JPS5917155A - Method for detecting defect by ultrasonic wave method - Google Patents

Method for detecting defect by ultrasonic wave method

Info

Publication number
JPS5917155A
JPS5917155A JP57127185A JP12718582A JPS5917155A JP S5917155 A JPS5917155 A JP S5917155A JP 57127185 A JP57127185 A JP 57127185A JP 12718582 A JP12718582 A JP 12718582A JP S5917155 A JPS5917155 A JP S5917155A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
ultrasonic
defect
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57127185A
Other languages
Japanese (ja)
Other versions
JPH0146025B2 (en
Inventor
Akio Suzuki
紀生 鈴木
Hiroshi Kajikawa
梶川 弘
Tadashi Nishihara
西原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57127185A priority Critical patent/JPS5917155A/en
Priority to US06/514,864 priority patent/US4524622A/en
Priority to EP83304211A priority patent/EP0102176B1/en
Priority to DE8383304211T priority patent/DE3373709D1/en
Publication of JPS5917155A publication Critical patent/JPS5917155A/en
Publication of JPH0146025B2 publication Critical patent/JPH0146025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To discriminate a defect accurately in the direction, inclination, and size, by using an angle probe which transmits and receives an ultrasonic wave beam in crossing relation with the axial center of rotation in a flaw detection area in a material to be inspected. CONSTITUTION:A scanning frame 5 is driven freely forward and backward, i.e. in a Y direction by a motor 6' along rails 6 arranged on both sides of the material 2 to be inspected, and a movable frame 8 driven freely to left and right, i.e. in an X direction by a motor 7 is supported on the running frame 5. The angle probe 1 is fitted to a turntable 11 at the lower end of the rotating shaft 10 of a probe rotating mechanism 9 so that the ultrasonic wave beam 4 crosses the axial center of rotation in the material 2 to be inspected. A rotary encoder 13 for detecting the incidence direction is coupled with the rotating shaft 10. A scanning control part 14 for scanning the probe in the X and Y directions controls the scanning frame 5 and movable frame 8 during flaw detection. Further, an ultrasonic flaw detector 15, analog gate 16, peak holding circuit 17, adder 18, XY recorder 9, counter 20, D/A converter 21, storage scope 22, and adder 23 are provided.

Description

【発明の詳細な説明】 本発明は、超音波法による欠陥の検出方法に関し、被検
材内部に生じた横穴状欠陥等の欠陥の方向、傾き、大き
さ、深さを認識することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of detecting defects using an ultrasonic method, and an object of the present invention is to recognize the direction, inclination, size, and depth of a defect such as a horizontal hole-like defect that occurs inside a material to be inspected. That is.

鋳造材には、鋳造工程において内部にこもったガス等に
よって材料中に横穴状の空胴が発生することがある。こ
の場合、その使用目的により欠陥の形状とそれが材料強
度に及ぼす有害度が明らかにされているものも少なくな
く、数種の鋳造材においては、欠陥の有害度がその平面
透影図上の大きさで規定されている。しかし、材料にか
かる応力の方向性から、同じ長さの横穴状欠陥がX方向
にある場合とY方向にある場合とでは、有害度が沢なる
のが通常である。逆に云えば、材料強度的に¥F容され
得る欠陥の大きさがX方向とY方向とで沢なるのが普通
である。このような状況のもとでは、横穴状欠陥の形状
(方向、傾き、大きさ)k正確に認識することが必要で
ある。
In cast materials, horizontal hole-like cavities may occur in the material due to gas trapped inside the material during the casting process. In this case, the shape of the defect and the degree of harmfulness it has on the material strength are often clarified depending on the intended use, and for some types of cast materials, the degree of harmfulness of the defect is determined by regulated by size. However, due to the directionality of stress applied to the material, the degree of harm is usually greater when a horizontal hole-like defect of the same length is located in the X direction and in the Y direction. Conversely, in terms of material strength, the size of defects that can be tolerated is usually greater in the X direction and in the Y direction. Under such circumstances, it is necessary to accurately recognize the shape (direction, inclination, size) of the horizontal hole-like defect.

処で、このような内部欠陥の検出方法として、被検材の
内部に超音波ビームを発信し、欠陥からのエコーを受信
する超音波法が従来から提供され、かつ実用に供されて
いる。しかし、従来の超音波法は、中に探触子を被検材
の探傷領域内で所定方向に移動させてエコーを捉えるだ
けであるため、そのエコーを表示媒体上に表示した探傷
パターンから’t’lJ定し得る要素Fi極〈限られた
ものであり、横穴状欠陥の形状を完全に掘屑−ることは
困難であった。
As a method for detecting such internal defects, an ultrasonic method in which an ultrasonic beam is transmitted inside a material to be inspected and echoes from the defect are received has been conventionally provided and put into practical use. However, in the conventional ultrasonic method, the probe is simply moved in a predetermined direction within the flaw detection area of the test material and the echoes are captured. Since the element Fi pole that can be determined is limited, it was difficult to completely excavate the shape of the horizontal hole-like defect.

