。
In the intake secondary air supply system which is an embodiment of the present invention shown in FIG. 3, intake air is supplied from an atmospheric air intake port 1 to an engine 4 via an air cleaner 2 and an intake passage 3. As shown in FIG. A throttle valve 5 is provided in the intake passage 3, a venturi 6 of a carburetor is formed in the -[flow] of the throttle valve 5, and a throttle valve 7 is provided in the -L flow further from the venturi 6. ing. A negative pressure detection hole 8 is formed in the inner wall surface of the intake passage 3 near the throttle valve 5, and the negative pressure detection hole 8 is located in the L flow of the throttle valve 5 when the throttle valve 5 is closed. Throttle valve 5 when closed
The position δ is downstream of the Also venturi 6
A negative pressure detection hole 9 is also formed therein.

絞り弁5の噴流、すなわら吸気マニホールドとエアクリ
ーナ2の空気吐出口近傍とは吸気2次空気通路11によ
って連通されるようになされでいる。吸気2次空気通路
11には空気制御弁12が設けられ、空気制御弁12は
上記受圧室に相当する負1丁¥12aと、吸気2次空気
通路11の一部をなづ弁室121)と、負圧室12aの
一部を形成づるダイアフラム12Cと、負圧室12a内
に設けられた弁ばね12dと、弁室121)に設けられ
吸気2次空気通路11を閉塞Jるように弁ばね12dに
よってダイアフラム12Cを介してイ1勢された弁体1
2eとからなり、負圧室12aに作用する負圧の大きさ
に応じて吸気2次空気通路11の流路断面積を変化せし
め、負圧の大きさが大になるに従って流路断面積が大き
くなるようになつている。
The jet flow of the throttle valve 5, that is, the intake manifold and the vicinity of the air discharge port of the air cleaner 2 are communicated through an intake secondary air passage 11. An air control valve 12 is provided in the intake secondary air passage 11, and the air control valve 12 has a negative pressure receiving chamber corresponding to the pressure receiving chamber, and a valve chamber 121 that forms a part of the intake secondary air passage 11. , a diaphragm 12C forming a part of the negative pressure chamber 12a, a valve spring 12d provided in the negative pressure chamber 12a, and a valve provided in the valve chamber 121) to close the intake secondary air passage 11. The valve body 1 is biased by the spring 12d via the diaphragm 12C.
2e, the flow passage cross-sectional area of the intake secondary air passage 11 is changed according to the magnitude of the negative pressure acting on the negative pressure chamber 12a, and the flow passage cross-sectional area increases as the magnitude of the negative pressure increases. It's starting to get bigger.

空気制御弁12の負圧室12aには3方電磁弁13から
圧力通路14を介して気体圧が供給されるようになされ
て、いる。電磁弁13はソレノイド13aと、負圧室1
2aと圧力通路14を介して連通した弁室13bど、弁
室13b内に設(プられてソレノイド13aと磁気的に
結合した弁体13Cとを備えている。弁i13bは上記
第1制御圧を発生する負圧制御部31と上記第1圧力通
路をなす負圧通路15を介して連通づ−るJ:うになさ
れ、また吸気2次空気通路11の空気制御弁12より−
F流とも上記第2圧力通路をなす人気11通路16を介
して連通づるようになされている。ソレノイド13の非
通電時には負圧通路15側が閉塞されかつ圧力通路14
と大気圧通路16とが弁室13bを介して連通し、通電
時には大気圧通路16側が閉塞されかつ圧力通路14と
負圧通路15とが連通ずる。
Gas pressure is supplied to the negative pressure chamber 12a of the air control valve 12 from the three-way solenoid valve 13 through the pressure passage 14. The solenoid valve 13 has a solenoid 13a and a negative pressure chamber 1.
2a and a valve chamber 13b communicating with the solenoid 13a through the pressure passage 14, and a valve body 13C that is installed in the valve chamber 13b and magnetically coupled to the solenoid 13a. The negative pressure control unit 31 that generates the air is communicated with the negative pressure passage 15 forming the first pressure passage, and the air control valve 12 of the secondary intake air passage 11 communicates
It is also arranged to communicate with the F flow via the 11th pressure passage 16, which constitutes the second pressure passage. When the solenoid 13 is de-energized, the negative pressure passage 15 side is closed and the pressure passage 14 is closed.
and the atmospheric pressure passage 16 communicate with each other via the valve chamber 13b, and when energized, the atmospheric pressure passage 16 side is closed and the pressure passage 14 and the negative pressure passage 15 communicate with each other.

