JPS59173246A - High strength weather resistance steel for spring - Google Patents

High strength weather resistance steel for spring

Info

Publication number
JPS59173246A
JPS59173246A JP4726183A JP4726183A JPS59173246A JP S59173246 A JPS59173246 A JP S59173246A JP 4726183 A JP4726183 A JP 4726183A JP 4726183 A JP4726183 A JP 4726183A JP S59173246 A JPS59173246 A JP S59173246A
Authority
JP
Japan
Prior art keywords
strength
weather
spring
copper
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4726183A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Atsuyoshi Kimura
木村 篤良
Yukio Ito
伊藤 幸生
Kiyoaki Nishikiori
錦織 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4726183A priority Critical patent/JPS59173246A/en
Publication of JPS59173246A publication Critical patent/JPS59173246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PURPOSE:To attain to enhance the strength and corrosion resistance of the titled steel, by containing C, Si, Mn, Cr, Cu and Fe in a predetermined ratio while limiting the contents of impurities, i.e. O and S. CONSTITUTION:The titled spring grade steel comprises, on a wt. basis, 0.4- 0.75% C, 1-0.2% Si, 0.5-1% Mn, 0.1-1% Cr, 0.35-3% Cu and the remainder of Fe and impurites containing S and O and is limited to S<=0.01% and O<=0.0015% in the contents of S and O. This spring grade spring has high strength and is excellent in corrosion resistance and weather resistance and suitably used as the suspension spring material of an automobile.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度でかつ耐候性にすぐれ、たとえは自
動車などの車両用懸架はね素材としての使用に適する高
強度耐候性ばね用銅に関するものである。 近年、自動車の走行性能や燃費を向上させるために、そ
の軽量化が進められており、自動車の構成部品である懸
架ばねにおいても軽量化が要求されるようになってきて
いる。このような要求に対し、ばね用銅としては高応力
化で対応することが通常の考え方であり、その一つとし
て酎へたり性を向]二させたは゛ね用銅の開発がなされ
ている。 従来、1耐へたり性の優れたlオね用銅としては。 鋼中に含まれるSiか酎へたり性に有効な元素であるこ
とから、JIS  5UP6およびこれよりもSi含有
邦が多い5UP7など主として使用されてさた。 ところが、このような高Si材料は大気中での耐食性か
劣り、とくにピント状に腐食が進行するため疲労強度が
極☆+j5に低下するので、ばねの設計応力を高めるこ
とができないという問題点を有していた。 そこで、未発ψj者らはこのような問題点にノ゛、・目
して鋭意研究を進め、従来のはね用銅よりもさらに高強
度でかつ耐食性にも優れた高強度耐候性はね用銅を得る
ことを目的として詳細に研究を行った結果、C,Si、
Mn、Crを特定看組合わせて含有させ、これにCuを
添加し、さらに使用目的に応じてAI、V、Nb、の1
種以上およびBを添加し、必要に応じて不純物中の(S
)および
The present invention relates to a high-strength, weather-resistant copper spring material that has high strength and excellent weather resistance, and is suitable for use as a suspension spring material for vehicles such as automobiles. In recent years, in order to improve the driving performance and fuel efficiency of automobiles, efforts have been made to reduce the weight of automobiles, and suspension springs, which are component parts of automobiles, are also required to be lightweight. It is a common idea to meet these demands by increasing the stress of copper for springs, and one of the ways to do this is to develop copper for springs that is less susceptible to fatigue. Conventionally, this is the best copper for 1-piece use with excellent resistance to fatigue. Since Si contained in steel is an effective element for fixing, it has been mainly used in JIS 5UP6 and 5UP7, which contains more Si than this. However, such high-Si materials have poor corrosion resistance in the atmosphere, and corrosion progresses particularly in the form of pins, reducing fatigue strength to extremely low + j5, which poses the problem of not being able to increase the design stress of the spring. had. Therefore, those who have not discovered ψj have conducted intensive research to address these problems, and have developed a high-strength, weather-resistant material that is even higher in strength and has superior corrosion resistance than conventional copper for splinters. As a result of detailed research aimed at obtaining copper for use, we found that C, Si,
Mn and Cr are contained in a specific combination, Cu is added to this, and one of AI, V, and Nb is added depending on the purpose of use.
Species or more and B are added, and (S
)and

