JPS59172785A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59172785A
JPS59172785A JP4744083A JP4744083A JPS59172785A JP S59172785 A JPS59172785 A JP S59172785A JP 4744083 A JP4744083 A JP 4744083A JP 4744083 A JP4744083 A JP 4744083A JP S59172785 A JPS59172785 A JP S59172785A
Authority
JP
Japan
Prior art keywords
layer
band
semiconductors
active layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4744083A
Other languages
Japanese (ja)
Other versions
JPH0467353B2 (en
Inventor
Yasubumi Kameshima
亀島 泰文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4744083A priority Critical patent/JPS59172785A/en
Publication of JPS59172785A publication Critical patent/JPS59172785A/en
Publication of JPH0467353B2 publication Critical patent/JPH0467353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3422Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising type-II quantum wells or superlattices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to manufacture the titled device with good yield and to obtain a high output by a method wherein the active layer of a super lattice structure wherein two semiconductors are laminated and a clad layer whose band gap is higher than those of said layers are provided, thus putting the values of the electron affinities and band gaps of said semiconductors in a specific relation. CONSTITUTION:If the electron affinities of the layers I and II are x1 and x2 and the band gaps Eg1 and Eg2, when they are in the relation of x1<x2, x1+Eg1<x2+Eg2, the position of the valence band of the layer I lies at the position of a higher energy than that of the layer II. In a superlattice having such a band structure, electrons are confined in the layer II, and while holes in the layer I . In this case, when the layer thickness is thinned under the de Broglie's wave length of the electron, the quantum effect of a well type potential appears, the electrons and holes form discrete levels in each potential, and accordingly the respective wave functions come to have components of exudation to the adjacent layers. Providing the active layer 3 of such a structure enables to obtain the light emission of a lower energy than that of the band gap of each crystal of said layer 3, resulting in the attainment to the purpose of optical damage prevention.

Description

【発明の詳細な説明】 本発明は、レーザ加工などに用いる半導体レーザに関し
、特に高出方半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser used for laser processing, and particularly to a high output semiconductor laser.

従来の高出力化をめざした半導体レーザの構造として、
活性層内にp型不純物を高濃度にドープし、更に端面領
域にn型不純物を高濃度にドープして、発振光波長のエ
ネルギーに対して端面領域が透明になる事を意図したい
わゆるウィンドウ型ストライプレーザが知られている。
As the structure of conventional semiconductor lasers aiming for high output,
The active layer is doped with p-type impurities at a high concentration, and the end face region is doped with n-type impurities at a high concentration, so that the end face region becomes transparent to the energy of the oscillation light wavelength. Stripe lasers are known.

しかしながら。however.

この従来の方式はJ活性層内へのp型不純物拡散層の濃
度、深さに対して非常に精細な制御が要求され、歩留り
の良い再現性が得られていない。また、活性層に高濃度
の不純物をドープするから、格子欠陥を導入しやすく信
頼性上の問題が指摘される。
This conventional method requires extremely precise control over the concentration and depth of the p-type impurity diffusion layer into the J active layer, and does not provide good yield and reproducibility. Furthermore, since the active layer is doped with impurities at a high concentration, lattice defects are likely to be introduced, raising problems in reliability.

本発明の目的は、歩留りよく製造でき高い出力が得られ
る半導体レーザの提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser that can be manufactured with high yield and provide high output.

本発明による半導体レーザの構成は、電子親和力がそれ
ぞれχ1及びχ2でありバンドギャップがそれぞれEg
l及びEg2である第1及び第2の半導体を積層してな
る超格子構造の活性層と、これら半導体よりバンドギャ
ップが大きいクラッド層とを備え、前記2つの半導体が
χ1〈χ2及びχ1+Eg1〈χ、十Eg2なる関係に
あることを特徴とする。
The structure of the semiconductor laser according to the present invention has electron affinities of χ1 and χ2, respectively, and a band gap of Eg.
The active layer has a superlattice structure formed by stacking first and second semiconductors, which are 1 and Eg2, and a cladding layer having a larger band gap than these semiconductors, and the two semiconductors have χ1<χ2 and χ1+Eg1<χ , 10Eg2.