負圧制御部31は負圧応動型の調整弁32及び空気弁3
3から構成され、調整弁32及び空気弁33は負圧室3
2a、、33aと弁室32b、33bと、ダイアフラム
32c、33Cと、弁ばねご32d 、33dと、弁体
32e、330とから各々なる1、負圧室32aはフィ
ルタイー1の人気吸入口34から絞り弁5の下流に至る
制御吸気路35の途中に設けられ、負圧室3.2aより
下流の制御吸気路35に弁室33bが位置している。弁
体33eは制御吸気路35を閉塞するように弁ばね33
dによってダイアフラム33Cを介して付勢されでいる
。負圧室33aは負圧検出孔8と負圧通路36を介して
連通し、弁室32bは負圧検出孔9と負圧通路37を介
して連通している。また弁室32bは負圧通路36と連
通ずるにうになされ弁体32eが弁室32bから負圧通
路36への通路を閉塞するように弁ばね32dがダイア
フラム32Gを介して弁体32eを付勢し−(いる。な
お、制御吸気路35の負圧室32 aの上流側にオリフ
ィス38が、下流側にオリフィス3つが各々設けられ、
負圧通路36にはオリフrス40が設【〕られ、また負
圧通路37にはオリフィス41が設けられている。オリ
フィス40より弁室32b及び負圧室33a側の負圧通
路36と負圧通路15とが連通している。
The negative pressure control unit 31 includes a negative pressure responsive adjustment valve 32 and an air valve 3.
3, the adjustment valve 32 and the air valve 33 are connected to the negative pressure chamber 3.
2a, 33a, valve chambers 32b, 33b, diaphragms 32c, 33C, valve springs 32d, 33d, and valve bodies 32e, 330, respectively. Negative pressure chamber 32a is the popular suction port 34 of FilterE 1. The valve chamber 33b is provided in the middle of the control intake passage 35 from the negative pressure chamber 3.2a to the downstream of the throttle valve 5, and is located in the control intake passage 35 downstream of the negative pressure chamber 3.2a. The valve body 33e is connected to the valve spring 33 so as to close the control intake passage 35.
d via the diaphragm 33C. The negative pressure chamber 33a communicates with the negative pressure detection hole 8 through the negative pressure passage 36, and the valve chamber 32b communicates with the negative pressure detection hole 9 through the negative pressure passage 37. Further, the valve chamber 32b is in continuous communication with the negative pressure passage 36, and the valve spring 32d urges the valve body 32e via the diaphragm 32G so that the valve body 32e closes the passage from the valve chamber 32b to the negative pressure passage 36. In addition, an orifice 38 is provided on the upstream side of the negative pressure chamber 32a of the control intake passage 35, and three orifices are provided on the downstream side.
An orifice 40 is provided in the negative pressure passage 36, and an orifice 41 is provided in the negative pressure passage 37. The negative pressure passage 36 on the side of the valve chamber 32b and the negative pressure chamber 33a from the orifice 40 communicates with the negative pressure passage 15.

負圧通路15にはオリフィス17が設番プられ、また大
気圧通路16にはオリフィス19が設けられている。
An orifice 17 is provided in the negative pressure passage 15, and an orifice 19 is provided in the atmospheric pressure passage 16.

ソレノイド13aには駆動回路21を介して制御回路2
2が接続されている。制御回路22にはエンジン4の排
気路10に設けられた酸素濃度レンサ23が接続されて
いる。酸素濃度センサ23はJJtガス中の酸素濃度に
応じたレベルの電圧を発生するようになっている。
A control circuit 2 is connected to the solenoid 13a via a drive circuit 21.
2 are connected. An oxygen concentration sensor 23 provided in the exhaust path 10 of the engine 4 is connected to the control circuit 22 . The oxygen concentration sensor 23 is designed to generate a voltage at a level corresponding to the oxygen concentration in the JJt gas.

またAリフイス17を迂回するように負圧通路24が設
けられており、負圧通路2I!lには電磁弁25及びA
リフイス26が設けられている。電磁弁25はソレノイ
ド25aと、負圧通路24の〜部をなず弁室25bと、
弁室25b内に設(プられてソレノイド25aと磁気的
に結合した弁体25Cとからなり、ソレノイド25aの
通電時に負圧通路24を連通するようになっている。ソ
レノイド25aには電圧VSが負圧スイッチ27を介し
て供給されるようになされ、負圧スイッチ27は絞り弁
5下流負圧の大きさが所定値以上にあるときオンとなる
ようになっ(゛いる。
Further, a negative pressure passage 24 is provided so as to bypass the A-refrigerator 17, and a negative pressure passage 2I! l has a solenoid valve 25 and A
A retool 26 is provided. The solenoid valve 25 has a solenoid 25a, a valve chamber 25b, and
It consists of a valve body 25C installed in the valve chamber 25b and magnetically coupled to the solenoid 25a, and communicates with the negative pressure passage 24 when the solenoid 25a is energized.A voltage VS is applied to the solenoid 25a. The negative pressure switch 27 is turned on when the negative pressure downstream of the throttle valve 5 is equal to or higher than a predetermined value.

かかる構成の本発明による吸気2次空気供給装置におい
て、光重゛、負圧制御部31の動作を説明する。
In the intake secondary air supply device according to the present invention having such a configuration, the operation of the light weight and negative pressure control section 31 will be explained.

エンジン4の運転により負圧検出孔8から負圧通路36
を介して負圧pcが負圧v33aに作用づると、その負
圧pcが弁ばね33dによる(=j勢力より大のとき弁
体33eが開弁り向に移動りる。
The negative pressure passage 36 is opened from the negative pressure detection hole 8 by the operation of the engine 4.
When the negative pressure pc acts on the negative pressure v33a via the valve spring 33d, the valve element 33e moves in the valve opening direction when the negative pressure pc is greater than the force (=j) exerted by the valve spring 33d.

