JPS5917222A - Manufacture of multilayer magnetic thin-film - Google Patents

Manufacture of multilayer magnetic thin-film

Info

Publication number
JPS5917222A
JPS5917222A JP12569082A JP12569082A JPS5917222A JP S5917222 A JPS5917222 A JP S5917222A JP 12569082 A JP12569082 A JP 12569082A JP 12569082 A JP12569082 A JP 12569082A JP S5917222 A JPS5917222 A JP S5917222A
Authority
JP
Japan
Prior art keywords
substrate
target
film
magnetic
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12569082A
Other languages
Japanese (ja)
Inventor
Norio Oota
憲雄 太田
Kazuya Kamiyama
和也 神山
Keikichi Ando
安藤 圭吉
Yuzuru Hosoe
譲 細江
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12569082A priority Critical patent/JPS5917222A/en
Publication of JPS5917222A publication Critical patent/JPS5917222A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form the multilayer amorphous magnetic thin-film, magnetic characteristics and film thickness thereof differ respectively, continuously by changing the magnitude and applying time of negative bias voltage applied to a substrate by stages. CONSTITUTION:The silicon single crystalline substrate 1 is bonded with a conductive substrate holder 2. A target parent material 3 is placed on a target base. The inside of a bell jar 5 is evacuated up to the high vacuum of approximately 10<-7> Torr, and Ar gas is introduced to increase pressure up to 5X10<-3> Torr. Ar Gas is changed into plasma to sputter a target when high-frequency voltage is applied to the target by the power of 100W from a high-frequency power supply 7, and the substrate 1 is coated with sputtering particles when opening a shutter 6. Negative bias voltage Vb is applied to the substrate from a power supply 8 at that time. Accordingly, the same target parent material is used, and the multilayer films of diffferent magnetic characteristics can be formed continuously in the same sputtering device.

Description

【発明の詳細な説明】 本発明は磁気バブルメモリ媒体、光磁気記録用媒体及び
垂直磁気記録用媒体に用いる非晶質磁性薄膜の製造方法
に係シ、特に多層膜を同一スパッタ装置中で同一のター
ゲラ)Iを用いて連続的に形成するに好適な多層磁性薄
膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an amorphous magnetic thin film used in a magnetic bubble memory medium, a magneto-optical recording medium, and a perpendicular magnetic recording medium, and particularly relates to a method for manufacturing an amorphous magnetic thin film used in a magnetic bubble memory medium, a magneto-optical recording medium, and a perpendicular magnetic recording medium. This invention relates to a method for manufacturing a multilayer magnetic thin film suitable for continuous formation using Targera) I.

従来、磁気特性がそれぞれ異なる多層の非晶質磁性薄膜
を高周波スパッタリング法によって形成する場合にはタ
ーゲット母材を各々変えて順次スパッタリングし磁性層
を重ねる方法を用いてきた。
Conventionally, when forming multilayered amorphous magnetic thin films with different magnetic properties by high-frequency sputtering, a method has been used in which different target base materials are used and sputtering is sequentially performed to stack magnetic layers.

しかしこの方法では多数のターゲット母相を準備する必
要があシ、また多数のスパッタ時間か、複雑なインライ
ン型スパッタ装置を用いなければならず多層膜形成に多
大の工程あるいは費用を要する欠点があった。
However, this method requires the preparation of a large number of target matrixes, requires a large amount of sputtering time, requires the use of complicated in-line sputtering equipment, and has the disadvantage that forming a multilayer film requires a large number of steps and costs. Ta.

本発明の目的は同一ターゲット母材を用いて同一スパッ
タリング装置内において磁性特性(特に磁化方向または
異方性磁界HK)と膜厚がそれぞれ異なる多層の非晶質
磁性薄膜を連続的に形成する製造方法を提供することに
ある。
The purpose of the present invention is to continuously form multilayer amorphous magnetic thin films with different magnetic properties (especially magnetization direction or anisotropic magnetic field HK) and film thicknesses in the same sputtering apparatus using the same target base material. The purpose is to provide a method.