〔0〕含有量を規制し、さらには鋼の結晶粒度
を9番以−1−とすることにより、1−記目的を達成す
ることかてきた。 すなわち、この発明による高強度耐候性はね用銅は、東
邦%て、C:0.40−0.75%、Si:1.O〜2
.5%、Mn:0.5〜1.0%、Cr:0.1.−1
.0%、Cu:0.35−3%、および必要に応してへ
父 0.01〜0 、1 %、 V : 0 、03−
0 、3 %、 N b :0.01〜0.3%のIJ
Φまたは2種以−に、さらにB:0.0005〜0.0
10%を含イ9し、残6RF eおよび不純物からなる
ことを特徴とし、さらに必要に尾:じ、不純物中におい
て、 (S)≦0.010%、〔o〕≦o、0o15%
に規制し、結晶粒度を9番以」二としたことを特徴とし
ている。 次に、この発明による高強度耐候性はね用銅の成分範囲
(重量%)の限定理由を説明する。 C(炭素): Cは、鎖の強度を高めるのに有効な元素であるか、04
0%未満ではばねとしての必要な強度で得ることができ
ず、0.75%を超えると綱状のセメンタイトか出やす
くなり、ばねの疲労強度か損われるので、0.40〜0
.75%の範囲とした。 Si(けい素)。 Siは、鋼の強度を向」ニし、ばねの酎へたり性を向上
させるのに有効な元素であるが、1.0%未満ではばね
として必要な酎へたり性を得ることかできす、25%を
超えると靭性か劣化するので、1.0〜25%の範囲と
した。 Mn(マンカン) Mnは 錆の1悦酸に有効であると共にSによる害をト
旧1−するのに有効な元素であり、このためには05%
以り含有させることか必要であるが、10%を超えると
焼入性か過大になって靭性を劣化すると共に焼入れ時の
変形の原因となりやすいので、05〜10%の範囲とし
た。 Cr(クロム) Crは、高炭素鋼の脱炭および黒鉛化を防11−するの
に有効な元素であるが、0.1%未満てはこれらの効果
を十分に1切待することかできす、1.0%を超えると
靭性か劣化するので、0.1〜10%の範囲とした。 Cu(銅); Cuは、析出硬化によって強度を高めるのに寄グ、する
と共に、耐食耐候性の向上に有効な元素である。しかし
、0.35%未満では析出硬化に効果はあるものの耐食
耐候性の向上には不十分であり、3%を超えると熱間加
工性が低下するので、0.35〜3%の範囲とした。 AM(アルミニウム)、V(バナジウム)  、Nb(
二オフ); A文、V、Nbは、低温圧延時の結晶粒微細化効果か大
きく、はね特性の向丘および信頼性の増大を得ることが
でき、また、V、Nbは焼入れ焼もとし時の析出硬化に
も寄与する。そして、A文については、0.01%未満
では結晶粒微細化の効果か小さく、0.1%を超えると
地肌発生の原因となるのて、001〜0.1%の範囲と
した。また、■については、0.03%未満では上記し
た結晶粒微細化および析出硬化の効果があまり期待でき
ず、0.3%を超えると製鋼上の取扱いか困難となるの
で、0.03〜0.3%の範囲とした。さらに、Nb 
(Nb+Taでも0丁)については、0.01%未満で
は結晶粒微細化および析出硬化の効果があまり期待でき
ず、また焼入加熱時の結晶粒粗大化をおさえる効果か十
分得られず、03%を超えると造塊時に炭化物(N b
 C)かストリンカ−状に生成し、これが通畠の分塊圧
延時に溶体化せず、また後の熱処理て溶解しにくく、製
品としてのはね特性を低下させるので、0.01−0.
3%の範囲とした。 B(ポロン)。 Bは、3目の焼入性を増大させるのに有効な元素であり
、必要なはね特性か得られるように使用目的等に応して
添加するが、O,Cl005%未Jl!l!1ては−1
−記した効果が得られず、0.01%を超えても1−記
した効果は増大しないので、0.0005〜0.01%
の範囲とした。 〔S〕 (いおう)。 Sは、はねの疲労強度を損う元素てあり、S含有年か低
いほどばねとしての信頼性を高めることがてきるので、
使用目的等に応じてその−1−限を規制するのか良い。 そして、0.010%以下であれはSによる害はほとん
どなくなるので、0.010%以ドとすることかより望
ましい。
[0] By regulating the content and further setting the crystal grain size of the steel to 9-1- or higher, it has been possible to achieve the objective 1-. That is, the high-strength, weather-resistant copper for splashing according to the present invention has Toho%, C: 0.40-0.75%, Si: 1. O~2
.. 5%, Mn: 0.5-1.0%, Cr: 0.1. -1
.. 0%, Cu: 0.35-3%, and if necessary Cu: 0.01-0,1%, V: 0,03-
0.3%, Nb: 0.01-0.3% IJ
Φ or two or more types, and further B: 0.0005 to 0.0
It is characterized by containing 10% of A9, the remainder consisting of 6RF e and impurities, and further including (S)≦0.010%, [o]≦o, 0o15% in the impurities.
It is characterized by having a crystal grain size of 9 or more. Next, the reason for limiting the range of components (% by weight) of the high-strength, weather-resistant splash copper according to the present invention will be explained. C (carbon): Is C an effective element for increasing the strength of the chain?
If it is less than 0%, it will not be possible to obtain the necessary strength as a spring, and if it exceeds 0.75%, rope-like cementite will tend to form and the fatigue strength of the spring will be impaired.