空気弁33が開弁すると人気吸入口34から制御吸気路
35を介して外気が絞り弁5下流の吸気路3へ流れ込む
1.この外気が通過する負圧室32aの負圧P1及び弁
’F 3311の負圧1−)2はオリフィス38.39
の絞り比によって定まる。
1. When the air valve 33 opens, outside air flows from the popular intake port 34 through the control intake passage 35 into the intake passage 3 downstream of the throttle valve 5. The negative pressure P1 of the negative pressure chamber 32a through which this outside air passes and the negative pressure 1-)2 of the valve 'F 3311 are connected to the orifice 38.39.
Determined by the aperture ratio.

次【こ、負圧検出孔9から弁室32bに作用りる負圧p
vと負1モP1との差圧が弁ばね32dによる付勢力よ
り大のとき弁体32eが開弁方向に移動ブる。調整弁3
2の開かにより負rtpvの一部がAリフイス40を通
過した負圧を希釈して負圧peとなり電磁弁13の作動
時には負圧室12aに作用づる。
[Next, the negative pressure p acting on the valve chamber 32b from the negative pressure detection hole 9
When the differential pressure between V and the negative pressure P1 is greater than the biasing force of the valve spring 32d, the valve body 32e moves in the valve opening direction. Adjustment valve 3
2 opens, a part of the negative rtpv dilutes the negative pressure that has passed through the A-refrigerator 40 to become a negative pressure pe, which acts on the negative pressure chamber 12a when the solenoid valve 13 is operated.

次いで、負圧peの低下により空気弁33の開度が減少
して制御吸気路3bを流れる空気量も減少りる。この空
気mの減少ににり負圧室32aの負圧P1が低下して調
整弁32は閉弁状態となる。
Next, the opening degree of the air valve 33 decreases due to the decrease in the negative pressure pe, and the amount of air flowing through the control intake passage 3b also decreases. Due to this decrease in air m, the negative pressure P1 in the negative pressure chamber 32a decreases, and the regulating valve 32 enters the closed state.

そして、負圧peが再び上昇して上記と同様の動作が繰
り返され、この繰り返し動作が高速で行われるため負圧
pvとpeとの圧力比が負圧P1とP2との圧力比に等
しくなるのである。
Then, the negative pressure pe rises again and the same operation as above is repeated, and because this repetitive operation is performed at high speed, the pressure ratio between the negative pressure pv and pe becomes equal to the pressure ratio between the negative pressures P1 and P2. It is.

よって、エンジン4の主吸気量が少ないとぎには負圧P
1が負圧Pvより大て・あるため調整弁32の開度は大
きくなり負圧Peは低くなり、主吸気量が多くなるに従
って負圧Pvが大ぎくなるため調整弁32の開度が小さ
くなり負圧1)6は高くtfる。負圧Peは負圧室33
aと共に電磁弁13の作動時に負圧室12aに作用して
空気弁33、空気制御弁12を開弁せしめるため制御吸
気路35を流れる空気量と電磁弁13の作動時に吸気2
次空気通路11を流れる2次空気量とは比例し、また吸
気路3内を流れるエンジン4への1吸気皐と空気制御弁
′12の開弁によつ(゛吸気2次空気通路11を流れる
2次空気量が比例する。故に負圧peは主吸気量に比例
して2次空気を1ンジン吸気路J3の絞り弁5F流に導
入さける第1制御月となる。
Therefore, when the main intake air amount of the engine 4 is small, the negative pressure P
1 is larger than the negative pressure Pv, the opening degree of the regulating valve 32 becomes larger and the negative pressure Pe becomes lower.As the main intake air amount increases, the negative pressure Pv becomes larger, so the opening degree of the regulating valve 32 becomes smaller. The negative pressure 1)6 becomes high tf. Negative pressure Pe is in negative pressure chamber 33
When the solenoid valve 13 is actuated, the amount of air flowing through the control intake passage 35 acts on the negative pressure chamber 12a to open the air valve 33 and the air control valve 12, and the intake air 2 when the solenoid valve 13 is actuated.
The amount of secondary air flowing through the secondary air passage 11 is proportional to the amount of secondary air flowing through the secondary air passage 11, and the amount of secondary air flowing through the secondary air passage 11 is proportional to the amount of secondary air flowing through the secondary air passage 11. The amount of secondary air flowing is proportional.Therefore, the negative pressure pe becomes the first control to introduce the secondary air into the flow of the throttle valve 5F of the engine intake path J3 in proportion to the amount of main intake air.

次に、制御回路22の動作を第4図の動作)Ll−図に
従って説明する。
Next, the operation of the control circuit 22 will be explained according to the operation) Ll diagram in FIG.

制御回路22はイグニッションスイッチ(図示せず2が
オンとなって電源が供給されるど、先ず、酸素濃度セン
サ23の出力電圧レベルを読み取る(ステラ2f1)。
When the ignition switch (not shown 2) is turned on and power is supplied, the control circuit 22 first reads the output voltage level of the oxygen concentration sensor 23 (Stella 2f1).