実施例において詳細に説明するように、基板に負のバイ
アス電圧vbを印加してゆくと、適切なターゲット母材
を用いた場合には異方性磁界を負(磁化方向が膜面方向
)から正(磁化方向が膜面に対し垂直)あるいは正から
負へと変化させることができることを見出した。従って
バイアス電圧の大きさとスパッタ時間を段階的に変える
ことにより磁化方向が層毎に異なる多層膜を同一ターゲ
ット母相を用いて連続的に形成することができる。
As will be explained in detail in the examples, when a negative bias voltage vb is applied to the substrate, if an appropriate target base material is used, the anisotropic magnetic field changes from negative (magnetization direction is in the direction of the film surface). It has been found that the magnetization can be changed from positive (the direction of magnetization is perpendicular to the film surface) or from positive to negative. Therefore, by changing the magnitude of the bias voltage and the sputtering time stepwise, it is possible to continuously form a multilayer film in which the magnetization direction differs from layer to layer using the same target matrix.

以下本発明を実施例によシ詳細に説明する。第1図はス
パッタ装置の配置を示したものである。
The present invention will be explained in detail below using examples. FIG. 1 shows the arrangement of a sputtering device.

シリコン単結晶基板1を導電性の基板ホルダー2に接着
する。ターゲット台上3(たとえばGd25Co75の
合金板)をターゲット台上に置く。
A silicon single crystal substrate 1 is bonded to a conductive substrate holder 2. A target stand 3 (for example, an alloy plate of Gd25Co75) is placed on the target stand.

ペルジャー5内を1O−7Torr程度の高真空にした
後Arガスを導入し5X10−3Torrとする。
After the inside of the Pelger 5 is brought to a high vacuum of about 10-7 Torr, Ar gas is introduced to bring the pressure to 5×10-3 Torr.

高周波電源7から13.57 MHzの高周波電圧を1
00Wの電力でターゲットに印加するとArガスはプラ
ズマ化してターゲットをスパッタし、シャンタロを開く
とスパッタ時間(GdCo)が基板1に被着する。この
際、基板に電源8から負のバイアス電圧Vbを印加する
High frequency voltage of 13.57 MHz from high frequency power source 7
When a power of 00 W is applied to the target, Ar gas turns into plasma and sputters the target, and when the chantereau is opened, sputtering time (GdCo) is deposited on the substrate 1. At this time, a negative bias voltage Vb is applied to the substrate from the power source 8.

第2図は上記の実施例においてバイアス電圧vbを変え
て作製した膜の異方性磁界HKを測定した結果である。
FIG. 2 shows the results of measuring the anisotropic magnetic field HK of the films produced by changing the bias voltage vb in the above example.

vbの絶対値の増加とともに出はしだいに増加し、負値
から正値となり、■b=−50Vで最大値に達したあと
、やがて単調に減少する。これらの磁性膜の飽和磁束密
度4πMSの大きさは3000G程度であシ第2図の破
線aよシ上では膜面に垂直方向の磁化、bよυ下では面
内方向の磁化となる。aとbの間では斜め磁化となる。
As the absolute value of vb increases, the output gradually increases, changes from a negative value to a positive value, reaches the maximum value at ■b=-50V, and then monotonically decreases. The saturation magnetic flux density 4πMS of these magnetic films is about 3000 G, and the magnetization is perpendicular to the film surface above the broken line a in FIG. 2, and the magnetization is in the in-plane direction below the broken line b. Oblique magnetization occurs between a and b.

第3図は磁気バルブ素子用の3層膜を形成するだめのバ
イアス電圧vbとスパッタ時間tspとの関係を示した
ものである。まずvb =−15voltで5分間スパ
ッタして第1層を形成し、vb−−50yoltテ30
分、V b=−30vol t テ10分間スパッタし
第2層、第3層を形成した。このようにして形成した多
層膜は第4図の左に示したようにシリコン基板9上の第
1層が膜厚h=500人、異方性磁界HK=−3kQe
で磁化は膜面内を向いている。第2層11はh=300
0人HK=+8kQeT磁化は膜面に垂直方向であシ磁
気バルブ直径が0.5μmのバブル媒体層となる。第3
層12はh−1000人でHK=+1kQeである。磁
気ハルツ素子では第1層は異常バブル抑制層、第3層は
転送路を形成するためのイオン打込み層となる。
FIG. 3 shows the relationship between the bias voltage vb and the sputtering time tsp for forming a three-layer film for a magnetic valve element. First, the first layer was formed by sputtering at vb = -15 volts for 5 minutes, and then sputtered at vb - -50 volts for 30 minutes.
Sputtering was performed for 10 minutes at V b =-30 vol t to form a second layer and a third layer. As shown on the left side of FIG. 4, the multilayer film thus formed has a first layer on the silicon substrate 9 with a film thickness h=500 and anisotropic magnetic field HK=-3 kQe.
The magnetization is directed in the plane of the film. Second layer 11 is h=300
0 person HK=+8kQeT The magnetization is perpendicular to the film surface, resulting in a bubble medium layer with a magnetic valve diameter of 0.5 μm. Third
Tier 12 has h-1000 people and HK=+1kQe. In the magnetic Hartz element, the first layer is an abnormal bubble suppression layer, and the third layer is an ion implantation layer for forming a transfer path.