本発明の上記構成を説明する為に、半導体装置ザにおけ
る光学損傷の発生機構および超格子薄膜のバンド構造に
ついて述べる。AtGaAs /GaAsダブルへテロ
半導体レーザについて例をとると通常光出力は数mWの
状態で動作させるが、微細レーザ加工等に於て100m
W程度の高出力の要求がされる場合がある。この場合、
光出力密度にして数MW/7に達っするとミラ一端面の
表面準位での非発光再結合のため活性層内のミラ一端面
領域のキャリアが欠乏した状態になり、フェルミ準位が
下り、実効的なバンドギャップが小さくなる。
In order to explain the above structure of the present invention, the mechanism of optical damage generation in a semiconductor device and the band structure of a superlattice thin film will be described. Taking the AtGaAs/GaAs double hetero semiconductor laser as an example, it is normally operated with an optical output of several mW, but in micro laser processing etc.
There are cases where a high output of about W is required. in this case,
When the optical output density reaches several MW/7, the active layer becomes depleted of carriers in the mirror end face region due to non-radiative recombination at the surface level of the mirror end face, and the Fermi level drops. , the effective bandgap becomes smaller.

レーザ発振遷移は帯間発光を利用しているから、活性層
内部結晶で増幅された発振光が端面部の実効的バンドギ
ャップの小さくなった領域に吸収され局所的に温度が上
昇する。通常、半導体結晶は温度が上昇するとバンドギ
ャップが小さくなるから、結晶の光吸収係数が大きくな
り益々光エネルギーはミラ一端面領域へ吸収されていく
様になる。
Since the laser oscillation transition utilizes interband light emission, the oscillation light amplified by the internal crystal of the active layer is absorbed in the region where the effective band gap of the end face is reduced, causing a local temperature rise. Normally, as the temperature of a semiconductor crystal rises, the band gap becomes smaller, so the light absorption coefficient of the crystal increases, and more and more light energy is absorbed into one end face region of the mirror.

この様な正帰還がかかるから、端面結晶の一部はレーザ
発振の横モード分布において光強度の大きい箇所で結晶
融点以上に達っする事が実験的にも確認されている。破
壊された端面結晶に発生した格子欠陥もまた光吸収箇所
となるから1局所的な溶融領域が結晶内部にも生ずる。
It has been experimentally confirmed that due to such positive feedback, a portion of the end face crystal reaches a temperature higher than the crystal melting point at a location where the light intensity is large in the transverse mode distribution of laser oscillation. Since the lattice defects generated in the destroyed end face crystal also become light absorption sites, a local melting region is also generated inside the crystal.

この溶融−城が冷却された箇所に格子欠陥が残され、こ
の様な非発光領域が大きくなるとレーザ発振に必要な利
得が得られなくなり発振停止に到る。以上のミラ一端面
領域における光吸収の説明から明らかなように1発振光
の光エネルギーを活性層を形成する結晶のバンドギャッ
プ以下にすれば光学損傷の起きない事がわかる。この様
な発振光を得る方法を以下に述べる。
Lattice defects are left behind at locations where the molten castle has cooled, and when such non-emitting regions become large, the gain necessary for laser oscillation cannot be obtained and oscillation stops. As is clear from the above explanation of light absorption in one end face region of the mirror, it can be seen that optical damage does not occur if the optical energy of one oscillation light is made equal to or less than the band gap of the crystal forming the active layer. A method for obtaining such oscillation light will be described below.

最近極薄膜の成長がM B E (Mo1ecular
 BeamEpitaxy )法により可能になり、極
薄膜へテロ構造を繰り返し成長する事により超格子構造
が製作されている。適当な電子親和力とバンドギヤ・ノ
ブをもつ半導体を組み合せる事により第1図の様なバン
ド構造をもつ超格子を得る事が可能である。
Recently, the growth of ultra-thin films has become popular.
This is made possible by the beam epitaxy (BeamEpitaxy) method, and a superlattice structure is fabricated by repeatedly growing an extremely thin film heterostructure. By combining semiconductors with appropriate electron affinity and band gear knobs, it is possible to obtain a superlattice with a band structure as shown in Figure 1.

即ち、本図のバンド構造の超格子では、層Iの電子親和
力χ1が層■の電子親和力χ2よりも小さいから、層I
の伝導帯は層■の伝導帯よりも高エネルギー位置にある
。また、層IのバンドギャップBg1と層■のバンドギ
ャップEg2とがχ1+Bg1(χ2+Egzの関係に
あれば、層Iの価電子帯の位置は層■の価電子帯よりも
高エネルギー位置にある。この様なバンド構造をもつ超
格子においては、電子は層■に閉じ込められ、一方正孔
は層Iに閉じ込められる。この場合、電子のドブロイ波
長以下に層厚を薄くしていくと((100人)、井戸型
ポテンシャルの量子効果があられれ、電子および正孔は
それぞれのポテンシャル内に離散準位を形成し、それぞ
れの波動関数は第1図に示した様に隣の層へのしみ出し
成分を持つ様になる。
That is, in the superlattice with the band structure shown in this figure, since the electron affinity χ1 of layer I is smaller than the electron affinity χ2 of layer
The conduction band of is at a higher energy position than the conduction band of layer ■. Furthermore, if the band gap Bg1 of layer I and the band gap Eg2 of layer (2) have a relationship of χ1 + Bg1 (χ2 + Egz), then the position of the valence band of layer I is at a higher energy position than that of the valence band of layer (2). In a superlattice with a similar band structure, electrons are confined in layer I, while holes are confined in layer I. ), due to the quantum effect of the well-type potential, electrons and holes form discrete levels within their respective potentials, and each wave function is a component that seeps into the adjacent layer as shown in Figure 1. It becomes like having.