.. The range was set at 75%. Si (silicon). Si is an effective element for increasing the strength of steel and improving the stiffness of springs, but if it is less than 1.0%, it will not be possible to obtain the stiffness required for springs. If the content exceeds 25%, the toughness deteriorates, so the content is set in the range of 1.0 to 25%. Mn (Mankan) Mn is an element that is effective in reducing rust and also in reducing the damage caused by S. For this purpose, 0.5%
It is necessary to contain more than 10%, but if it exceeds 10%, the hardenability becomes too high, which deteriorates the toughness and tends to cause deformation during hardening, so the content is set in the range of 05 to 10%. Cr (Chromium) Cr is an effective element for preventing decarburization and graphitization of high carbon steel, but if it is less than 0.1%, these effects cannot be fully expected. However, if it exceeds 1.0%, the toughness deteriorates, so it is set in the range of 0.1 to 10%. Cu (copper); Cu is an element that helps increase strength through precipitation hardening and is effective in improving corrosion resistance and weather resistance. However, if it is less than 0.35%, although it is effective for precipitation hardening, it is not sufficient to improve corrosion and weather resistance, and if it exceeds 3%, hot workability decreases, so the range of 0.35 to 3% is did. AM (aluminum), V (vanadium), Nb (
A, V, and Nb have a large grain refining effect during low-temperature rolling, and can improve the spring characteristics and increase reliability; It also contributes to precipitation hardening. As for Text A, if it is less than 0.01%, the effect of refining the crystal grains will be small, and if it exceeds 0.1%, it will cause the occurrence of roughness, so it was set in the range of 001 to 0.1%. Regarding ■, if it is less than 0.03%, the above-mentioned grain refinement and precipitation hardening effects cannot be expected, and if it exceeds 0.3%, it will be difficult to handle in steel manufacturing, so 0.03~ The range was set at 0.3%. Furthermore, Nb
(Nb+Ta is also 0), if it is less than 0.01%, the effect of crystal grain refinement and precipitation hardening cannot be expected much, and the effect of suppressing crystal grain coarsening during quenching heating cannot be sufficiently obtained. %, carbide (N b
C) is formed in the form of a stringer, which does not become a solution during the blooming process and is difficult to dissolve during subsequent heat treatment, reducing the spring characteristics of the product.
The range was set at 3%. B (Poron). B is an effective element for increasing the hardenability of the third grain, and is added depending on the purpose of use to obtain the necessary splashing properties. l! 1 is -1
- The effect described is not obtained, and even if it exceeds 0.01%, the effect described in 1- does not increase, so 0.0005 to 0.01%
The range of [S] (Iou). S is an element that impairs the fatigue strength of springs, and the lower the S content, the more reliable the spring will be.
It would be good if the limits should be regulated depending on the purpose of use, etc. If S is 0.010% or less, there will be almost no harm caused by S, so it is more desirable to keep S at 0.010% or less.