本発明は、このような従来の問題点に鑑みて提供された
ものであって、その第1の特徴とするところは、被検材
内部の欠陥を超音波法により検出するに際し、被検材内
部の探傷@域で回転軸・Uと交差するように超音波ビー
ノ・を送受する斜角探触子を用い、この斜角探触子を前
記回転軸8廻りに回転させながら360°の各方向から
超音波ビームを送受し、探傷ゲート内に生じたエコーの
ピーク値を超音波ビームの入射方向に対応させて表示媒
体にff i パターンとして表示し、この探傷パター
ンから欠陥の方向、傾き、大きさを判定する点にあり、
第2の特徴とするところは、被検材内部の欠陥を超音波
法によシ検出するに際し、被検月内部の探傷領域で回転
軸心と交差するように超音波ビームを送受する斜角探触
子を用い、この斜10探触子を前記回転軸む廻りに回転
させながら660°の各方向から超音波ビームを送受し
、探傷ゲート内のエコーを受信した位置で探触子を回転
軸心方向又は径方向に移動させてエコーがピーク値とな
る位置を求め、その位置で再度探触子を回転させ、エコ
ーのピーク値を超音波ビームの入射方向に対応させて表
示媒体に探傷パターンとして表示し、この探傷パターン
から欠陥の方向、傾き、大きさ、傑さを判定する点にあ
る。
The present invention has been provided in view of such conventional problems, and its first feature is that when detecting defects inside the test material by ultrasonic method, Using an angle probe that transmits and receives ultrasonic beams so as to intersect the rotation axis U in the internal flaw detection region, the angle probe is rotated around the rotation axis 8 to detect each angle of 360°. An ultrasonic beam is transmitted and received from the direction, and the peak value of the echo generated in the flaw detection gate is displayed on a display medium as an ff i pattern in correspondence with the incident direction of the ultrasonic beam. From this flaw detection pattern, the direction, inclination, and direction of the defect are determined. The point is to judge the size,
The second feature is that when detecting defects inside the material to be inspected using the ultrasonic method, the bevel angle at which the ultrasonic beam is transmitted and received so as to intersect with the rotation axis in the flaw detection area inside the object to be inspected. Using a probe, transmit and receive ultrasonic beams from each direction of 660° while rotating this oblique 10 probe around the rotation axis, and rotate the probe at the position where the echo within the flaw detection gate is received. Move the probe in the axial or radial direction to find the position where the echo reaches its peak value, rotate the probe again at that position, match the echo peak value to the direction of incidence of the ultrasonic beam, and perform flaw detection on the display medium. The flaw detection pattern is displayed as a pattern, and the direction, inclination, size, and conspicuousness of the defect are determined from this flaw detection pattern.

以下、図示の夾施例について本発明を詳述する。The present invention will now be described in detail with reference to the illustrated embodiments.

第1図(A)山は屈折角θの斜角探触子(1)ヲ用いて
斜角式超音波探傷法により被検材(2)中の傾きηの横
穴状欠陥(3)全探傷する場合の超音波ビームの路程を
示す。但し、θSηとする。第1図に示すように、斜角
探触子(1)を回転軸8廻りに始線位置から1回転させ
ながら超音波ビーム(4)を送受した場合、超音波ビー
ム(4)が欠陥(3)に垂直に入射する方向は。
Figure 1 (A) The peak is a horizontal hole-shaped defect with an inclination η in the specimen material (2) (3) total flaw detection by oblique ultrasonic flaw detection using an oblique angle probe (1) with a refraction angle θ. The path of the ultrasonic beam is shown below. However, it is assumed to be θSη. As shown in Fig. 1, when the ultrasonic beam (4) is transmitted and received while rotating the angle probe (1) once around the rotation axis 8 from the starting line position, the ultrasonic beam (4) 3) The direction of incidence perpendicular to .

始線から01、αオ回転した位置の2方向ある。これを
図中の符号金柑いて示すと、P −Q −、R,−、Q
 −。
There are two directions: 01 and αo rotated from the starting line. This is shown by the symbol Kumquat in the figure: P -Q -, R, -, Q
−.

PとP’−Q’−、R“−・Q“−P゛で示される。そ
こで、簡単な幾何学的な計算から (1)・δ −」2し            ■Il
n Q であることが分る。
P, P'-Q'-, R"-.Q"-P'. Therefore, from a simple geometrical calculation, (1)・δ −''2 ■Il
It turns out that nQ.

従って、η4θの時、斜角探触子(1)を回転させ。Therefore, when η4θ, rotate the angle probe (1).

円Cに沿って超音波ビーム(4)を回転入射させながら
欠陥(3)全探傷すると、被検材(2)中の深さdの近
傍に探傷ゲートヲかけて、その探傷ゲート内でエコーを
ピークホールドするようにしておけば、探触子(1)が
1周する間に極大値がα、とα2との2箇所で得られる
。またη=θの場合には虜=(L!2=180゜となシ
、極大値が1個得られる。
When all defects (3) are detected while rotating the ultrasonic beam (4) along the circle C, a flaw detection gate is placed near the depth d in the test material (2) and an echo is generated within the flaw detection gate. If the peak is held, local maximum values can be obtained at two locations α and α2 during one revolution of the probe (1). In addition, when η=θ, the value becomes L!2=180°, and one local maximum value is obtained.