この様な情況では層Iのポテンシャルに存在スる正孔と
層Hのポテンシャルに存在する電子が再結合する事によ
る発光がみられ、その光エネルギーEg″は層Iのバン
ドギャップEgxおよび層■のバンドギャップEg2の
どちらよりも低エネルギーになる事が第1図から理解さ
れる。
In such a situation, light emission is observed due to the recombination of holes existing in the potential of layer I and electrons existing in the potential of layer H, and the light energy Eg'' is equal to the band gap Egx of layer I and the layer It is understood from FIG. 1 that the energy is lower than either of the band gaps Eg2.

従ってこの様な構造の活性層をもたせれば、活性層のそ
れぞれの結晶のバンドギャップより低エネルギーの発光
を得る事が出来、光学損傷予防の目的を達成する事が出
来る。電子および正孔の系外への拡散を防ぐためには超
格子活性層の両側を更にバンドギャップの大きい半導体
層(クラッド層)で挾む事により実現される。
Therefore, by providing an active layer with such a structure, it is possible to obtain light emission with energy lower than the band gap of each crystal in the active layer, and the purpose of preventing optical damage can be achieved. In order to prevent electrons and holes from diffusing out of the system, the superlattice active layer is sandwiched between semiconductor layers (cladding layers) with a large band gap on both sides.

次に本発明の一実施例の構造を示す第2図を参照して、
本発明を一層詳細に説明する。n型GaAs基板1上に
n聖人to、30ao、t Asクラッド層2を約3μ
m成長させた後、活性層3を成長させる。活性層を構成
する超格子の組み合せはGaAs/ At8 bを用い
た。超格子構造は層IがAzsb(Z 1 = 3.6
 eV、 Bgl = 1.6 eV )、層■がGa
As(z2=4.1eV、Egz=1.4eV)から成
り、AtS b層を50人G a A s層を50人の
繰り返しで15周期、合計〜1500人の活性層厚であ
る。
Next, referring to FIG. 2 showing the structure of an embodiment of the present invention,
The invention will now be described in more detail. On an n-type GaAs substrate 1, an n-type GaAs cladding layer 2 with a thickness of about 3μ is formed.
After growing the active layer 3, the active layer 3 is grown. GaAs/At8b was used as the superlattice combination constituting the active layer. In the superlattice structure, layer I is Azsb (Z 1 = 3.6
eV, Bgl = 1.6 eV), layer ■ is Ga
It consists of As (z2 = 4.1 eV, Egz = 1.4 eV), and the active layer thickness is 15 cycles with 50 people repeating the AtS b layer and 50 people repeating the Ga As layer, with a total active layer thickness of ~1500 people.

活性層3のドーピングは行なわない。更にp型klf−
o、s Gao、y Asクラッド層4を約3μm成長
させた。次に、クラッド層4上に5in2膜5で巾10
μmのストライプ状の窓を設け、電流狭窄を行なってい
る。p壓オーミック電極6としてはAu−Znを用いで
ある。また、基板1 illのn型オーミック電極7と
してはAu−Geを用いた。この様圧して形成されたウ
ェハーから弁開により結晶端面をミラー面とする半導体
レーザを製作した。
The active layer 3 is not doped. Furthermore, p-type klf-
o, s Gao, y As cladding layer 4 was grown to a thickness of about 3 μm. Next, on the cladding layer 4, a 5in2 film 5 with a width of 10
A striped window of μm size is provided to perform current confinement. The p-ohmic electrode 6 is made of Au-Zn. Moreover, Au-Ge was used as the n-type ohmic electrode 7 of the substrate 1ill. From the wafer formed under this pressure, a semiconductor laser was fabricated with the crystal end face being a mirror surface by opening the valve.

この実施例の半導体レーザは、光出力が 100mW 
(光出力密度にして7 MW/、ffl )を超えても
光学損傷を起さないし、もちろん超格子特有の矩型状の
状態密度のため発振閾値の温度依存性が非常に少なく、
室温CW発振閾値も100mA以下のものが容易に得ら
れる。
The semiconductor laser of this example has an optical output of 100 mW.
(7 MW/, ffl in terms of optical output density) does not cause optical damage, and of course, due to the rectangular density of states unique to superlattices, the temperature dependence of the oscillation threshold is very small.
A room temperature CW oscillation threshold of 100 mA or less can be easily obtained.