〔0〕 (酸素); Oは酸化物系の介在物を生成し、これが疲労破壊の起点
となりやすいのて、使用目的等に応してその含イ1り1
を規制するのか良い。この場合、0.0015%以下で
あれは、疲労破壊の起点となりにくいので、0.001
5%以下とすることがより望ましい。 このような成分含有1〒の鋼を素材とするばねにおいて
、その酎へたり性および疲労強度をさらに向」−コせる
ように、制it’ll圧延によって結晶粒度を9番以上
とするのがより望ましい。ここで、制御圧延により結晶
粒度を9番以」−とするのがより望ましいのは、結晶粒
度が9番未満では十分な酎へたり性および疲労強度が得
られないおそれがあるためである。ここで、焼入れ焼も
としなとの調貿によって結晶粒度を9番以上とすること
ももちろん可能であるか、結晶粒度が回し9番以上であ
ってもIvI i卸圧延によって9番以上としたものは
」二へ己調笠によって9番以上としたものよりも酎へた
り性および疲労強度かさらに向−1−゛するので、制御
圧延によって結晶粒度を9番以上とすることがより望ま
しい。 この場合の制御圧延としては、例えば、ピレン)・加熱
温度 930〜980 ’C1最終圧延ロールでの圧延
温度・900°C以下、最終圧延ロールての川下率 5
%以−1−1圧延後のAr+変態点までの冷却速度:3
0’C/min以上、の条件を彦定することがより望ま
しい。この理由は、ピレン[・加熱温度か930°Cよ
りも低いと圧延時の負荷が増大して圧延効率か低下する
おそれかあるためであり、980′Cよりも高いとピレ
ンI・加熱時の初期結晶粒か粗大化するおそれかあるた
めである。また、@締圧延ロールでの圧延温度を900
°C以ド、圧下率を5%以上とするのかより望ましいの
は、圧延後の再結晶をおさえるようにするためである。 ごらに、圧延後の冷却速度は、圧延後の再結晶をおさえ
るためおよび脱炭を防止するために、30’C/min
以上とすることかより望ましい。 次にこの発明の実施例を比較例とともに説明する。 次表の資料No、1〜19に示す化学成分の鋼を溶製し
たのち鋳造し分塊圧延してヒレントを作成した。次いで
、ヒレント加熱温度を1050°Cにして圧延を開始し
、最終圧延ロールによる圧延終止温度950°C1最終
圧延ロールによる圧下率lO%、圧延後A+、変態点ま
での冷却速度を10°C/minとする通常の条件で圧
延を終了してはね用鋼線を製造した。また、試料No 
、20〜32については上記条件のうち冷却速度を40
°C/minとする制御圧延を行った。 次に、各ばね用鋼線の疲労強度、腐食疲労弾度および結
晶粒度を測定した。このときに使用した試験片は、各ば
ね用#4線の硬さがHRC45〜48となるように調質
し、小野式回転曲げ疲労試験機を用いて、そのままの場
合と、0.1%NaC1溶液を摘下しつつ行う場合の2
つの条件で試験し、それぞれにおいて疲労破断したとき
の応力を測定することにより求めた。また、結晶粒度に
ついてはJISの規定の法して測定した。これらの結果
を同しく次表に示す。 / /′ /′ /′ /′ 、/ / / / 表に示すように、本発明を目は比較鋼に比へて腐食疲労
強度か大幅に改善されており、高耐食性をA lNi1
 L、ていることが明らかである。 以ヒ説明してきたように、この発明による(+:、;’
、強度嗣候性はね用♀11ては、C:0.40〜075
%、Si:1.0−2.5%、Mn:0.5〜1 0%
、Cr:0.1−1.0%、Cu035〜3%を含有し
、残部Feおよび不純物よりなる化学成分とし、使用目
的に15して、AI+O,01−o、i%、V:0.0
3−0.3%、Nb:0.01〜0.3%の1種また(
第2種以上、B:0.0005〜0.010%を含有さ
せ、より望ましくは不純物中において、(S)≦0.0
10%、
[0] (Oxygen); O produces oxide-based inclusions, which tend to become the starting point of fatigue failure, so the content may vary depending on the purpose of use, etc.
Is it good to regulate this? In this case, if it is less than 0.0015%, it is unlikely to become a starting point for fatigue fracture, so 0.001%
It is more desirable to set it to 5% or less. In order to further improve the fatigue resistance and fatigue strength of springs made of steel containing 100% of these components, it is best to use controlled rolling to increase the grain size to No. 9 or higher. More desirable. The reason why it is more desirable to use controlled rolling to make the grain size 9 or higher is because if the grain size is less than 9, sufficient hardness and fatigue strength may not be obtained. Here, it is of course possible to increase the grain size to No. 9 or higher by quenching and hardening, or even if the grain size is No. 9 or higher, it can be made to No. 9 or higher by IvI wholesale rolling. It is more desirable to increase the grain size to a grain size of 9 or more by controlled rolling, since the grain size is even better in terms of fatigue resistance and fatigue strength than that of grains of 9 or more by self-adjustment. Controlled rolling in this case includes, for example, pyrene), heating temperature of 930 to 980' C1, rolling temperature at the final rolling roll of 900°C or less, and downstream rate at the final rolling roll of 5