酸素濃度センサ23はいわゆる流し出しタイプのセンサ
であり、雰囲気がリッチになるに従って出力電圧VO2
が上昇プるようになっている。酸素濃度セン+j23の
出力電rX、VO7を読み取り後、この出力電圧V02
から混合気の空燃比を判別する(ステップ2)。この判
別動作においては酸素濃度センサ23の出力電圧VO7
が理論空燃比に対応する基準電圧yrより人であるかに
よって空燃比がリッチであるがリーンであるか判断され
る。Vo2<Vrの場合には空燃比がリーンであると判
別して空燃比をリッチ方向に制御すべくリーン信号を駆
動回路21に供給するくステップ3)。一方、VO2≧
Vrの場合には空燃比がリッチであると判別して空燃比
をり−ソ方向に制御リベく駆動回路21にリッチ信号を
供給する(ステップ4)。
The oxygen concentration sensor 23 is a so-called drain type sensor, and the output voltage VO2 increases as the atmosphere becomes richer.
is starting to rise. After reading the output voltage rX and VO7 of oxygen concentration sensor +j23, this output voltage V02
The air-fuel ratio of the air-fuel mixture is determined from (step 2). In this discrimination operation, the output voltage VO7 of the oxygen concentration sensor 23 is
It is determined whether the air-fuel ratio is rich or lean depending on whether the reference voltage yr corresponds to the stoichiometric air-fuel ratio. If Vo2<Vr, it is determined that the air-fuel ratio is lean, and a lean signal is supplied to the drive circuit 21 to control the air-fuel ratio in a rich direction (step 3). On the other hand, VO2≧
In the case of Vr, it is determined that the air-fuel ratio is rich, and a rich signal is supplied to the drive circuit 21 to control the air-fuel ratio in the reverse direction (step 4).

このように制御回路22がら駆動回路21にリーン信号
又はリッチ信号が供給されると、駆動回路21はリーン
信号に応じてソレノイド13aの非通電により電磁弁1
3を不作動状態にゼしめ、またリッチ信号に応じてソレ
ノイド13aへの通電により電磁弁13を作動状態にせ
しめる。
When a lean signal or a rich signal is supplied from the control circuit 22 to the drive circuit 21 in this way, the drive circuit 21 de-energizes the solenoid 13a in response to the lean signal and de-energizes the solenoid valve 1.
3 is brought into an inoperative state, and the solenoid valve 13 is brought into an operating state by energizing the solenoid 13a in response to the rich signal.

今、制御回路22の出力がリーン信号がらリッヂ信号に
反転したとすると、電磁弁13は作動状態となり、大気
圧通路16側を閉塞して圧力通路14と負圧通路15と
を連通せしめる。そうすると、負圧制御部31から負圧
peがオリフィス17を介して負圧室12aに供給され
る故に負圧室12a内の負圧は徐々に負圧peに近づき
、空気制御弁120開度すなわち吸気2次空気通路11
の流路断面積が徐々に増大して2次空気量が増大する。
Now, if the output of the control circuit 22 is reversed from the lean signal to the ridge signal, the electromagnetic valve 13 is activated and closes the atmospheric pressure passage 16 side, allowing the pressure passage 14 and the negative pressure passage 15 to communicate with each other. Then, since the negative pressure pe is supplied from the negative pressure control unit 31 to the negative pressure chamber 12a via the orifice 17, the negative pressure in the negative pressure chamber 12a gradually approaches the negative pressure pe, and the opening of the air control valve 120 Intake secondary air passage 11
The cross-sectional area of the flow path gradually increases, and the amount of secondary air increases.

このとき、絞り弁5下流負ルの大きさが所定値以上であ
れば、負圧スイッチ27がオンとなってソレノイド25
aに電圧VSが供給されるの−(゛電磁弁25が開弁し
て負圧通路24が電磁弁2・5を介し゛C連通する。故
に負圧Peはオリフィス17ど共にオリフィス26を介
しで負圧室12aに供給されるのでA−リフイス17の
みのとぎに比べて負圧y12aへの負圧通路総断面積が
増加するため負圧室12a内の負圧上背速成が人ぎくな
り空気制御弁12の開弁速成は上がする。
At this time, if the magnitude of the negative pressure downstream of the throttle valve 5 is greater than or equal to a predetermined value, the negative pressure switch 27 is turned on and the solenoid 25
When the voltage VS is supplied to a - ('The solenoid valve 25 opens and the negative pressure passage 24 communicates with 'C' through the solenoid valves 2 and 5. Therefore, the negative pressure Pe is supplied to both the orifice 17 and the orifice 26. Since the negative pressure y12a is supplied to the negative pressure chamber 12a, the total cross-sectional area of the negative pressure passage to the negative pressure y12a increases compared to the case where only the A-refrigerator 17 is used. The opening speed of the air control valve 12 is increased.

負圧室12a内の負圧が負圧Peと等しくなると吸気2
次空気通路11を流れる2次空気量が主吸気量に比例し
、エンジン4に主吸気量に仕倒した量の2次空気が供給
される。
When the negative pressure in the negative pressure chamber 12a becomes equal to the negative pressure Pe, the intake air 2
The amount of secondary air flowing through the secondary air passage 11 is proportional to the main intake air amount, and the engine 4 is supplied with an amount of secondary air equal to the main intake air amount.