本発明によれば同一ターゲット母材を用い、同一スパッ
タリング装置中で磁気特性の異なる多層膜を連続的に形
成でき、良質な多層磁性膜をきわくで簡便に製造できる
効果がある。本方法のターゲットとしては実施例のGd
Co以外にも高周波スパッタリングが可能な磁性材料で
あれば何でも可能であることは自明である。たとえば垂
直磁気記録用のCoCr、CoCrZr、CoCrTi
、光磁気記録用(7,)TbFe、GdFe、HoFe
、HoCo、一般式%式% Sm、 Eu、 Y、 Lu )のいずれか1つ以上の
元素を有し、Mは(Co、 Fe、 Ni、 Mn、 
Cr、 S i。
According to the present invention, multilayer films having different magnetic properties can be successively formed using the same target base material in the same sputtering apparatus, and a high quality multilayer magnetic film can be manufactured very easily. The target of this method is Gd
It is obvious that any magnetic material other than Co that can be used for high frequency sputtering can be used. For example, CoCr, CoCrZr, CoCrTi for perpendicular magnetic recording
, for magneto-optical recording (7,) TbFe, GdFe, HoFe
, HoCo, has one or more elements of the general formula % Sm, Eu, Y, Lu), and M is (Co, Fe, Ni, Mn,
Cr, Si.

Cu、 Ti、 Mo、 Au、 Pt、 Rh )の
少なくとも1つ以上の元素を含み、Xの範囲は0.02
=Xs。
Contains at least one element of Cu, Ti, Mo, Au, Pt, Rh), and the range of X is 0.02
=Xs.

0.98とバイアス電圧効果の顕著な組成範囲である。0.98, which is a composition range in which the bias voltage effect is significant.

さらには磁性ガーネットなどの磁気光学素子用材料とし
ても有効な方法である。
Furthermore, this method is also effective as a material for magneto-optical elements such as magnetic garnet.

【図面の簡単な説明】[Brief explanation of the drawing]

図はすべて本発明の実施例を示し、第1図は高周波スパ
ッタリング装置の配置図、第2図は異方性磁界HKとバ
イアス電圧の関係線図、第3図はバイアス電圧vbとス
パッタ時間tspの関係線図、第4図は磁気バブル用3
層膜の基板面からの位置と異方性磁界HKの関係を示す
説明図である。
The figures all show embodiments of the present invention. Figure 1 is a layout diagram of a high-frequency sputtering device, Figure 2 is a relationship diagram between anisotropic magnetic field HK and bias voltage, and Figure 3 is a diagram showing bias voltage vb and sputtering time tsp. The relationship diagram, Figure 4 is for magnetic bubble 3
FIG. 2 is an explanatory diagram showing the relationship between the position of the layer film from the substrate surface and the anisotropic magnetic field HK.

Claims (1)

【特許請求の範囲】[Claims] 1、 高周波スパッタリング法によって非晶質磁性薄膜
を製造する過程において、基板に負のバイアス電圧vb
を印加する装置を配し、当該バイアス電圧vbの大きさ
と印加時間を段階的に変えることによシ、磁化の向き(
または内部異方性磁界)と膜厚がそれぞれ異なる多層構
造の磁性膜を同一ターゲット母材を用いて、同一スパッ
タ装置内で連続的に作製することを特徴とする多層磁性
薄膜の製造方法。
1. In the process of manufacturing an amorphous magnetic thin film by high-frequency sputtering, a negative bias voltage vb is applied to the substrate.
The direction of magnetization (
A method for manufacturing a multilayer magnetic thin film, characterized in that magnetic films with a multilayer structure each having a different internal anisotropic magnetic field and film thickness are continuously produced in the same sputtering apparatus using the same target base material.
JP12569082A 1982-07-21 1982-07-21 Manufacture of multilayer magnetic thin-film Pending JPS5917222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12569082A JPS5917222A (en) 1982-07-21 1982-07-21 Manufacture of multilayer magnetic thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12569082A JPS5917222A (en) 1982-07-21 1982-07-21 Manufacture of multilayer magnetic thin-film