% or more -1-1 Ar + cooling rate to transformation point after rolling: 3
It is more desirable to set the condition of 0'C/min or more. The reason for this is that if the heating temperature of pyrene is lower than 930°C, the load during rolling will increase and the rolling efficiency may decrease; if it is higher than 980'C, the heating temperature of pyrene This is because the initial crystal grains may become coarse. In addition, the rolling temperature with @tightening rolls was set to 900.
The reason why it is more desirable to set the rolling reduction to 5% or more at temperatures below 10°C is to suppress recrystallization after rolling. For example, the cooling rate after rolling is 30'C/min in order to suppress recrystallization after rolling and prevent decarburization.
It is more desirable to do the above. Next, examples of the present invention will be described together with comparative examples. Steels having the chemical composition shown in data No. 1 to 19 in the following table were melted, cast, and bloomed to create Hirent. Next, rolling was started with the Herend heating temperature set to 1050°C, rolling end temperature by the final rolling roll of 950°C, rolling reduction rate of 10% by the final rolling roll, A+ after rolling, and cooling rate to the transformation point of 10°C/ Rolling was completed under the usual conditions of 10 min to produce a steel wire for springs. Also, sample No.
, 20 to 32, the cooling rate is set to 40 among the above conditions.
Controlled rolling was performed at °C/min. Next, the fatigue strength, corrosion fatigue modulus, and grain size of each spring steel wire were measured. The test pieces used at this time were tempered so that the hardness of the #4 wire for each spring was HRC45-48, and tested using an Ono rotary bending fatigue tester. 2 when performing while removing NaCl solution
It was determined by testing under two conditions and measuring the stress at the time of fatigue rupture under each condition. Further, the crystal grain size was measured according to the method specified by JIS. These results are also shown in the following table. / /'/'/'/' , / / / / As shown in the table, the corrosion fatigue strength of the present invention is significantly improved compared to the comparative steel, and the high corrosion resistance is compared to AlNi1.
It is clear that L. As explained hereafter, this invention (+:,;'
, Strength and continuous splash ♀11, C: 0.40-075
%, Si: 1.0-2.5%, Mn: 0.5-10%
, Cr: 0.1-1.0%, Cu035-3%, and the remainder is Fe and impurities, and the purpose of use is 15, AI+O, 01-o, i%, V: 0. 0
3-0.3%, Nb: 0.01-0.3% or (
Type 2 or more, B: 0.0005 to 0.010%, more preferably in the impurity, (S)≦0.0
10%,