次に、制御回路22の出力がリップ信号からリーン信号
に反転すると、電磁弁13は不作動状態となり、負圧通
路15側を閉塞して圧力通路14と大気圧通路16とを
連通せしめる。そうするど、大気圧がオ゛リフイス19
を介しC負圧室12aに供給される故に負圧室12aの
負圧は徐々に大気圧に近づき吸気2次空気通路11の流
路断面積が徐々に減少し2次空気量も減少する。負圧室
128内の圧力が大気圧とほぼ等しくなると空気制御弁
12は閉弁して吸気2次空気通路11を閉塞せしめる故
に2次空気のエンジン4への供給が停止する。
Next, when the output of the control circuit 22 is reversed from the lip signal to the lean signal, the solenoid valve 13 becomes inactive, closing the negative pressure passage 15 side and allowing the pressure passage 14 and the atmospheric pressure passage 16 to communicate with each other. Then, the atmospheric pressure becomes 19
Since the negative pressure in the negative pressure chamber 12a gradually approaches atmospheric pressure, the cross-sectional area of the intake secondary air passage 11 gradually decreases, and the amount of secondary air also decreases. When the pressure within the negative pressure chamber 128 becomes approximately equal to the atmospheric pressure, the air control valve 12 closes to block the intake secondary air passage 11, thereby stopping the supply of secondary air to the engine 4.

にって、空燃比を理論空燃比に制御づる場合、第5図(
a)に示ずようにリッヂイハ号どリーン信号とが交互に
連続して発生ずるため負圧室12a内の負圧の大きさは
第5図(1))に示すように変化し、吸気2次空気通路
11の流路断面積、2次空気jハ及び空燃比も同様に変
化する。
Therefore, when controlling the air-fuel ratio to the stoichiometric air-fuel ratio, Fig. 5 (
As shown in Fig. 5(1)), since the Ridge signal and Lean signal are generated alternately and continuously, the magnitude of the negative pressure in the negative pressure chamber 12a changes as shown in Fig. 5 (1)), and the intake air 2 The cross-sectional area of the secondary air passage 11, the secondary air, and the air-fuel ratio also change in the same way.

ここで、負圧室12a内の負圧をPAv、Jリフイス1
7の通路断面積をSl、空気制御弁12の開弁速度をL
oとすると次式が成立づ−る。
Here, the negative pressure in the negative pressure chamber 12a is PAv, Jrefice 1
7, the passage cross-sectional area is Sl, and the opening speed of the air control valve 12 is L.
If o, then the following equation holds true.

Loci:S+  (Pe −PA V )””= (
1)故に、空燃比のリーン方向への制御速度は負圧PO
i’なわら吸気量及びオリフィス17の通i18断面f
a S +に依存する。またオリフィス19の通路断面
積を82、空気制御弁12の閉弁速度を10とすると次
式が成立づる。
Loci: S+ (Pe −PA V )””= (
1) Therefore, the control speed of the air-fuel ratio in the lean direction is the negative pressure PO
i' Straw intake air amount and orifice 17 through i18 cross section f
Depends on a S +. Further, assuming that the passage cross-sectional area of the orifice 19 is 82 and the closing speed of the air control valve 12 is 10, the following equation holds true.

l c工S2 ・PAV工・・・・・・(2)故に、空
燃比のリッチ方向への制御速度はAリフイス19の通路
断面積S2に依存する。。
l c engineering S2 ・PAV engineering... (2) Therefore, the control speed of the air-fuel ratio in the rich direction depends on the passage cross-sectional area S2 of the A refill 19. .

よって、吸気量が一定に保たれた運転状態にd5いては
空気制御弁12の開弁速度L oづなわらリーン方向へ
の空燃比制御速度はΔリフイス17の通路断面積S1の
大きさに比例し、閉弁速度1−cづなわらリッチ方向へ
の空燃比制御速度はオリフィス19の通路断面樋S2の
犬き♂に比例する。
Therefore, in the operating state d5 in which the intake air amount is kept constant, the valve opening speed L of the air control valve 12 is proportional to the air-fuel ratio control speed in the lean direction. However, the valve closing speed 1-c and the air-fuel ratio control speed in the rich direction are proportional to the cross section of the passageway of the orifice 19 and the cross section of the trough S2.

また通路断面v3S+、S2の大きさを所定値に設定す
ると、開弁速度り、 oは吸気量に比例し吸気量が大き
いほどリーン方向への空燃比制御速度が速くなり、閉弁
′速度LCは一定となる。
Furthermore, when the sizes of the passage cross sections v3S+ and S2 are set to predetermined values, the valve opening speed and o are proportional to the intake air amount, and the larger the intake air amount, the faster the air-fuel ratio control speed in the lean direction becomes. becomes constant.