以上詳述したように1本発明によれば1歩留りよく製造
できる高出力の半導体レーザか提供できる。
As detailed above, according to the present invention, it is possible to provide a high-output semiconductor laser that can be manufactured with good yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超格子バンド構造の説明図、第2図は本発明の
一実施例の構造図である。 1・曲・n型G a A s基板%2・・曲n型Ato
、s Ga0−7 A sクラッド層、3 ・−−−−
−GaAs/AIS b超格子活性層、4・・・・・・
p型klo、s Gao、y Asクラッド層。 5・・・・・・電流狭窄用8i0.膜、6・・・・・・
p型電極、7・・・・・・n型電極。 警1 口 層1 層丁 層1 層 半2釦 / □翼γ坪楳 且 、/に
FIG. 1 is an explanatory diagram of a superlattice band structure, and FIG. 2 is a structural diagram of an embodiment of the present invention. 1. Curved n-type Ga As substrate %2... Curved n-type Ato
, s Ga0-7 A s cladding layer, 3 ・----
-GaAs/AIS b superlattice active layer, 4...
p-type klo, s Gao, y As cladding layer. 5...8i0 for current confinement. Membrane, 6...
p-type electrode, 7...n-type electrode. Guard 1 Mouth layer 1 Layer 1 Layer and a half 2 buttons / □ Wings γ tsubo and / ni

Claims (1)

【特許請求の範囲】[Claims] 電子親和力がそれぞれχ1及びχ、でありバンドギャッ
プがそれぞれBgl及びEg2である第1及び第2の半
導体を積層してなる超格子構造の活性層と、これら半導
体よりバンドギャップが大きいクラッド層とを備え、前
記2つの半導体がχl〈χ2及びχを十Bgl<χ2十
Eg+なる関係にあることを特徴とする半導体レーザ。
An active layer having a superlattice structure formed by stacking first and second semiconductors having electron affinities of χ1 and χ, respectively, and band gaps of Bgl and Eg2, respectively, and a cladding layer having a larger band gap than these semiconductors. A semiconductor laser, characterized in that the two semiconductors have a relationship such that χl<χ2 and χ10Bgl<χ20Eg+.
JP4744083A 1983-03-22 1983-03-22 Semiconductor laser Granted JPS59172785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4744083A JPS59172785A (en) 1983-03-22 1983-03-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4744083A JPS59172785A (en) 1983-03-22 1983-03-22 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59172785A true JPS59172785A (en) 1984-09-29
JPH0467353B2 JPH0467353B2 (en) 1992-10-28

Family

ID=12775202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4744083A Granted JPS59172785A (en) 1983-03-22 1983-03-22 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59172785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
JPS61218192A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Semiconductor light emitting element
JPH0715093A (en) * 1993-06-25 1995-01-17 Nec Corp Optical semiconductor element
WO1995026585A1 (en) * 1994-03-25 1995-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Quantum-layer structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLED PHYSICS LETTERS=1977 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
JPS61218192A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Semiconductor light emitting element
JPH0712100B2 (en) * 1985-03-25 1995-02-08 株式会社日立製作所 Semiconductor light emitting element
JPH0715093A (en) * 1993-06-25 1995-01-17 Nec Corp Optical semiconductor element
WO1995026585A1 (en) * 1994-03-25 1995-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Quantum-layer structure

Also Published As

Publication number Publication date
JPH0467353B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
US4734385A (en) Semiconductor laser element suitable for production by a MO-CVD method
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH1075012A (en) Semiconductor laser device and its manufacture
JPH02220488A (en) Semiconductor laser device and manufacture thereof
JPH05175594A (en) Semiconductor laser device
JPH0632340B2 (en) Semiconductor light emitting element
JPS59172785A (en) Semiconductor laser
JPS6246585A (en) High-output semiconductor laser
JPS6298690A (en) Semiconductor laser element and its manufacture
JPH05160504A (en) Semiconductor laser device
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JPH0834338B2 (en) Semiconductor laser
JPS60101989A (en) Semiconductor laser and manufacture thereof
JP2669139B2 (en) Semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH01184972A (en) Semiconductor laser device
JPS59227177A (en) Semiconductor laser
JPH0485981A (en) Semiconductor laser
JPH03104292A (en) Semiconductor laser
JPH01304793A (en) Manufacture of semiconductor laser device
JPH0576794B2 (en)
JPH03174793A (en) Semiconductor laser
JPH0410688A (en) Light-emitting element of algainp semiconductor
JPH0414277A (en) Semiconductor laser and its manufacture
JPS58118184A (en) Buried hetero structural semiconductor laser