〔0〕≦0.0015%に規制し、さらには結
晶粒度を9番以−1−とするようにしたから、従来のば
ね用銅よりもさらに「情強度でかつ耐食耐候性に憬れた
ものであり、例え1よ、自動・((の軽楢化に<rって
要求される懸架はねの軽量化C二よって生ずるはねの高
た〕h対応することが可能で゛あるとrifll19に
、路tl’ri凍結防止のための加数!σによって生す
る腐食環境の悪化にも対応することが可能であるという
非畠にすくれた効果を杓する。 特許出願人  大同特’A鋼株式会7j代理人弁理士 
小  塩   豊
[0]≦0.0015%, and the crystal grain size is set to 9-1-1. For example, if it is possible to deal with the height of the spring caused by the weight reduction of the suspension spring C2 required for the lightweighting of the automatic In addition, it is possible to deal with the deterioration of the corrosive environment caused by the addend !σ for road freezing prevention.Patent applicant Daidotoku'A Kouko Co., Ltd. 7j Representative Patent Attorney
Yutaka Ko Shio

Claims (1)

【特許請求の範囲】 (1)重量%て、C: 0 、40〜075%、Si:
1.O−2,5%、Mn:0.5−1.0%、Cr:0
.1〜1.0%、Cu:0.35−3%を含有し、残部
Feおよび不純物よりなることを特徴とする高強度耐候
性はね用多11゜帛 (2)不純物において、〔S〕≦0010%、〔0〕≦
0.0015%に規制した特許請求の範囲第(1)項記
載の高強度耐候性はね用鉗1゜(3)製品V+ Ji’
f度が9番以」二である特許請求の範囲・1生 第(1)項または第(2)項1記載の]☆j強度而面(
ピ;■はね用銅。 (4)重量%て、C:0.40〜0.75%、Si:1
.O−2,5%、Mn:0.5−1.0%、Cr:0.
1−1.0%、Cu:0.35−3%、およびAu:0
.01−0.1%、■003〜0.3%、Nb:0.0
1〜03%の1種または2種以上を含有し、残部Feお
よび不純物からなることを特徴とする高強度耐候性ばね
用銅。 (5)不純物中において、〔S〕≦0.010%、〔0
〕≦0.0015%に規制した特許請求の範囲第(4)
項記載の高強度耐候性はね用銅。 (6)結晶粒度が9番以上である特許請求の範囲第(4
)項または第(5)項記載の高強度耐候性はね用銅。 (7)重量%で、C:0.40〜0.75%、Si:1
.0〜2.5%、Mn+0.5−1.0%、Cr:0.
1〜1.0%、Cu:0.35−3%、B・0.000
5〜0010%を含有し、残部Feおよび不純物からな
ることを特徴とする高強度耐候性ばね用銅。 (8)不純物中において、(S)≦0.010%、 (
0)≦0.0015%に規制した特許請求の範囲第(7
)項記載の高強度耐候性ばね用銅。 (9)結晶粒度が9番以上である特許請求の範囲第(7
)項または第(8)項記載の高強度耐候性ばね用銅。 (10)重量%で、C:0.40−o、75%、Si:
1.0−2.5%、Mn+0.5〜1.0%、Cr:0
.1−1.0%、Cu:0.35〜3%、 オヨU’A
 l : O、Ol〜o 、 1%、v:0.03−0
.3%、Nb:0.01〜0.3%の1種または2種以
上、さらにB:O,0O05〜0010%を含有し、残
部Feおよび不純物からなることを特徴とする高強度耐
候性はね用銅。 (II)  不純物中i、ニオイー(、(S)≦o、o
x。 %、(0)≦0.0015%に規制した特許請求の範囲
第(10)項記載の高強度耐候性ばね用銅。 (12)結晶粒度が9番以上である特許請求の範囲第(
10)項または第(11)項記載の高強度耐候性ば
[Claims] (1) Weight %: C: 0, 40-075%, Si:
1. O-2.5%, Mn: 0.5-1.0%, Cr: 0
.. 1 to 1.0%, Cu: 0.35 to 3%, and the balance consists of Fe and impurities (2) Impurity: [S] ≦0010%, [0]≦
High-strength weather-resistant spring forceps 1° (3) product V+ Ji' according to claim (1) regulated to 0.0015%
Claims in which the f degree is 9 or more ・The strength aspect (
Pi;■ Copper for splashing. (4) Weight %: C: 0.40-0.75%, Si: 1
.. O-2.5%, Mn: 0.5-1.0%, Cr: 0.
1-1.0%, Cu: 0.35-3%, and Au: 0
.. 01-0.1%, ■003-0.3%, Nb:0.0
A high-strength, weather-resistant copper for springs containing 1 to 0.3% of one or more kinds, with the remainder consisting of Fe and impurities. (5) In impurities, [S]≦0.010%, [0
] ≦0.0015% Claim No. (4)
High-strength, weather-resistant copper for splashing as described in Section 1. (6) Claim No. 4 in which the crystal grain size is 9 or more
) or (5), the high-strength, weather-resistant splash copper. (7) In weight%, C: 0.40-0.75%, Si: 1
.. 0-2.5%, Mn+0.5-1.0%, Cr:0.
1-1.0%, Cu: 0.35-3%, B・0.000
A high-strength, weather-resistant copper for springs containing 5 to 0,010%, with the remainder consisting of Fe and impurities. (8) In impurities, (S)≦0.010%, (
0)≦0.0015%
) High-strength, weather-resistant copper for springs. (9) Claim No. 7 in which the crystal grain size is 9 or more
) or (8), the high-strength, weather-resistant copper for springs. (10) In weight%, C: 0.40-o, 75%, Si:
1.0-2.5%, Mn+0.5-1.0%, Cr:0
.. 1-1.0%, Cu: 0.35-3%, OyoU'A
l: O, Ol~o, 1%, v:0.03-0
.. 3%, Nb: 0.01~0.3%, one or more types, and further B: O, 0O05~0010%, with the balance consisting of Fe and impurities. Copper for cooking. (II) Among the impurities, i, odor (, (S)≦o, o
x. %, (0)≦0.0015%, as set forth in claim (10). (12) Claim No. 9 in which the crystal grain size is 9 or more (
The high-strength weather-resistant rubber described in item 10) or item (11)
JP4726183A 1983-03-23 1983-03-23 High strength weather resistance steel for spring Pending JPS59173246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4726183A JPS59173246A (en) 1983-03-23 1983-03-23 High strength weather resistance steel for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4726183A JPS59173246A (en) 1983-03-23 1983-03-23 High strength weather resistance steel for spring