従って、本発明による吸気2次空気供給装置においては
エンジン低負荷時には絞り弁5下流負圧の大きさが所定
値以上に上昇するため電磁弁25が開弁して負圧室12
aへの負圧通路総断面積が増加し、すなわち通路断面積
S1が増加することになる故に第6図の実線への如くエ
ンジン中高負荷R(破線B)に比して空気制御弁12の
開弁速度が上昇してリーン方向への空燃比制御速度が上
昇する。よってエンジン中高負荷時にd3ける空燃比を
即論空燃比或いは理論空燃比よりリッチ側に制御づるよ
うに設定すればエンジン低負荷時にd3りる空燃比は理
論空燃比よりもリーン側に制御されるのである。
Therefore, in the intake secondary air supply device according to the present invention, when the engine load is low, the magnitude of the negative pressure downstream of the throttle valve 5 increases to a predetermined value or more, so the solenoid valve 25 opens and the negative pressure chamber 12 increases.
Since the total cross-sectional area of the negative pressure passage to a increases, that is, the passage cross-sectional area S1 increases, the air control valve 12 is The valve opening speed increases and the air-fuel ratio control speed in the lean direction increases. Therefore, if the air-fuel ratio at d3 is controlled to be richer than the immediate air-fuel ratio or stoichiometric air-fuel ratio when the engine is under medium or high load, then the air-fuel ratio at d3 is controlled to be leaner than the stoichiometric air-fuel ratio when the engine is at low load. It is.

第7図は本発明の他の実施例を示しており、本図におい
では、負圧通路24には負圧制御弁28が設りられてお
り、負圧制御弁28は負圧室28a、弁室28b、ダイ
アフラム28C1弁ばね28d、弁体280及び弁座2
8 fからなる。負圧室28a内にダイアフラム28C
が設けられ、弁室28bは負圧通路2/Iの一部を形成
し、弁室28b内に設りられた弁体28e及び弁座28
fが負圧通路24の通路断面積を定めるようになってお
り、弁はね28dはダイアフラム28cを介して弁体2
.8eを開弁方向に付勢【ノCいる。負圧室28 aに
は9月−PCが供給され、M IT−通路24の通路断
面積G、+負j、E P eの大ぎさに応じC受止し、
負aPeの大ぎさの大になるに従って小さくなるように
なされている。
FIG. 7 shows another embodiment of the present invention. In this figure, the negative pressure passage 24 is provided with a negative pressure control valve 28, and the negative pressure control valve 28 includes a negative pressure chamber 28a, Valve chamber 28b, diaphragm 28C1 valve spring 28d, valve body 280 and valve seat 2
Consists of 8 f. A diaphragm 28C is installed in the negative pressure chamber 28a.
The valve chamber 28b forms a part of the negative pressure passage 2/I, and the valve body 28e and valve seat 28 provided in the valve chamber 28b
f determines the passage cross-sectional area of the negative pressure passage 24, and the valve spring 28d is connected to the valve body 2 via the diaphragm 28c.
.. 8e is biased in the valve opening direction. The negative pressure chamber 28a is supplied with September-PC, which receives C according to the passage cross-sectional area G, + negative j, and the magnitude of E Pe of the MIT-passage 24,
It is made to become smaller as the magnitude of negative aPe becomes larger.

よって、かかる本発明による吸気2次空気供給装置にお
いては、エンジン負荷が高くなるに従って負圧Peの大
きさが−しpづるので空気制御弁2E3による負圧通路
24の通路断面積はエンジン負荷が低くなるに従って大
きくなり、負圧通路240通路断面槓すなわち負圧r1
2aへの負圧通路総断面積を1ンジン負荷に応じて連続
的に変化させることができる。故に、エンジン負荷が低
くなるほど空燃比を理論空燃比よりbリーン側に制御で
き、またエンジン負荷が高くなるほど空燃比を理論空燃
比よりもリッチ側に制御覆ることができるのである。
Therefore, in the intake secondary air supply device according to the present invention, the magnitude of the negative pressure Pe decreases as the engine load increases, so the passage cross-sectional area of the negative pressure passage 24 by the air control valve 2E3 increases as the engine load increases. As it becomes lower, it becomes larger, and the cross section of the negative pressure passage 240 becomes larger, that is, the negative pressure r1
The total cross-sectional area of the negative pressure passage to 2a can be continuously changed according to the engine load. Therefore, as the engine load decreases, the air-fuel ratio can be controlled to be leaner than the stoichiometric air-fuel ratio, and as the engine load increases, the air-fuel ratio can be controlled to be richer than the stoichiometric air-fuel ratio.

第8図は更に本発明の他の実茄例を示しており、本図に
おいては負圧通路15は絞り弁5下流に連通ずるように
なされ、負圧通路15のAリフィス17より絞り弁5下
流側には第1図の負圧制御部31に代って第1制御圧発
生源として一定負圧制御弁29が設けられている。一定
負圧制御弁29は絞り弁5下流負圧の大ぎさが所定の大
きさ以1にあるとき該負圧を所定の大きさの負圧prに
安定化させるようになっている。本発明による吸気2次
空気供給装置のその他の構成は第1図の装動と同様であ
る。
FIG. 8 shows another embodiment of the present invention, in which the negative pressure passage 15 is communicated downstream of the throttle valve 5, and the A orifice 17 of the negative pressure passage 15 is connected to the throttle valve 5. On the downstream side, a constant negative pressure control valve 29 is provided as a first control pressure generation source in place of the negative pressure control section 31 shown in FIG. The constant negative pressure control valve 29 is configured to stabilize the negative pressure downstream of the throttle valve 5 to a predetermined negative pressure pr when the negative pressure is greater than or equal to a predetermined value. The other configuration of the intake secondary air supply device according to the present invention is the same as that shown in FIG.

このように本発明の内燃エンジンの吸気2次空気供給装
置においては、吸気2次空気通路に設りられた空気制御
弁の受圧室にMl及び第2制御圧のいずれか一方を供給
してニューマチック方式の積分動作によって吸気2次空
気供給すなわち空燃比制御が行われ、第1制御圧だけを
第1制御ff発4[源から受圧室に供給するための圧力
通路の通路断面積をエンジン運転状態に応じぐ変化せし
めるようになされている。よって、簡単な構成で空気制
御弁の開弁速度、づなわぢリーン方向への空燃比制御速
麿を変化させることができる。故に、エンジン高負荷時
等のNOxの発生量が多い運転状態に比して低負荷等の
GO,1−ICの発生量が多い運転状態において圧力通
路の通路断面積が大きくなるように1れば空燃比がリー
ン側に制御されるためNOx 、Go、t−1c等の有
害成分の発生を総合的に抑制づることがで゛きるのであ
る。
As described above, in the intake secondary air supply device for an internal combustion engine according to the present invention, either Ml or the second control pressure is supplied to the pressure receiving chamber of the air control valve installed in the intake secondary air passage. The intake secondary air supply, that is, the air-fuel ratio control is performed by the integral operation of the Matic system, and only the first control pressure is supplied from the first control FF to the engine operation. It is designed to change according to the situation. Therefore, the opening speed of the air control valve and the air-fuel ratio control speed in the lean direction can be changed with a simple configuration. Therefore, the passage cross-sectional area of the pressure passage is designed to be larger in operating conditions such as low engine load, in which the amount of GO, 1-IC generated is large, compared to operating conditions in which the amount of NOx generated is large, such as during high engine load. Since the air-fuel ratio is controlled to the lean side, it is possible to comprehensively suppress the generation of harmful components such as NOx, Go, and t-1c.

また本発明による吸気2次空気供給装置にJ3いては、
第1及び第2制御圧のいずれを空気制御弁の受圧室に供
給づぺぎであるかを判定りるための制御回路も比較動作
機能を備え−(いるだりの簡単な構成で済むという利点
もある。
Further, in the intake secondary air supply device according to the present invention, J3 has the following features:
The control circuit for determining which of the first and second control pressures should be supplied to the pressure receiving chamber of the air control valve also has a comparison operation function. There is also.

なお、本発明の吸気2次空気供給装置においでは、」ン
ジン運転状態を表わすパラメータとしてF記実施例の如
く絞り弁下流負圧を用いてエンジン負荷を判別すること
に限らず吸気量、絞り弁開度、エンジン回転数、また車
載内燃エンジンの場合には車速成いは変速ギA7ポジシ
ヨン等を用いて加速時、アイドル時等のエンジン運転状
態を判別しても良いのである。
In addition, in the intake secondary air supply device of the present invention, the engine load is not limited to being determined using the negative pressure downstream of the throttle valve as in the embodiment F as a parameter representing the engine operating state, but the intake air amount, the throttle valve Engine operating conditions such as acceleration and idling may be determined using the opening degree, engine rotational speed, and, in the case of an on-vehicle internal combustion engine, vehicle speed or shift gear A7 position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三元触媒の排ガス有害成分の浄化効率を示す図
、第2図はエンジン負荷と排ガス有害成分発生酊との関
係を示4図、第3図は本発明の実施例を示ず構成図、第
4図は第3図の装置中の制御回路の動作を示すフロー図
、第5図は第3図の装置中の空気制御弁の負圧室内の負
/1変化を示す図、第6図はエンジン負荷が低負荷時と
中高負荷時とにおける空気制御弁の開閉動作を示す図、
第7図及び第8図は本発明の他の実施例を示す構成図で
ある。 主要部分の符号の説明 2・・・・・・エアクリーナ 3・・・・・・吸気路    5・・・・・・絞り弁6
・・・・・・ベンチュリ 8.9・・・・・・負圧検出孔 10・・・・・・排気路 11・・・・・・吸気2次空気通路 12・・・・・・空気制御弁 13.25・・・・・・電磁弁 14.24・・・・・・負圧通路 16・・・・・・大気圧通路 17.19;  26.38.39,40.41・・・
・・・オリフィス  − 23・・・・・・酸素濃度レンザ 27・・・・・・負圧スイッチ 28・・・・・・負圧制御弁 29・・・・・・一定負圧制御弁 31・・・・・・負圧制御部 出願人   本田技仙二[業株式会召 代理人   弁理士  藤利元彦
Fig. 1 is a diagram showing the purification efficiency of harmful exhaust gas components of a three-way catalyst, Fig. 2 is a diagram showing the relationship between engine load and the generation of harmful exhaust gas components, and Fig. 3 is a diagram showing an example of the present invention. 4 is a flowchart showing the operation of the control circuit in the device shown in FIG. 3; FIG. 5 is a diagram showing a negative/1 change in the negative pressure chamber of the air control valve in the device shown in FIG. 3; Figure 6 is a diagram showing the opening and closing operations of the air control valve when the engine load is low and medium to high.
FIGS. 7 and 8 are configuration diagrams showing other embodiments of the present invention. Explanation of symbols of main parts 2... Air cleaner 3... Intake path 5... Throttle valve 6
...Venturi 8.9...Negative pressure detection hole 10...Exhaust passage 11...Intake secondary air passage 12...Air control Valve 13.25... Solenoid valve 14.24... Negative pressure passage 16... Atmospheric pressure passage 17.19; 26.38.39, 40.41...
... Orifice - 23 ... Oxygen concentration lens 27 ... Negative pressure switch 28 ... Negative pressure control valve 29 ... Constant negative pressure control valve 31. ...Negative pressure control unit Applicant: Honda Gisenji [Co., Ltd. Representative] Patent attorney: Motohiko Fujitoshi