第2図(〜(13)にこの実測値の波形を示し、第2図
(8はη〈θの場合の入射方向に対するピーク値、第2
図(均はη−θの場合の入射方向に刻するピーク値であ
シ、また点線はしきい値のレベルケ示す。
Figure 2 (-(13) shows the waveform of this measured value, Figure 2 (8 is the peak value for the incident direction when η<θ,
In the figure (the average is the peak value carved in the incident direction in the case of η-θ, and the dotted line shows the level of the threshold value.

第3図及び第4図は上記データを得るために用いた探傷
装置含水す6(5)は走行枠で、被検部(2)の両側方
に配置されたレール(6)に沿ってモータ(6)“によ
シ駆動されて1前後方向(Y方向)に走行自在であり、
この走行枠(5)にモータ(7)によって駆動される可
動枠(8)が左右方向(X方向)に移動自在に支持され
る。(9)は探触子回転機構で、縦方向の回転軸00の
下端に装着された回転台ODを備え、この回転台ODに
、超音波ビーム(4)が被検部(2)中で回転軸心と交
差するように斜角探触子(1)が取イー1けられている
。回転軸01)はモータO2によシ駆動され、寸たこの
回転軸00には回転角(入射方向)を検出するためのロ
ータリエンコーダ03が連動連結されでいる。なお回転
機構(9)は可動台(8)に取付けられている。圓は探
触子(1)をX−Y方向に走査するだめの走査制御部で
、探傷時にはこの走査制御部(141で走行枠(5)及
び可動枠(8)を制御する。(イ)は超音波探傷器、O
eはアナログゲート、σ71はピークホールド回路、(
至)は加′W、器、09はXYレコーダである。翰はカ
ウンタ、 (211Fi])/A変換器、(支)はスト
レージスコープ、(ハ)は加3v器である。
Figures 3 and 4 show the flaw detection device used to obtain the above data.The water-containing frame 6 (5) is a running frame, and the motor runs along the rails (6) placed on both sides of the test area (2). (6) “It is driven by a motor vehicle and can move freely in the front-rear direction (Y direction),
A movable frame (8) driven by a motor (7) is supported by the traveling frame (5) so as to be movable in the left-right direction (X direction). (9) is a probe rotation mechanism, which is equipped with a rotary table OD attached to the lower end of the vertical rotation axis 00, and an ultrasonic beam (4) is directed into the object to be examined (2) on this rotary table OD. An oblique probe (1) is mounted so as to intersect with the rotation axis. A rotary shaft 01) is driven by a motor O2, and a rotary encoder 03 for detecting the rotation angle (incidence direction) is interlocked with the rotary shaft 00 of the chisel. Note that the rotation mechanism (9) is attached to the movable base (8). The circle is a scanning control unit that scans the probe (1) in the X-Y direction, and during flaw detection, this scanning control unit (141) controls the traveling frame (5) and movable frame (8). (A) is an ultrasonic flaw detector, O
e is an analog gate, σ71 is a peak hold circuit, (
) is the adder W, the container, and 09 is the XY recorder. The handle is a counter, the (211Fi])/A converter, the (support) is a storage scope, and the (c) is an adder.

上記のような構成の走査機構の探傷装置を用いれば、第
5図(A) (I31に示すように、超音波ビーム(4
)の有効ビーム径(4a)と探傷ゲー1− (01で定
まる被検材(2)中の成る深さ領域(斜線で示した回転
体部分)t24に全方向(360’)から超音波ビーム
(41’<送受でき、この結果、nσ述のように欠陥(
3)の形伏全見出すための計算処理が極めて容易になり
、また探傷領域が作業者に直観的に分り、探傷装置の較
正等に便利なものとなる。なお、探触子(1)と被検材
(2)との音響結合は1局部水浸法による他、アクリル
等の遅延線を用いた直接法による実施も可能である。
If a flaw detection device with a scanning mechanism configured as described above is used, the ultrasonic beam (4
) with effective beam diameter (4a) and flaw detection gauge 1- (01) An ultrasonic beam is applied from all directions (360') to the depth region (rotating body part shown with diagonal lines) in the test material (2) t24. (41'< can be sent and received, and as a result, there is a defect (
The calculation process for finding the complete shape in 3) becomes extremely easy, and the operator can intuitively understand the flaw detection area, making it convenient for calibrating flaw detection equipment. The acoustic coupling between the probe (1) and the material to be tested (2) can be achieved not only by the one-local water immersion method but also by a direct method using a delay line made of acrylic or the like.