Publications (1)

Publication Number Publication Date
JPS59173246A true JPS59173246A (en) 1984-10-01

Family

ID=12770340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4726183A Pending JPS59173246A (en) 1983-03-23 1983-03-23 High strength weather resistance steel for spring

Country Status (1)

Country Link
JP (1) JPS59173246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642219A (en) * 1984-03-14 1987-02-10 Aichi Steel Works, Ltd. Bearing steel and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642219A (en) * 1984-03-14 1987-02-10 Aichi Steel Works, Ltd. Bearing steel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5286312A (en) High-strength spring steel
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP3246733B2 (en) High strength spring steel
JPH0545660B2 (en)
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
JPS63109144A (en) High-strength spring steel
JPS59170241A (en) Steel for high-strength and high-toughness spring
JPH05148581A (en) Steel for high strength spring and production thereof
JPS59173246A (en) High strength weather resistance steel for spring
JP5171054B2 (en) Component design method of alternative steel for chromium molybdenum steel
JPH0598388A (en) High toughness and high carbon thin steel sheet and its manufacture
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JPS6130653A (en) High strength spring steel
JP4261760B2 (en) High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof
JPH05171356A (en) High strength bolt steel
JPH0468374B2 (en)
JPH0874006A (en) Precipitation hardening type stainless steel excellent in strength and twisting property
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method
JP2000063947A (en) Manufacture of high strength stainless steel
JPS6086245A (en) Spring grade steel
JP3460332B2 (en) Manufacturing method of precipitation hardening stainless steel with excellent cold workability and toughness
JPS6358892B2 (en)
JP2728084B2 (en) Manufacturing method of high strength parts
JP3246266B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance