JPS59170664A - Solar heat driving diffusion absorption type refrigerator - Google Patents

Solar heat driving diffusion absorption type refrigerator

Info

Publication number
JPS59170664A
JPS59170664A JP58045527A JP4552783A JPS59170664A JP S59170664 A JPS59170664 A JP S59170664A JP 58045527 A JP58045527 A JP 58045527A JP 4552783 A JP4552783 A JP 4552783A JP S59170664 A JPS59170664 A JP S59170664A
Authority
JP
Japan
Prior art keywords
generator
solar
heat
diffusion
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58045527A
Other languages
Japanese (ja)
Inventor
諸頭 昌和
大隈 正人
金谷 経一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58045527A priority Critical patent/JPS59170664A/en
Publication of JPS59170664A publication Critical patent/JPS59170664A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/10Sorption machines, plants or systems, operating continuously, e.g. absorption type with inert gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は太陽熱駆動拡散吸収式冷蔵庫に関し、特に発
生器の加熱部を効率良く加熱することができるようにし
た太陽熱駆動拡散吸収式冷蔵庫に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to a solar-powered diffusion-absorption refrigerator, and more particularly to a solar-powered diffusion-absorption refrigerator that can efficiently heat the heating section of a generator. .

6:1)従来技術 第1図に示す従来の太陽熱駆動拡散吸収式冷蔵庫では、
ヒーター(1a)により発生器(2a)が加熱されると
、気泡ポンプ部(3a)において、アンモニアなどの冷
媒が吸収液から分離蒸発するとともに、冷媒を分離した
希溶液は気泡ポンプ作用により発生器(2a)から吸収
器(7a)の入口部に送られる。 蒸発した冷媒は精溜
器(4a)により濃縮された冷媒蒸気となり、凝縮器(
5a)で凝縮されて液化し、蒸発器(6a)で蒸発する
ときに冷藏庫内から熱を奪って冷凍効果をあげる。
6:1) Prior Art In the conventional solar-powered diffusion absorption refrigerator shown in Fig. 1,
When the generator (2a) is heated by the heater (1a), the refrigerant such as ammonia is separated and evaporated from the absorption liquid in the bubble pump section (3a), and the dilute solution from which the refrigerant has been separated is pumped into the generator by the action of the bubble pump. (2a) to the inlet of the absorber (7a). The evaporated refrigerant becomes concentrated refrigerant vapor in the rectifier (4a), and then passes through the condenser (4a).
When it is condensed and liquefied in 5a) and evaporated in an evaporator (6a), it removes heat from the inside of the refrigerator to increase the freezing effect.

しかし、通常の拡散吸収式冷蔵庫の場合には、系内の全
圧力は25〜26atmで、アンモニア濃度は85wチ
であるため、発生器(2a)の加熱に約180℃の温度
が必要となるが、暖房・給湯用に用いられているいわゆ
る平板形太陽集熱器では、180℃の温度では集熱でき
ない。 捷た、仮シに180℃の高温で集熱できるよう
にしたとしても、日射量の変動により温度変化が大きく
なるため、拡散吸収式の冷蔵庫を効率の良い状態で運転
することができない問題があった。
However, in the case of a normal diffusion absorption refrigerator, the total pressure in the system is 25 to 26 atm and the ammonia concentration is 85 w, so a temperature of about 180°C is required to heat the generator (2a). However, so-called flat solar collectors used for space heating and hot water supply cannot collect heat at a temperature of 180°C. Even if it were possible to collect heat at a high temperature of 180 degrees Celsius using a twisted or temporary refrigerator, the temperature change would increase due to fluctuations in the amount of solar radiation, making it impossible to operate a diffused absorption type refrigerator in an efficient manner. there were.

(ハ)発明の目的 この発明は、これらの事情に鑑みてなされたものであり
、その主汐な目的の−っけ、日射が′の変動を吸収して
発生器を効率良く加熱することができる太陽熱駆動拡散
吸収式冷蔵庫を提供することにある。
(c) Purpose of the Invention This invention was made in view of these circumstances, and its main purpose is to efficiently heat the generator by absorbing fluctuations in solar radiation. The purpose of the present invention is to provide a solar heat-driven diffusion absorption refrigerator.

に)発明の構成 この発明は、発生器に気泡ポンプを有する拡散吸収式冷
蔵庫において、発生器の加熱部をメ(空ガラス管形ヒー
トバイブの太陽集熱器の凝縮部で加熱した太陽熱駆動拡
散吸収式冷蔵庫である。
2) Structure of the Invention This invention provides a diffusion absorption type refrigerator having a bubble pump in the generator, in which the heating part of the generator is heated by the condensing part of a solar collector of an empty glass tube heat vibrator. It is an absorption refrigerator.

この発明では、日射量の変動を吸収し、集熱効率を良く
するため、発生器の加熱部に潜熱蓄熱材を介在させたり
、太陽集熱器のガラス管内に反射ミラーを設けたりする
ほか、発生器の加熱部を冷媒希溶液部と冷媒希溶液部に
分離[7、各溶液部を別々の太陽集熱器で加熱するなど
のくふうがなされている。
In this invention, in order to absorb fluctuations in solar radiation and improve heat collection efficiency, in addition to interposing a latent heat storage material in the heating part of the generator and installing a reflective mirror in the glass tube of the solar collector, The heating section of the vessel is separated into a refrigerant dilute solution section and a refrigerant dilute solution section [7, each solution section is heated by a separate solar collector.

(ホ)実施例 以下第2図乃至第8図に示す各実施例に基づいてこの発
明を詳述する。 なお、これによってこの発明が限定さ
れるものではない。
(e) Examples The present invention will be described in detail based on the examples shown in FIGS. 2 to 8. Note that this invention is not limited to this.

捷ず第2図において、太陽熱駆動拡散吸収式冷蔵庫(1
)は真空ガラス管形ヒートバイブ太陽集熱器(2)、発
生器(3)、鞘溜器(4)、凝縮器(5)、蒸発器(6
)、吸収器(7)、受液槽(8)および熱交換器(9)
などから主として構成されている。
In Figure 2, a solar-powered diffusion absorption refrigerator (1
) is a vacuum glass tube type heat vib solar collector (2), generator (3), sheath reservoir (4), condenser (5), evaporator (6)
), absorber (7), liquid receiving tank (8) and heat exchanger (9)
It is mainly composed of.

発生器(3)内には気泡ポンプ00が内蔵されており、
この冷蔵庫(1)の性能は、太陽集熱器(2)で加熱さ
れ発生器(3)で蒸発するアンモニア蒸気の気泡がくみ
上げる冷媒希溶液量に依存する。 気泡ポンプO1の能
力は、ポンプバイブ01)内にある一定情の気泡が送り
込まれたときに最大になるため、冷蔵庫(1)を常に最
大の効率で働かせるためには、最適量の気泡が発生する
ように、一定の熱量で発生器(3)を加熱してやる必要
がある。
The generator (3) has a built-in bubble pump 00,
The performance of this refrigerator (1) depends on the amount of dilute refrigerant solution pumped up by bubbles of ammonia vapor heated by the solar collector (2) and evaporated by the generator (3). The capacity of the bubble pump O1 is maximized when a certain amount of bubbles is pumped into the pump vibe 01), so in order for the refrigerator (1) to always work at maximum efficiency, the optimum amount of bubbles must be generated. It is necessary to heat the generator (3) with a certain amount of heat so that the

蒸発器(6)内では、凝縮器(5)から供給されてきた
冷媒の凝縮液0が凝縮系内に充満されている水素拡散ガ
ス中に蒸発・拡散し、蒸発器(6)の周囲から熱を奪っ
て冷凍効果を生じる。 冷媒ガスと拡散ガスの混合気体
は、配管日を通って吸収器(7)内を上昇し、吸収器(
7)において発生器(3)から送られてきた希溶液α→
によって冷媒ガスを吸収される。
In the evaporator (6), the refrigerant condensate 0 supplied from the condenser (5) evaporates and diffuses into the hydrogen diffused gas filling the condensation system, and from around the evaporator (6) Removes heat and produces a freezing effect. The gas mixture of refrigerant gas and diffusion gas rises in the absorber (7) through the piping day and passes through the absorber (7).
In 7), the dilute solution α sent from the generator (3) →
The refrigerant gas is absorbed by the

冷媒ガスを吸収した濃溶液は受液槽(8)に貯えられ、
熱交換器(9)で希溶液α荀と熱交換したあと発生器(
3)内の気泡ポンプαOに送られる。
The concentrated solution that has absorbed the refrigerant gas is stored in a liquid receiving tank (8),
After exchanging heat with the dilute solution αXin in the heat exchanger (9), the generator (
3) is sent to the bubble pump αO inside.

第8図はこの発明の第1変形実施例を示したもので、発
生器(3)の加熱部(8°)を太陽集熱器(2)の凝−
5−^−− 縮部(2゛)で直接加熱させることなく、潜熱蓄熱材(
至)を介して加熱するようにしたものである。 潜熱蓄
熱材α9は通常容器0()に入れられ、シリコンオイル
などの液体状の熱媒0ηとともに加熱ボックス印肉に納
められて用いられる。 このため、潜熱蓄熱材(至)と
しては、発生器(3)内に最適量の気泡を発生させる熱
媒α力の温度より数度位高い変態点を持つ化合物、例え
ばNH4N0. (融解温度TF=170℃)、五1t
CIs (TF=192℃)、Na、80. (転位温
度TT=177℃)、商品名LT −1(KNO,(5
3%)−NaNO!(40%)  NaNO3(7%)
)(TF=142℃)などが利用できる。
FIG. 8 shows a first modified embodiment of the present invention, in which the heating part (8°) of the generator (3) is connected to the condenser of the solar collector (2).
5-^-- The latent heat storage material (
(to). The latent heat storage material α9 is usually placed in a container 0( ) and is used by being placed in a heating box ink pad together with a liquid heating medium 0η such as silicone oil. Therefore, as the latent heat storage material, a compound having a transformation point several degrees higher than the temperature of the heat medium α force that generates the optimum amount of bubbles in the generator (3), such as NH4N0. (melting temperature TF=170℃), 51t
CIs (TF=192°C), Na, 80. (Transition temperature TT=177℃), product name LT-1 (KNO, (5
3%)-NaNO! (40%) NaNO3 (7%)
) (TF=142°C), etc. can be used.

発生器(3)の加熱を上記のように行えば、太陽集熱器
(2)によって集熱された太陽熱は、凝縮部(2“)か
ら加熱ボックスl1181内の熱媒αηに伝えられ、熱
媒αηによって発生器(3)が加熱される。 この加熱
において、日射量が多くて太陽集熱器(2)から熱媒α
力に伝えられる熱量より、熱媒Q7)から発生器(3)
に持ち去られる熱量が少ないときには、熱媒α力の温度
は上昇するが、潜熱蓄熱材09の変態温度にまで上 6
− 擾了すると、潜熱蓄熱材〔19は融解することによって
熱媒α力の温度−に昇を抑える。 それ故、発生器(3
)は加熱量を増大されることなく最適加熱温度に保たれ
、冷蔵庫(])を効率良く運転する。 日射量が少なく
なってきたときは、潜熱蓄熱材09は凝固するときに放
出する熱量によって発生器(3)の加熱温度の変化を少
なくして冷蔵庫(1)の良好な運転状態を持続する。
If the generator (3) is heated as described above, the solar heat collected by the solar collector (2) is transferred from the condensing part (2'') to the heating medium αη in the heating box l1181, and the heat is The generator (3) is heated by the heat medium αη.In this heating, when the amount of solar radiation is large, the heat medium α is transferred from the solar collector (2).
From the amount of heat transferred to the power, from the heating medium Q7) to the generator (3)
When the amount of heat carried away is small, the temperature of the heating medium α rises, but it rises to the transformation temperature of the latent heat storage material 6.
- When the heating is completed, the latent heat storage material [19] melts and suppresses the temperature rise of the heating medium to -. Therefore, the generator (3
) is maintained at the optimum heating temperature without increasing the heating amount, allowing the refrigerator ( ) to operate efficiently. When the amount of solar radiation decreases, the amount of heat released when the latent heat storage material 09 solidifies reduces the change in the heating temperature of the generator (3), thereby maintaining the good operating condition of the refrigerator (1).

第4図および第5図はこの発明の第2変形実施例であっ
て、真空ガラス管形太陽集熱器(2)内にヒートバイブ
受熱部19iと反射ミラーのとを設け、ヒートバイブ受
熱部19)への太陽光の集光を反射ミラーのにより強化
したものである。 集光比として1.1〜1.8をとれ
ば、太陽集熱器(2)は180℃の温度でも充分に集熱
することができるようになり、緯度に応じた設置角度を
持たせれば、太陽を追尾することなく年中集光すること
ができる。
FIG. 4 and FIG. 5 show a second modified embodiment of the present invention, in which a heat-vib heat-receiving section 19i and a reflecting mirror are provided in a vacuum glass tube type solar collector (2). 19) The concentration of sunlight on the mirror is strengthened by a reflective mirror. If the concentration ratio is 1.1 to 1.8, the solar collector (2) will be able to collect enough heat even at a temperature of 180℃, and if the installation angle is adjusted according to the latitude. , it is possible to concentrate light all year round without having to track the sun.

第6図は第2変形実施例の太陽集熱器(2)を傾斜発生
器(3A)に適用したもう一つの変形実施例を示す。
FIG. 6 shows another modified embodiment in which the solar collector (2) of the second modified embodiment is applied to a tilt generator (3A).

第7図はとの発明のw3変形実施例であって、発生器(
3B)内の濃溶液管1211を途中の部分だけ発生器(
3B)と分離して外に取り出(−1その部分を太陽集熱
器(2)で加熱するよう(Cした場合を示す。
FIG. 7 shows a w3 modified embodiment of the invention, in which the generator (
The generator (
3B) and taken out outside (-1) The case is shown in which the part is heated by a solar collector (2) (C).

このようにしたときけ、発生器(8B)内の希溶液を加
熱する必要がないため、太陽集熱器(2)の9+荷を軽
くすることができる。
In this case, there is no need to heat the dilute solution in the generator (8B), so the 9+ load on the solar collector (2) can be reduced.

第8図はこの発明の第4匁・形実加j例であって54発
生器(3C)を冷媒濃溶液部21)と冷媒希溶液部(2
21とに分離し、固溶液部をそれぞれ別々の太陽集熱器
(2)で加熱した場合を示す。
FIG. 8 shows a fourth example of the present invention, in which the 54 generator (3C) is connected to the refrigerant concentrated solution section 21) and the refrigerant dilute solution section (21).
21 and the solid solution portions are heated by separate solar collectors (2).

このように構成(−だとき、濃溶液部(21)の加熱に
要する温度は希溶液部因)の加熱に要する180℃から
アンモニア濃pif185 w%のときの180℃に寸
で丁けることができる。 こσ)ため、太陽集熱器(2
)は濃溶液部21)側の加熱に使用されて温度が引き下
けられた分だけ集熱効率が改善される。
In this way, it is possible to reduce the temperature required for heating the concentrated solution part (21) from the 180 °C required for heating the dilute solution part to 180 °C when the ammonia concentration pif is 185 w%. can. Therefore, the solar collector (2
) is used to heat the concentrated solution section 21), and the heat collection efficiency is improved by the amount that the temperature is lowered.