探傷時には走行枠(5)及び可動枠(8)を夫々駆動し
て探触子(1)ヲ第6図に示す如くジグザグ状に走査し
ながら、回転軸αQ廻!llに探触子(1)全回転させ
、ビーム入射点軌跡@〔第1図(勾及び第5図(〜参照
〕に沿って被検材(2)中に超音波ビーム(4)を入射
する。そして、欠陥(3)からの超音波ビーム(4)の
エコーを探触子(1)で受信し、探傷器09を経てアナ
ログゲー)QGにより深さdの近傍の信号を取出す。こ
のようにして取出した信号のピークrLヲヒークホール
ド回路αηにより検出し、この信号と走査機構の位置信
号をオフセットとして加算器(181により加算し、X
YレコーダOgのX軸に入力する。一方、ロータリエン
コーダa3の出力パルスをカウンタ(イ)によシ計数し
、それをD/A変換器c211で1)/A変換し、入射
方向としてXYレコーダ09のY軸に入力する。
During flaw detection, the traveling frame (5) and movable frame (8) are each driven to scan the probe (1) in a zigzag pattern as shown in Fig. 6, while rotating the rotation axis αQ! Rotate the probe (1) fully and inject the ultrasonic beam (4) into the test material (2) along the beam incidence point locus (see Fig. 1 (angle) and Fig. 5 (~)). Then, the echo of the ultrasonic beam (4) from the defect (3) is received by the probe (1), passed through the flaw detector 09, and a signal near the depth d is extracted by the analog game (QG). The peak rL of the signal extracted in this manner is detected by the peak hold circuit αη, and this signal and the position signal of the scanning mechanism are added together by an adder (181) as an offset, and
Input to the X axis of Y recorder Og. On the other hand, the output pulses of the rotary encoder a3 are counted by a counter (a), converted to 1)/A by a D/A converter c211, and input to the Y axis of the XY recorder 09 as the incident direction.

このようにしてXYレコーダa9の記録紙上に探傷パタ
ーンを表示し、その探傷パターンから欠陥(3)の方向
と傾きと大きさを求める。なお加算器(ハ)は探傷器0
9のmす1信号(・鋸歯状波)から、ストレージスコー
プ■のX%Y軸信号を生成するためのものであり、X軸
用とY軸用の信号の振幅を適当に調節して、ストレージ
スコープ゛の掃引線が超音波ビームの屈折角を反映する
ようにしである。また、ストレージスコー1のX軸信号
には、走査機構の位置信号がオフセットとして加算され
、ストレージスコープのにはこれらX、Y信号とアナロ
グゲートOeからの2軸信号とから所mBスコープ像を
表示する。このBスコープ像を第7図に示す。
In this way, the flaw detection pattern is displayed on the recording paper of the XY recorder a9, and the direction, inclination, and size of the defect (3) are determined from the flaw detection pattern. Note that the adder (c) is flaw detector 0.
This is to generate the X%Y-axis signal of the storage scope ■ from the ms1 signal (sawtooth wave) of 9. By appropriately adjusting the amplitude of the X-axis and Y-axis signals, The sweep line of the storage scope reflects the refraction angle of the ultrasound beam. In addition, the position signal of the scanning mechanism is added as an offset to the X-axis signal of the storage scope 1, and the storage scope displays a mB scope image from these X, Y signals and the 2-axis signal from the analog gate Oe. do. This B scope image is shown in FIG.

探傷パターンから欠陥(3)の方向と傾きとを求めるに
は次のようにして行なう。即ち、第8図(7!に)は被
検材(2)に横穴状欠陥を形成したものの探傷パターン
を極座標グラフに表示したものを示す。始線は被検材の
適当な方向に定めである。η〈θの場合、図示の如く2
つの極大値を有する探傷パターンが得られるが、それら
を与える入射方向を01、’h (+’z> Q!1 
)とする。第8図(A)tJ: Z、−Q+、4 ia
ooの場合であり、この時の欠陥(3)の方向(横穴状
欠陥の浅い部分から深い部分へ引いた面線と始線とのな
す角)αは、(的+α、)/2で与えられる。α2−α
、≦180°の時には、欠陥(3)の方向は(α1+α
z)/2+180゜で与えられる。
The direction and inclination of defect (3) can be determined from the flaw detection pattern as follows. That is, FIG. 8 (7!) shows a polar coordinate graph of the flaw detection pattern of the test material (2) in which a horizontal hole-like defect was formed. The starting line is set in an appropriate direction of the material to be inspected. In the case of η〈θ, 2 as shown in the figure
A flaw detection pattern with two maximum values is obtained, but the incident direction that gives them is 01, 'h (+'z> Q!1
). Figure 8 (A) tJ: Z, -Q+, 4 ia
In this case, the direction of defect (3) (the angle formed between the surface line drawn from the shallow part to the deep part of the horizontal hole-like defect and the starting line) α is given by (target + α, )/2. It will be done. α2−α
, ≦180°, the direction of defect (3) is (α1+α
z)/2+180°.

欠陥(3)の傾きηは式■を用いて以下のように求めら
れる。即ち、式■のδはα1とσ、を用いて表わすと、
第8図的の場合、δ=(α、−α、)/2 であシ、第
8図的の場合、δ=180°−(α2−α、)/2 で
ある。
The slope η of defect (3) is obtained using equation (2) as follows. That is, when δ in formula ■ is expressed using α1 and σ,
In the case of Fig. 8, δ=(α, -α,)/2, and in the case of Fig. 8, δ=180°-(α2-α,)/2.

従って、屈折角θの値は予め分っているので、式■にδ
を代入すればηを求めることが可能である。
Therefore, since the value of the refraction angle θ is known in advance, δ
It is possible to find η by substituting .

欠陥(3)の大きさは、横穴状欠陥の場合、従来周知の
探傷方程式から容易に求めることができる。
In the case of a horizontal hole-like defect, the size of the defect (3) can be easily determined from a conventionally well-known flaw detection equation.

以上述べたような処理は、欠陥(3)の反射面(第3図
にR,R“で示す)が探触子(1)の回転軸・ひと超音
波ビームの中心軸との交点(第1図にOで示す)近傍に
ある場合にのみ正確に冥施できるものである。しかしな
がら、実際の探傷においては、欠陥′(3)の深さは不
定であるから、欠陥(3)の深さに対応して0点の位置
を調整する必要が生じる訳である。
The process described above is carried out at the point where the reflecting surface of the defect (3) (indicated by R and R'' in Figure 3) intersects the rotational axis of the probe (1) and the central axis of the human ultrasound beam (the It can be performed accurately only when the depth of the defect (3) is near (indicated by O in Figure 1).However, in actual flaw detection, the depth of the defect (3) is indefinite; Therefore, it is necessary to adjust the position of the zero point accordingly.

第9図及び第10図はこのような事情を考慮した探触子
回転機構(9)?示す。即ち、第9図及び第10図にお
いて、(社)は探触子(1)全保持する探触子シューで
、回転台011に形成されたガイド部(5)に沿って径
方向に摺動自在であり、この探触子シュー(イ)にはめ
ねじ体(至)が付設されている。■はめねじ体(ハ)に
螺合するねじ軸であって、回転台CI?)にガイド部(
イ)と平行でかつ回転のみ自在に支持されている。
Figures 9 and 10 show a probe rotation mechanism (9) that takes this situation into consideration. show. That is, in FIGS. 9 and 10, the company has a probe shoe that fully holds the probe (1) and slides in the radial direction along the guide portion (5) formed on the rotary table 011. The probe shoe (A) is provided with a female screw body (To). ■ is a screw shaft that screws into the female threaded body (c), and is it the rotary table CI? ) to the guide part (
It is supported parallel to (a) and only rotatably.

ねじ軸翰は回転台O11中央に配置されたギヤーボック
ス(7)内のギヤー機構を介して調整軸01)に連動し
、またその調整軸Gυは回転軸00の中心上に1丁方向
に配置され、かつその上端に調整つまみ(至)が設けら
れている。従って、調整つまみα4f:廻せば、調整軸
clυ、ギャーボックヌ■、ねじ軸(ト)を介して探触
子シュー(イ)がガイド部(ロ)に沿って摺動し、探触
子(1)の径方向の位置が変わるので、0点の位置。
The screw shaft is interlocked with the adjustment shaft 01) via a gear mechanism in a gear box (7) placed in the center of the rotary table O11, and the adjustment shaft Gυ is arranged in the direction of 1 on the center of the rotary shaft 00. and an adjustment knob (to) is provided at its upper end. Therefore, when the adjustment knob α4f is turned, the probe shoe (A) slides along the guide part (B) via the adjustment shaft clυ, the gear box ■, and the screw shaft (G), and the probe (1) Since the radial position of changes, the position of the 0 point.

つ捷り探傷深さ全任意に調整することができる。The flaw detection depth can be adjusted arbitrarily.

なお、0点の位置を調整する方法としては、探触子(1
)を回転軸(lfjの軸心方向に移動させ、探触子(1
)と被検材(2)表面との距離ヲ変える方法もあり、こ
の場合も同様に実施可能である。
In addition, as a method to adjust the position of the 0 point, the probe (1
) in the direction of the axis of the rotation axis (lfj), and move the probe (1
) and the surface of the material to be tested (2) can be changed, and this method can be implemented in the same way.

以上述べたところから、本発明方法全実際の材料に適用
する場合には、欠陥の有無を判定するための粗探傷と欠
陥の形状全認識するための精密探傷の2つに大別して、
次のような手順に従って探傷を実施するのが良い。
From the above, when the method of the present invention is applied to all actual materials, it can be roughly divided into two types: coarse flaw detection to determine the presence or absence of defects, and precision flaw detection to fully recognize the shape of defects.
It is best to carry out flaw detection according to the following procedure.

1)  ff傷深さをO(表面)〜dとすると、超音波
ビームの中心軸と探触子(1)の回転中心軸との交点が
d/2の近くになるように、探触子(1)の回転半径を
調節する。探傷ゲート0〜dに設定する。
1) If the ff scratch depth is O (surface) to d, move the probe so that the intersection between the central axis of the ultrasonic beam and the central axis of rotation of the probe (1) is close to d/2. (1) Adjust the turning radius. Set flaw detection gates 0 to d.

2)検出すべき最小欠陥の大きさで決まるしきい値(第
2図)よりも更に−6dB程度低いしきい値を設定して
、横穴状欠陥の有無をヤ1定するための粗探傷を全面に
わたって行なう。この新しいしきい値を越えるエコーが
現われた時の探触子(1)の位置(z、y)全記録して
おく。このような位置は1つ以上ある場合もある。
2) Set a threshold that is approximately -6 dB lower than the threshold determined by the size of the smallest defect to be detected (Figure 2), and perform rough flaw detection to determine the presence or absence of side hole defects. Do it all over. The entire position (z, y) of the probe (1) when an echo exceeding this new threshold appears is recorded. There may be more than one such location.

8)欠陥の検出された位置に再び戻り、探触子(1)を
回転軸0■■にゆっくり回転さセながら欠陥エコーti
える。エコーの極大値が得られたところで入射方向を固
定し、調整っ寸み3つを廻して探触子(1)を径方向に
走査し、エコーが極大になるところで固定する。次に探
触子(1)を回転させて*iパターンを採る。この時の
欠陥の反射面の深さをストレージヌコーブ■から読取り
配録する。
8) Return to the position where the defect was detected, and while slowly rotating the probe (1) to the rotation axis 0
I can do it. When the maximum value of the echo is obtained, the direction of incidence is fixed, and the probe (1) is scanned in the radial direction by turning the three adjustment dials, and is fixed when the echo becomes maximum. Next, the probe (1) is rotated to take the *i pattern. The depth of the reflective surface of the defect at this time is read from Storage Nucove (■) and recorded.

4)次に僅かだけ探触:r(1) ’i X −Y方向
に走査し、エコーが以前より高くなる位ff’tさがず
。続いて同じ操作を行ない、探傷パターンを採り、欠陥
の反射面の深さを記録する。探触イ(1)を僅がだけX
−Y走査させて以前より高いエコーが得られない場合に
は、最もエコー高さが高かった探傷パターンよシ、nc
1述した方法により欠陥の方向、傾き、深さ、大きさを
判定する。
4) Then probe slightly: r(1) 'i Scan in the X-Y direction until the echo is higher than before. Subsequently, the same operation is performed, a flaw detection pattern is taken, and the depth of the reflective surface of the defect is recorded. Probe A (1) is slightly X
- If a higher echo than before is not obtained by Y scanning, use the detection pattern with the highest echo height, then nc
The direction, inclination, depth, and size of the defect are determined by the method described in 1.

5)他の全ての欠陥に対し、3)及び4)項を突施し、
精密探傷を完了する。
5) Apply items 3) and 4) to all other defects,
Complete precision flaw detection.

第11図(Nはある材料(至)にががる応力の方向(矢
印)を、第11図(B)はその時の許容される欠陥(3
)の平面透影図上の大きさを方向の関数として夫々示し
たものである。この関数はだ円5..=1 で与えられ
ている。本発明によれば、前述したように欠陥(3)の
方向、傾き、寮長が正確に知られるので、その平面図上
での長さのX成分lDc  もY成分も容易に知ること
ができる。即ち、欠陥(3)の実長I!は探傷図形にお
ける最大値から分るので、第1図における始線の方向を
X軸にとれば、lx、lyは夫々 1、=ムリ(2)η 15/ = l+inα。3η で与えられ、X方向、Y方向での欠陥(3)の有害度が
判定できる。
Figure 11 (N is the direction (arrow) of stress in a certain material (to), Figure 11 (B) is the allowable defect at that time (3)
) on a plane perspective view as a function of direction. This function is an ellipse5. .. = 1. According to the present invention, as described above, since the direction, inclination, and length of the defect (3) are accurately known, the X component lDc and the Y component of the length on the plan view can be easily known. That is, the actual length I of defect (3)! can be determined from the maximum value in the flaw detection pattern, so if the direction of the starting line in Fig. 1 is taken as the X axis, lx and ly are each 1, = unreasonable (2) η 15/ = l + in α. 3η, and the degree of harmfulness of defect (3) in the X and Y directions can be determined.

なお、この方法では、通常、探触子(1)の回転半径を
無制限に大きくすることができないことがら、材料の疲
労破壊に密接な関連をもった表面近傍の横穴状欠陥の検
出に特に実用的である。
Note that this method is not particularly practical for detecting horizontal hole-like defects near the surface, which are closely related to fatigue failure of materials, since the rotation radius of the probe (1) cannot normally be increased indefinitely. It is true.

また、この方法で対象全横穴だけに珊定する必要はなく
、等方向な球状欠陥、η中心となるような傾いた斜面状
欠陥等にも適用できることは云うまでもない。
Furthermore, it is needless to say that this method does not have to be applied only to all target horizontal holes, but can also be applied to isodirectional spherical defects, inclined slope defects with the center η, etc.

以上実施例に詳述したように本発明によれば、斜角探触
子を回転軸、U廻漫に回転させながら360 ’の各方
向から超音波ビームを送受し、探傷ゲート内に生じたエ
コーのピーク値を超音波ビームの入射方向に対応させて
表示媒体に探傷パターンとして表示し、この探傷パター
ンから欠陥の方向、傾き、大きさを判定する方法を採っ
ているので、従来の超音波法とは異なり、被検材内部の
欠陥の方向、傾き、大きさをH実に認識でき、欠陥の有
害度1Fr、判定する上で非常に効果的である。
As described in detail in the embodiments above, according to the present invention, ultrasonic beams are transmitted and received from each direction of 360' while rotating the angle probe in a U-circle around the rotation axis, and ultrasonic beams generated within the flaw detection gate are transmitted and received. The peak value of the echo corresponds to the incident direction of the ultrasonic beam and is displayed as a flaw detection pattern on the display medium, and the direction, inclination, and size of the defect are determined from this flaw detection pattern. Unlike the method, the direction, inclination, and size of defects inside the material to be inspected can be clearly recognized, making it very effective in determining the degree of harmfulness of defects (1Fr).