Claims (3)

【特許請求の範囲】[Claims] (1)内燃エンジン吸気路の絞り弁下流に連通ずる吸気
2次空気通路に設けられて受圧室内の気体圧のを判定し
空燃比信号を発生ずる判定手段と、前記空気制御弁を開
弁せしめるための第1制御圧を発生する第1制御圧発生
源と、前記空気制御弁を閉弁せしめるための第2制御圧
を発生ずる第2制御圧発生源と、前記空燃比信号の内容
に応じて前記第1又は第2制御圧のいずれか一方を前記
受圧室に供給する連通手段とを含み、前記連通手段は前
記第1制御圧の前記受圧室への供給の際に前記第1制御
圧を圧力通路を介して前記受圧室に供給し、前記圧力通
路の通路断面積がエンジン運転状態に応じて変化するよ
うになされてい本ことを特徴とする吸気2次空気供給装
置。
(1) A determination means provided in a secondary intake air passage communicating with the throttle valve downstream of the internal combustion engine intake passage, for determining the gas pressure in the pressure receiving chamber and generating an air-fuel ratio signal, and for opening the air control valve. a first control pressure generation source that generates a first control pressure for closing the air control valve; a second control pressure generation source that generates a second control pressure for closing the air control valve; communication means for supplying either the first or second control pressure to the pressure receiving chamber, the communication means supplying either the first control pressure or the second control pressure to the pressure receiving chamber; An intake secondary air supply device, characterized in that the intake air is supplied to the pressure receiving chamber via a pressure passage, and the passage cross-sectional area of the pressure passage changes according to engine operating conditions.
(2) 前記エンジン運転状態は前記絞り弁下流負圧、
吸気量、前記絞り弁開度、エンジン回転数、車速及び変
速ギ\7シフト位置の少なくとも1つに基づいて検出さ
れることを特徴とする特許請求の範囲第1項記載の吸気
2次空気供給装置。
(2) The engine operating state is a negative pressure downstream of the throttle valve;
The intake secondary air supply according to claim 1, wherein the intake secondary air supply is detected based on at least one of the intake air amount, the opening degree of the throttle valve, the engine speed, the vehicle speed, and the gear shift position. Device.
(3) 前記圧力通路の通路断面積は高負荷運転状態の
ときよりも低負荷運転状態のときの方が大きくなるよう
になされていることを特徴とする特許請求の範囲第1項
記載の吸気2次空気供給装置。
(3) The intake air according to claim 1, characterized in that the passage cross-sectional area of the pressure passage is larger in a low-load operating state than in a high-load operating state. Secondary air supply device.
JP58046922A 1983-03-17 1983-03-19 Intake secondary-air supply device in internal- combustion engine Pending JPS59173543A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58046922A JPS59173543A (en) 1983-03-19 1983-03-19 Intake secondary-air supply device in internal- combustion engine
US06/587,743 US4558682A (en) 1983-03-17 1984-03-08 Air intake side secondary air supply system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046922A JPS59173543A (en) 1983-03-19 1983-03-19 Intake secondary-air supply device in internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS59173543A true JPS59173543A (en) 1984-10-01

Family

ID=12760819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046922A Pending JPS59173543A (en) 1983-03-17 1983-03-19 Intake secondary-air supply device in internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59173543A (en)

Similar Documents

Publication Publication Date Title
JPH0218419B2 (en)
US4483308A (en) Air intake side secondary air supply system for an internal combustion engine equipped with exhaust gas recirculation control system
US4111170A (en) Air-fuel ratio control system
US4665883A (en) Air fuel ratio control system for an internal combustion engine with improved operations for maintaining the engine output power
US4617900A (en) Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load
US4557242A (en) Air/fuel ratio feedback control system for an internal combustion engine of a vehicle
US4677959A (en) Air intake side secondary air supply system for an internal combustion engine
US5105620A (en) Secondary air supply system for supercharged engine
JPS59173543A (en) Intake secondary-air supply device in internal- combustion engine
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
JPS59201946A (en) Air-fuel ratio controller for internal-combustion engine
US4558682A (en) Air intake side secondary air supply system for an internal combustion engine
US4503834A (en) Feedback control system for supplying a fluid to an apparatus operable with the fluid
US4380984A (en) Electronic controlled carburetor
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
US4617891A (en) Secondary air supply for internal combustion engine
JPS59190460A (en) Secondary intake-air supply device for internal- combustion engine
JPH04330320A (en) Air suction system
JPS5999057A (en) Secondary suction air supplying device for internal- combustion engine
JPS6145054B2 (en)
JPS5999056A (en) Secondary suction air supplying device for internal combustion engine
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JPS6410655B2 (en)
JPS6030454Y2 (en) Solenoid valve for air-fuel ratio control in internal combustion engines
JPS6229620B2 (en)