(へ)発明の効果 以上の如く、この発明によれば、太陽集熱器として真空
ガラス管形ヒートバイブを用いたから、日射量の変動を
少なくして発生器を効率良く加熱し、太陽熱駆動拡散吸
収式冷蔵庫を安定した状態で運転することができる。
(f) Effects of the Invention As described above, according to the present invention, since a vacuum glass tube type heat vibrator is used as a solar collector, fluctuations in the amount of solar radiation can be reduced, the generator can be heated efficiently, and solar heat-driven diffusion can be achieved. It is possible to operate an absorption refrigerator in a stable state.

【図面の簡単な説明】 第1図は従来の太陽熱駆動拡散吸収式冷蔵庫の機能説明
図、第2図はこの発明に係る太陽熱駆動拡散吸収式冷蔵
庫の基本的な構成を示す機能訣明図、第8図はこの発明
の一変形実施例の太陽集熱器と発生器の接合部の詳細を
示す要部断面図、第4図は第2変形実施例の斜視図で拡
散吸収式冷蔵庫に太陽集熱器を一体化した斜視図、第5
図は同太陽集熱器の拡大斜視図、第6図は第2変形実施
例の変形を示す気泡ポンプ部の拡大縦断面図、第7図は
第8変形実施例で気泡ポンプ部の拡大縦断面図、第8図
は第4変形実施例で発生器まわりの詳細を示す要部縦断
面図である。 (1)・・・太陽熱駆動拡散吸収式冷蔵庫、(2)・・
・真空ガラス管形ヒートバイブ太陽集熱器、(2′)・
・・太陽集熱器の凝縮部、(3)・・・発生器、(8″
)・・・発生器の加熱部、(+(S・・気泡ポンプ、0
ト・・潜熱蓄熱材、α力・・・熱媒、(18)・・・加
熱ボックス、C20+・・・反射ミラー、21+・・・
冷媒濃溶液部、221・・・冷媒希溶液部。 ト公J5−一い一メ 1\
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a functional explanatory diagram of a conventional solar-powered diffusion-absorption refrigerator, and Fig. 2 is a functional diagram showing the basic configuration of a solar-powered diffusion-absorption refrigerator according to the present invention. FIG. 8 is a cross-sectional view of a main part showing the details of the joint between the solar collector and the generator in a modified embodiment of the present invention, and FIG. 4 is a perspective view of a second modified embodiment of the invention. Perspective view of integrated heat collector, 5th
The figure is an enlarged perspective view of the same solar collector, FIG. 6 is an enlarged vertical sectional view of the bubble pump section showing a modification of the second modified embodiment, and FIG. 7 is an enlarged longitudinal section of the bubble pump section of the eighth modified embodiment. The plan view and FIG. 8 are longitudinal cross-sectional views of main parts showing details around the generator in the fourth modified embodiment. (1)...Solar heat-driven diffusion absorption refrigerator, (2)...
・Vacuum glass tube type heat vib solar collector, (2′)・
・・Condensing part of solar collector, (3) ・・Generator, (8″
)... Heating part of the generator, (+(S... Bubble pump, 0
G...Latent heat storage material, α power...heating medium, (18)...heating box, C20+...reflection mirror, 21+...
Refrigerant concentrated solution part, 221... Refrigerant dilute solution part. Toko J5-Iichime1\

Claims (1)

【特許請求の範囲】 1、発生器に気泡ポンプを有する拡散吸収式冷蔵庫にお
いて、発生器の加熱部を真空ガラス管形ヒートパイプ太
陽集熱器の凝縮部で加熱したことを特徴とする太陽熱駆
動拡散吸収式冷蔵庫。 2、発生器の加熱部と太陽集熱器の凝縮部との間に、潜
熱蓄熱材を介在させた特許請求の範囲第1項記載の太陽
熱駆動拡散吸収式冷蔵庫。 8 潜熱蓄熱材が熱媒とともに加熱ボックス内に収納さ
れて発生器を加熱する特許請求の範囲第2項記載の太陽
熱駆動拡散吸収式冷蔵庫。 4、太陽集熱器がガラス管内部に反射ミラーを備えてい
る特許請求の範囲第1項記載の太陽熱駆動拡散吸収式冷
蔵庫。 5、発生器を冷媒濃溶液部と冷媒希溶液部とに分離し、
各溶液部を別々の太陽集熱器で加熱する特許請求の範囲
第1項記載の太陽熱駆動拡散吸収式冷蔵庫。
[Claims] 1. A solar thermal drive characterized in that in a diffusion absorption refrigerator having a bubble pump in the generator, the heating part of the generator is heated by the condensing part of a vacuum glass tube heat pipe solar collector. Diffusion absorption refrigerator. 2. The solar heat-driven diffusion absorption refrigerator according to claim 1, wherein a latent heat storage material is interposed between the heating part of the generator and the condensing part of the solar collector. 8. The solar-powered diffusion-absorption refrigerator according to claim 2, wherein the latent heat storage material is housed in a heating box together with a heating medium to heat the generator. 4. The solar heat-driven diffusion-absorption type refrigerator according to claim 1, wherein the solar collector includes a reflective mirror inside the glass tube. 5. Separate the generator into a refrigerant concentrated solution part and a refrigerant dilute solution part,
2. A solar-powered diffusion-absorption refrigerator according to claim 1, wherein each solution section is heated by a separate solar collector.
JP58045527A 1983-03-17 1983-03-17 Solar heat driving diffusion absorption type refrigerator Pending JPS59170664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045527A JPS59170664A (en) 1983-03-17 1983-03-17 Solar heat driving diffusion absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045527A JPS59170664A (en) 1983-03-17 1983-03-17 Solar heat driving diffusion absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPS59170664A true JPS59170664A (en) 1984-09-26

Family

ID=12721878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045527A Pending JPS59170664A (en) 1983-03-17 1983-03-17 Solar heat driving diffusion absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS59170664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098950A1 (en) * 2011-12-27 2013-07-04 Tomiyasu Hiroshi Ammonia absorption type cooling device utilizing solar energy or surplus energy
DE10028543B4 (en) * 2000-06-08 2013-10-02 Schneider Und Partner Ingenieurgesellschaft refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028543B4 (en) * 2000-06-08 2013-10-02 Schneider Und Partner Ingenieurgesellschaft refrigeration unit
WO2013098950A1 (en) * 2011-12-27 2013-07-04 Tomiyasu Hiroshi Ammonia absorption type cooling device utilizing solar energy or surplus energy

Similar Documents

Publication Publication Date Title
EP0374179B1 (en) Intermittent solar ammonia absorption cycle refrigerator
Iloeje et al. Computer simulation of a CaCl2 solid-adsorption solar refrigerator
JPH0252962A (en) Method and device for generating cold heat
Sharma et al. A state of the art on solar-powered vapor absorption cooling systems integrated with thermal energy storage
JPS59170664A (en) Solar heat driving diffusion absorption type refrigerator
WO2008135990A2 (en) Method and system for cooling by using solar energy
US4524759A (en) Process for the reversible transfer of thermal energy and heat transfer system useful therein
JP2005257141A (en) Solar system and its operation method
JPS5853261B2 (en) solar energy collector
JPH0322696Y2 (en)
JPH0535355B2 (en)
JPH0115783B2 (en)
CN106642683A (en) Air source-solar energy double-heat source heat pump hot-water system
JPH0253633B2 (en)
JPH0131111B2 (en)
JPS60175965A (en) Solar heat collector
JPS60105863A (en) Solar heat collector
JP2514452Y2 (en) Absorption cycle regenerator equipment
JPS5986860A (en) Solar heat water heater
JPS60196567A (en) Solar-heat driving absorption type refrigerator
JPH0147714B2 (en)
JPS6051019B2 (en) Cooling device using solar energy
CN117628715A (en) Flat-plate type solar heat collection-refrigeration dual-cycle integrated device
JPS58127070A (en) Heat collector utilizing solar heat
JPS61268961A (en) Self-exhaust heat recovery device