また探傷ケート内のエコーを受信した位置で探触子を回
転軸心又は径方向に移動させて、エコーがピーク値とな
る位置ヲ求め、その位置で探触子を再度回転させて探傷
パターン金求めることにより、前述の方向、傾き、大き
さに加えて探触子の同転半径から幾何学的に、あるいけ
、ストレージスコープEの図形から欠陥の深さも同時に
判定することができる。
Also, move the probe in the rotation axis or radial direction at the position where the echo is received in the flaw detection cage to find the position where the echo reaches its peak value, and then rotate the probe again at that position to obtain the flaw detection pattern. By determining this, in addition to the direction, inclination, and size described above, the depth of the defect can also be determined geometrically from the radius of rotation of the probe, or from the shape of the storage scope E at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図(Al (Bl
は超音波ビームの路程を示す説明図、第2図(A) (
Blは入射方向とピーク値との関係を示す波形図、第5
図は探傷装置の構成図、第4図はその走査機構の平面図
、第5図(N山は探触子にょる探傷領域の説明図、第6
図は走査方法の説明図、第7図は欠陥反射面の深さのモ
ニタのためのBスコープ像ケ示す説明図、第8図1(勺
(乃は横穴人工欠陥の探傷パターンを極座標グラフに表
示した説明図、第9図書は回転機構の要部平面図、第1
0図はその要部破断図、第11図(7!(均は材料にが
がる応力の方向と許容される欠陥の長さを方向の関数と
して表わした説明図である。 (1)・・・斜角探触子、(2)・・・被検材、(3)
・・・欠陥、(4)・・・超音波ビーム、(9)・・・
探触子回転機構、ol・・・回転軸、all・・・回転
台、C9・・・超音波探傷器、oト・・アナログゲート
、 C1,71・・・ピークホールド回路、 Oq川用
 Yレコーダ、□□□・・・探触子シュー、翰・・・ね
じ軸、61)・・・調整軸。 特許出願人  株式会社神戸製鋼所
The drawings show one embodiment of the present invention, and FIG. 1 (Al (Bl
is an explanatory diagram showing the path of the ultrasonic beam, Fig. 2 (A) (
Bl is a waveform diagram showing the relationship between the incident direction and the peak value, No. 5
The figure is a configuration diagram of the flaw detection device, Figure 4 is a plan view of its scanning mechanism, Figure 5 (mountain N is an explanatory diagram of the flaw detection area by the probe, Figure 6 is an illustration of the flaw detection area by the probe,
Figure 7 is an explanatory diagram of the scanning method, Figure 7 is an explanatory diagram showing the B scope image for monitoring the depth of the defect reflecting surface, and Figure 8 is a polar coordinate graph showing the flaw detection pattern of an artificial defect in a side hole. The displayed explanatory diagram, Book 9 is a plan view of the main part of the rotation mechanism, Book 1
Figure 0 is a cutaway view of the main part, and Figure 11 (7!) is an explanatory diagram showing the direction of stress in the material and the length of the allowable defect as a function of direction. (1)・・Bevel probe, (2) ・・Test material, (3)
...Defect, (4)...Ultrasonic beam, (9)...
Probe rotation mechanism, ol...rotation axis, all...rotating table, C9...ultrasonic flaw detector, oto...analog gate, C1,71...peak hold circuit, Oq river Y Recorder, □□□...probe shoe, wire...screw shaft, 61)...adjustment shaft. Patent applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 1 被検材内部の欠陥を超音波法により検出するに際し
、被検材内部の探傷領域で回転軸、bと交差するように
超音波ビームを送受する斜角探触子を用い、この斜角探
触子を前記回転軸心廻シに回転させながら36C0の各
方向から超音波ビームを送受し、探傷ゲート内に生じた
エコーのピーク値を超音波ビームの入射方向に対応させ
て表示媒体に探傷パターンとして表示し、この探傷パタ
ーンから欠陥の方向、傾き、大きさを判定することを特
徴とする超音波法による欠陥の検出方法。 2 被検材内部の欠陥を超音波法によシ検出するに際し
、被検材内部の探傷領域で回転軸心と交差するように超
音波ビームを送受する斜角探触子を用い、この斜角探触
子をmJ記回転軸心廻りに回転させながら360°の各
方向から超音波ビームを送受し、探傷ゲート内のエコー
を受信した位置で探触子を回転軸む方向又は径方向に移
動させてエコーがピーク値となる位置を求め、その位置
で再度探触子を回転させ、エコーのピーク値を超音波ビ
ームの入射方向に対応させて表示媒体に探傷パターンと
して表示し、この探傷パターンから欠陥の方向、傾き、
大きさ、深さを判定することを特徴とする超音波法によ
る欠陥の検出方法。
[Scope of Claims] 1. An angle probe that transmits and receives an ultrasonic beam in a flaw detection area inside the test material so as to intersect the rotation axis b when detecting defects inside the test material using the ultrasonic method. While rotating this angle probe around the rotation axis, transmitting and receiving ultrasonic beams from each direction of 36C0, the peak value of the echo generated within the flaw detection gate is adjusted in the direction of incidence of the ultrasonic beam. A method for detecting defects using an ultrasonic method, characterized in that the corresponding flaw detection patterns are displayed on a display medium, and the direction, inclination, and size of the defects are determined from the flaw detection patterns. 2. When detecting defects inside a material to be inspected using the ultrasonic method, an oblique probe is used that transmits and receives an ultrasonic beam so as to intersect the rotational axis in the flaw detection area inside the material to be inspected. While rotating the angle probe around the axis of rotation marked mJ, transmit and receive ultrasonic beams from each direction of 360°, and at the position where the echo within the flaw detection gate is received, move the probe in the direction around the axis of rotation or in the radial direction. Move the probe to find the position where the echo reaches its peak value, rotate the probe again at that position, display the echo peak value as a flaw detection pattern on the display medium in correspondence with the direction of incidence of the ultrasonic beam, and perform this flaw detection. Determine the direction, inclination, and direction of the defect from the pattern.
A method for detecting defects using an ultrasonic method, characterized by determining size and depth.
JP57127185A 1982-07-20 1982-07-20 Method for detecting defect by ultrasonic wave method Granted JPS5917155A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57127185A JPS5917155A (en) 1982-07-20 1982-07-20 Method for detecting defect by ultrasonic wave method
US06/514,864 US4524622A (en) 1982-07-20 1983-07-18 Method and apparatus of ultrasonic flaw detection
EP83304211A EP0102176B1 (en) 1982-07-20 1983-07-20 Method and apparatus for ultrasonic flaw detection
DE8383304211T DE3373709D1 (en) 1982-07-20 1983-07-20 Method and apparatus for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127185A JPS5917155A (en) 1982-07-20 1982-07-20 Method for detecting defect by ultrasonic wave method

Publications (2)

Publication Number Publication Date
JPS5917155A true JPS5917155A (en) 1984-01-28
JPH0146025B2 JPH0146025B2 (en) 1989-10-05

Family

ID=14953778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127185A Granted JPS5917155A (en) 1982-07-20 1982-07-20 Method for detecting defect by ultrasonic wave method

Country Status (1)

Country Link
JP (1) JPS5917155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291856A (en) * 1985-10-03 1987-04-27 フオエスト ― アルピネ シュタール リンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of sorting defect
US7906021B2 (en) 2007-06-21 2011-03-15 Bunri Incorporation Contaminated fluid recovery apparatus
JP4834220B2 (en) * 1998-11-14 2011-12-14 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Equipment for precision machining of rotationally symmetric parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127681A (en) * 1973-04-06 1974-12-06
JPS5190986U (en) * 1975-01-20 1976-07-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127681A (en) * 1973-04-06 1974-12-06
JPS5190986U (en) * 1975-01-20 1976-07-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291856A (en) * 1985-10-03 1987-04-27 フオエスト ― アルピネ シュタール リンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of sorting defect
JP4834220B2 (en) * 1998-11-14 2011-12-14 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Equipment for precision machining of rotationally symmetric parts
US7906021B2 (en) 2007-06-21 2011-03-15 Bunri Incorporation Contaminated fluid recovery apparatus

Also Published As

Publication number Publication date
JPH0146025B2 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
US4049350A (en) Process and apparatus for detecting inclusions
US4807476A (en) Variable angle transducer system and apparatus for pulse echo inspection of laminated parts through a full radial arc
US3977236A (en) Apparatus and method for ultrasonic fastener hole inspection
US5275052A (en) Tenon inspection systems and methods
US3178933A (en) Method and apparatus for ultrasonic weld inspection and display
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JPH0352825B2 (en)
JPS5917155A (en) Method for detecting defect by ultrasonic wave method
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JP3746413B2 (en) Ultrasonic flaw detection result display method and ultrasonic flaw detection apparatus
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH11183445A (en) Flaw detector
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JPS61240158A (en) Ultrasonic flaw detection method and apparatus therefor
JPH01299456A (en) Ultrasonic wave flaw detector
JPS6180044A (en) Ultrasonic flaw detection apparatus
JPS59126951A (en) Ultrasonic flaw detection
JPH0545346A (en) Ultrasonic probe
JP2758654B2 (en) Ultrasonic surface roughness measurement method for solids
JPS6252455A (en) Method and apparatus for ultrasonic flaw detection
JPH10288512A (en) Shape measuring device
Geil et al. Cylindrical scan acoustical holography
JPS61266907A (en) Detector for surface condition
JPS60142248A (en) Ultrasonic flaw detecting method by split type focusing probe
SU1585753A1 (en) Method of determining the angle of application of ultrasonic inflined flaw detector