Publications (1)

Publication Number Publication Date
JPS5917222A true JPS5917222A (en) 1984-01-28

Family

ID=14916274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12569082A Pending JPS5917222A (en) 1982-07-21 1982-07-21 Manufacture of multilayer magnetic thin-film

Country Status (1)

Country Link
JP (1) JPS5917222A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256819A (en) * 1984-06-04 1985-12-18 Ulvac Corp Rf electric power supply controller for plasma utilizing device
JPS61169236U (en) * 1985-04-10 1986-10-20
JPS6314409A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Laminated magnetic material film
JPH024964A (en) * 1988-06-23 1990-01-09 Teijin Ltd Opposed target-type sputtering device
DE10011649C1 (en) * 2000-02-28 2001-09-27 Fraunhofer Ges Forschung The thin layer system is formed using a substrate which is supplied with a bias voltage while the layers of different materials are sputtered on to it in sequence to give smooth surfaces and a thin interdiffusion zone between them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109190A (en) * 1976-03-09 1977-09-13 Nec Corp Method of producing nonctystallized ferro-magnetic membran
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109190A (en) * 1976-03-09 1977-09-13 Nec Corp Method of producing nonctystallized ferro-magnetic membran
JPS56126907A (en) * 1980-03-12 1981-10-05 Kokusai Denshin Denwa Co Ltd <Kdd> Magnetic optical recording medium
JPS5778652A (en) * 1980-11-01 1982-05-17 Daido Steel Co Ltd Thermal magnetic recording carrier and thermal magnetic recording system
JPS5794948A (en) * 1980-12-04 1982-06-12 Kokusai Denshin Denwa Co Ltd <Kdd> Photomagnetic recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256819A (en) * 1984-06-04 1985-12-18 Ulvac Corp Rf electric power supply controller for plasma utilizing device
JPS61169236U (en) * 1985-04-10 1986-10-20
JPS6314409A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Laminated magnetic material film
JPH024964A (en) * 1988-06-23 1990-01-09 Teijin Ltd Opposed target-type sputtering device
DE10011649C1 (en) * 2000-02-28 2001-09-27 Fraunhofer Ges Forschung The thin layer system is formed using a substrate which is supplied with a bias voltage while the layers of different materials are sputtered on to it in sequence to give smooth surfaces and a thin interdiffusion zone between them

Similar Documents

Publication Publication Date Title
JPS60214417A (en) Vertical magnetic recording medium
JP2957421B2 (en) Thin film magnet, method of manufacturing the same, and cylindrical ferromagnetic thin film
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
JPH02161617A (en) Production of magnetic recording medium
JPS5917222A (en) Manufacture of multilayer magnetic thin-film
US5552217A (en) Magnetic recording medium and a method for producing it
US4645690A (en) Method of manufacturing a magnetic media
Hsu et al. Texture formation and magnetic properties of RF sputtered CoCrTa/Cr longitudinal thin films
JPS63201912A (en) Magnetic recording medium and its production
Niimura et al. C-axis orientation of Co-Cr thin films by facing targets sputtering
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP2000012366A (en) Manufacture of soft magnetic film
JPH03232960A (en) Iron-iron nitride multilayer film
JPS63293802A (en) Laminated magnetic thin film and magnetic head using the same
JP2871990B2 (en) Magnetoresistive element thin film
Yamaguchi et al. Magnetic properties and structures of sputtered CoNi/Cr films
Fukizawa et al. Sputtered pure iron film for soft magnetic layer in perpendicular recording media
Kawanabe et al. Annealing effect on magnetic characteristics of Pt/MnSb multilayered films
Hoshi et al. Magnetic properties of iron cobalt multilayered films deposited by opposed targets sputtering
JPS61110328A (en) Vertical magnetic recording medium and its production
JPH05182169A (en) Magnetic disk and its production
JPS61258331A (en) Magnetic recording medium
Niimura et al. Multilayered Co-Cr films with non-magnetic intermediate layers by FTS system
Hoshi et al. Deposition of Fe/Co Multilayered Films by Opposed Targets Sputtering
JPS6379951A (en) Multilayered film of magnetic metal and its production